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Abstract

The main aim of this short paper is to answer the following question. Given a fixed graph H, for which values of the degree d
does a random d-regular graph on n vertices contain a copy of H with probability close to one?
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Forty years ago Erdős and Rényi wrote a fundamental paper [5] which has become the starting point of the theory
of random graphs. One of the main problems studied in this paper was the problem of finding the threshold for the
appearance of a small subgraph. Let H be a fixed graph (a triangle or a K4, say). The problem is to find the smallest
value of p such that the random graph G(n, p) almost surely contains H as a subgraph (not necessarily induced). In
the literature, this problem is frequently referred to as the small subgraph problem.

Let us briefly recall the definition of the Erdős–Rényi random graph G(n, p). A random graph G(n, p) is obtained
by connecting every pair i < j of the vertex set {1, . . . , n} randomly and independently with probability p. Here and
later p can be a function of n, and the asymptotic notation is used under the assumption that n → ∞. For readers
who are not familiar with the theory of random graphs, we highly recommend the monographs by Bollobás [4] and by
Janson et al. [7], both of which contain an entire section discussing the small subgraph problem.

Let H be a fixed graph with vH vertices and eH edges. We call �(H)=eH /vH the density of H. The critical parameter
for the small subgraph problem is m(H), the density in the densest subgraph of H, i.e.,

m(H) = max{�(H ′)|H ′ ⊆ H, vH ′ > 0}.
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If for every H ′ ⊆ H we have �(H ′)��(H), we call H balanced, and we call it strictly balanced if every proper
subgraph H ′ has �(H ′) < �(H). Throughout the paper the notation f (n)?g(n) means that f/g → ∞ together
with n. Also for integer-valued random variables X1, X2, . . . and Z we say that Xn converges in distribution to Z if
P(Xn = k) → P(Z = k) for every integer k.

In their original paper [5], Erdős and Rényi solved the small subgraph problem for balanced graphs. The general
problem was settled by Bollobás [3] in 1981.

Theorem 1.1. Let H be a fixed graph with m(H)�1. Then

lim
n→∞ Pr(H ⊆ G(n, p)) =

{
0 if p>n−1/m(H),

1 if p?n−1/m(H).

The next question is to study the distribution of the number of copies of H in G(n, p) where p is inside the threshold
interval, i.e, p = cn−1/m(H) for some positive constant c. In this case, the probability that G(n, p) contains a copy of
H is a constant strictly between 0 and 1. Bollobás [3] and Karoński and Ruciński [8], independently showed:

Theorem 1.2. Let H be a strictly balanced graph with v vertices and e�v edges. Let aut(H) be the number of
automorphisms of H and let X be the number of copies of H in a random graph G(n, p). If pnv/e → c for some positive
constant c, then X converges to Po(�), the Poisson distribution with mean � = ce/aut(H).

Beside the Erdős–Rényi’s G(n, p) model, another model of random graphs which also draws lots of attention is the
model of random regular graphs. Let 1�d �n − 1 be two positive integers, a random regular graph Gn,d is obtained
by sampling uniformly at random over the set of all simple d-regular graphs on a fixed set of n vertices. We refer the
readers to Wormald’s survey [15] for more information (both historical and technical) about this model. The goal of this
paper is to establish the analogs of Theorems 1.1 and 1.2 for the random regular model. Here are our main theorems.

Theorem 1.3. Let H be a fixed graph with m(H)�1. Then

lim
n→∞ Pr(H ⊆ Gn,d) =

{
0 if d>n1−1/m(H),

1 if d?n1−1/m(H).

Theorem 1.4. Let H be a strictly balanced graph with v vertices and e�v edges. Let aut(H) be the number of
automorphisms of H and let X be the number of copies of H in a random d-regular graph Gn,d . If (d − 1)n−1+v/e → c

for some positive constant c, then X converges to Po(�), the Poisson distribution with mean � = ce/aut(H).

For a special case when H is a cycle, the statement of Theorem 1.4 was proved earlier by Bollobás [2] and Wormald
[14].

One may wonder, given the popularity of Theorems 1.1 and 1.2 and the long history of random regular graphs, why
Theorems 1.3 and 1.4 were not proved long time ago. One of the main reasons is, perhaps, that in most situations,
arguments used for the Erdős–Rényi model cannot be repeated for the random regular model. For instance, it is very
easy to count the expectation of the number of triangles in G(n, p): there are

(
n
3

)
possible triangles and each of them

appears with probability p3, so the expectation is
(

n
3

)
p3. This argument, however, does not make sense in the random

regular model, as we do not have independence between the potential edges. Thus, problems concerning random regular
graphs are often much more complex than their counterparts concerning the G(n, p) model. Moreover, the notion of
thresholds does not really exist for random regular graphs. If for some reason we know that Gn,d almost surely has
some monotone increasing property P (P is monotone increasing if it is preserved under edge addition), it does not
follow automatically that Gn,d ′ almost surely has the same property, for d ′ > d .

The rest of the paper is organized as follows. In the next section, we prove a key lemma. This key lemma will enable
us to deal with random regular graphs as conveniently as with Erdős–Rényi random graphs. The proofs of Theorems 1.3
and 1.4 are presented in Sections 3 and 4, respectively. The last section, Section 5, contains a few concluding remarks
and open questions.
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2. The key lemma

In this section we prove our key lemma (Lemma 2.1 below) and its corollary which shows that the expectation of
the number of copies of a graph H in Gn,d is asymptotically the same as the expectation of the number of copies of
H in G(n, p), where p = d/n. In fact, we are going to present this lemma in a slightly more general form. A degree
sequence of a graph is the non-decreasing sequence of degrees of its vertices. Given a sequence of positive integers
(di), 1� i�n, we call a graph with degree sequence (di) a (di)-graph. The random (di)-graph, which we denote by
Gn,(di ), is obtained by sampling uniformly at random from the set of all possible simple (di)-graphs on n vertices.

Lemma 2.1. Let (di), 1� i�n be a degree sequence such that every di = (1 + o(1))d, d tends to infinity with n and
d = o(n). Let E be a fixed collection of edges on the vertex set [n] of constant size t. Then

Pr[E ⊆ Gn,(di )] = (1 + o(1))(d/n)t .

Corollary 2.2. Let F be a fixed graph with v vertices and e edges. Let aut(F ) be the number of automorphisms of F
and let X be the number of copies of F in a random d-regular graph Gn,d . If d → ∞ and d = o(n) then

E[X] = (1 + o(1))

(
n
v

)
v!

aut(F )
(d/n)e = �(nv−ede).

Proof of Corollary 2.2 via Lemma 2.1. There are exactly
(

n
v

)
v!/aut(F ) copies of F in the complete graph Kn. For

each copy F ′ of F in Kn define the indicator random variable XF ′ = 1 if and only if F ′ ⊂ Gn,d . Note that by Lemma
2.1, Pr[F ′ ⊂ Gn,d ] = (1 + o(1))(d/n)e. Therefore

E[X] =
∑
F ′

E[XF ′ ] = (1 + o(1))

(
n
v

)
v!

aut(F )
(d/n)e = �(nv−ede). �

The original proofs of Theorems 1.1 and 1.2 used high moment arguments, which, in turn, rely on expectation
estimates. Lemma 2.1 and Corollary 2.2 enable us to repeat these moment arguments for the random regular model.

Now we are going to prove Lemma 2.1. The most important step is the following technical lemma.

Lemma 2.3. Let (di), 1� i�n, be a degree sequence such that every di = (1 + o(1))d, d tends to infinity with n and
d = o(n). Let E be a fixed collection of edges on the vertex set [n] of constant size and let uw be an edge in E. Then

Pr[E ⊆ Gn,(di )] = (1 + o(1))(d/n) Pr[E\{uw} ⊆ Gn,(di )].

Proof of Lemma 2.3. We use the so-called edge switching technique introduced by McKay and Wormald in [13]. This
technique is very useful and plays an important role in the proofs of several conjectures concerning random regular
graphs (see, for instance [9,12]). We would also like to call the reader’s attention to the fact that this technique is entirely
combinatorial and is very different (in nature) from the probabilistic techniques used to study the Erdős–Rényi model
G(n, p).

Let C1 be the set of all (di)-graphs on n vertices containing E and let C0 be the set of all (di)-graphs containing
E\{uw} but not containing edge uw. By definition, we have that

Pr[E ⊆ Gn,(di )]
Pr[E\{uw} ⊆ Gn,(di )]

= |C1|
|C0| + |C1| .

Since d = o(n), to prove the lemma it is enough to show that |C1|/|C0| = (1 + o(1))d/n. Then |C1|/|C0| = o(1) and
therefore

|C1|
|C0| + |C1| = |C1|/|C0|

1 + |C1|/|C0| = (1 + o(1))
|C1|
|C0| = (1 + o(1))d/n.

Given a graph G ∈ C1, we define an operation called forward switching as follows. Choose two edges u1w1 and
u2w2 of G\E, deleting these edges together with the edge uw and inserting new edges wu1, w1u2, w2u. We will allow
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only choices of u1w1 and u2w2 such that all the six endpoints of the edges are distinct and in addition wu1, w1u2, w2u

are not edges of G. Then it is easy to see that the graph obtained from G by a forward switching belongs to C0. For
counting purposes, we think about the edges as being oriented, i.e., edges u1w1 and w1u1 are different. It is simple to
check that the number of choices for u1w1 and u2w2 (after u1w1 is chosen) are (1 + o(1)) dn − O(d2) (keep in mind
that E has constant size). Since d = o(n) we obtain that the number of possible forward switchings is

((1 + o(1)) dn − O(d2))((1 + o(1)) dn − O(d2)) = (1 + o(1)) d2n2.

A reverse switching is applied to G′ ∈ C0 by deleting edges wu1, uw2, u2w1 of G′\E and inserting edges
uw, u1w1, u2w2. We again allow only switchings for which all six vertices are distinct and u1w1, u2w2 are not edges
of G′. Note that this procedure produces a graph which belongs to C1. Since d → ∞, the number of choices for wu1
and uw2 are (1 + o(1))d − O(1). Moreover, the number of choices for u2w1 is (1 + o(1)) dn − O(d2). It follows that
the number of reverse switchings is

((1 + o(1))d − O(1))((1 + o(1))d − O(1))((1 + o(1)) dn − O(d2)) = (1 + o(1)) d3n.

An easy double counting argument shows that the ratio between the number of reverse switchings and the number
of forward switchings (asymptotically) equals the ratio between |C1| and |C0|. Thus, we have

|C1|
|C0| = (1 + o(1)) d3n

(1 + o(1)) d2n2 = (1 + o(1))
d

n
,

completing the proof of the lemma. �

Lemma 2.1 follows by applying Lemma 2.3 recursively.

3. Proof of Theorem 1.3

First assume that d>n1−1/m(H). If m(H) = 1 then there is nothing to prove. Let H0 be a subgraph of H for which
eH0/vH0 = m(H) > 1. If d is constant, then it is well known (see, e.g. [15]) that almost surely Gn,d contains no copy
of H0, and thus, no copy of H. Therefore, we can assume that d → ∞. Then by Corollary 2.2 we get that the expected
number of copies of H0 in Gn,d is o(1) and by Markov’s inequality

Pr[H ⊂ Gn,d ]� Pr[H0 ⊂ Gn,d ] = o(1).

Next we consider the case that d?n1−1/m(H). If d = �(n), then it was proved by Krivelevich et al. [12] that almost
surely the second largest (in the absolute value) eigenvalue of Gn,d is O(d3/4). This implies that almost surely Gn,d

has very strong pseudo-random properties. For such a d-regular graph, the number of copies of any fixed graph H in it
equals (see, e.g., [11, Theorem 4.10])

(1 + o(1))

(
n

vH

)
vH !

aut(H)
(d/n)eH → ∞.

It remains to deal with the case when d = o(n). Let X be the number of copies of H in Gn,d and let H has v vertices
and e edges. By Corollary 2.2 we know that E[X] = �(nv−ede) → ∞. We next estimate the variance of X. For each
copy H ′ of H in Kn define the indicator random variable XH ′ = 1 iff H ′ ⊂ Gn,d . Then X = ∑

H ′ XH ′ and

VAR[X] =
∑

H ′,H ′′
COV(XH ′ , XH ′′) =

∑
H ′,H ′′

(E[XH ′XH ′′ ] − E[XH ′ ]E[XH ′′ ])

�
∑

E(H ′)∩E(H ′′)=∅
(E[XH ′XH ′′ ] − E[XH ′ ]E[XH ′′ ]) +

∑
E(H ′)∩E(H ′′)
=∅

E[XH ′XH ′′ ]. (1)

Note that even when the sets of edges of two copies H ′ and H ′′ are disjoint, we still cannot claim that the corresponding
random variables XH ′ , XH ′′ are independent. (This is a crucial difference from the Erdős–Rényi model.) On the other
hand, using Lemma 2.1 the computation for the variance can still be done roughly in the same way as for G(n, p).
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Indeed, if H ′ and H ′′ are disjoint then the edge set of the union H ′ ∪ H ′′ has exactly 2e edges and by Lemma 2.1 we
get that

E[XH ′XH ′′ ] = Pr[H ′ ∪ H ′′ ⊂ Gn,d ] = (1 + o(1))(d/n)2e = (1 + o(1))E[XH ′ ]E[XH ′′ ].
Therefore, ∑

E(H ′)∩E(H ′′)=∅
(E[XH ′XH ′′ ] − E[XH ′ ]E[XH ′′ ])�

∑
H ′,H ′′

o((d/n)2e) = o(n2v(d/n)2e) = o(E[X]2).

To estimate the second term in the left hand side of (1), observe that for any subgraph F ⊆ H there are �(nvF n2(v−vF ))=
�(n2v−vF ) pairs H ′, H ′′ of copies of H in Kn such that H ′ ∩H ′′ is isomorphic to F. Moreover, if H ′ ∩H ′′ is isomorphic
to F then H ′ ∪ H ′′ has 2e − eF edges and by Lemma 2.1 we get

E[XH ′XH ′′ ] = Pr[H ′ ∪ H ′′ ⊂ Gn,d ] = (1 + o(1))(d/n)2e−eF .

By the definition of m(H), d?n1−1/m(H) �n1−vF /eF for any subgraph F ⊆ H and hence neF −vF /deF = o(1). Using
all the above and the fact that the number of subgraphs of H is constant we conclude that

∑
E(H ′)∩E(H ′′)
=∅

E[XH ′XH ′′ ]��

⎛
⎝ ∑

F⊆H,eF >0

n2v−vF (d/n)2e−eF

⎞
⎠ = �(n2(v−e)d2e)

∑
F⊆H,eF >0

neF −vF

deF

��(E[X]2)
∑

F⊆H,eF >0

neF −vF

deF
= o(E[X]2).

Therefore VAR(X) = o(E[X]2). Now by Chebyshev’s inequality

Pr[H /⊂ Gn,d ] = Pr[X = 0]� VAR(X)

E[X]2 = o(1),

completing the proof.
Note that this proof also gives the following stronger result, which asserts that above the threshold, the number of

copies of H is almost always asymptotically its expectation.

Corollary 3.1. Let H be a fixed graph with v vertices, e edges and m(H)�1. Let X be the number of copies of H in
the random graph Gn,d . If d?n1−1/m(H), then almost surely

X = (1 + o(1))E[X] = (1 + o(1))

(
n
v

)
v!

aut(H)
(d/n)e.

4. Proof of Theorem 1.4

This proof is a bit sketchy. The leading idea is to combine the arguments from the proof of Theorem 1.2 (see [7])
with Lemma 2.1 and Corollary 2.2.

The only strictly balanced graphs with e = v are cycles and this case has already been proved by Bollobás [2] and
Wormald [14]. They showed that for a constant d, the number of cycles of fixed length i in Gn,d is asymptotically
Poisson random variable with mean (d − 1)i/2i.

From now on we assume that e > v. Then by the condition (d − 1)n−1+v/e → c we have that d → ∞ and d = o(n).
This guarantees the condition of Lemma 2.1. As usual, let X be the number of copies of H in Gn,d . Consider the kth
factorial moment of X, defined as E(X)k = E[X(X − 1) · · · (X − k + 1)]. We have that for every constant k�1,

E(X)k =
∑

H1,...,Hk

Pr[H1, . . . , Hk ⊂ Gn,d ],

where the summation extends over all ordered k-tuples of distinct copies of H in Kn.
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Next we decompose
∑

H1,...,Hk
Pr[H1, . . . , Hk ⊂ Gn,d ] into two parts

∑
H1,...,Hk

Pr[H1, . . . , Hk ⊂ Gn,d ] = S′
k + S′′

k ,

where S′
k is the partial sum where the copies in the same k-tuple are mutually vertex disjoint. By the properties of the

Poisson’s distribution (see [7, Corollary 6.8]), it suffices to show that E(X)k → (ce/aut(H))k . It is easy to see that there
are (1 + o(1))(nv/aut(H))k ordered mutually vertex disjoint k-tuples of distinct copies of H in Kn. In such a k-tuple,
the copies together have ke edges and by Lemma 2.1 the probability that Gn,d contains all of them is (1+o(1))(d/n)ke.
Therefore,

S′
k = (1 + o(1))(nv(d/n)e/aut(H))k = (ce/aut(H))k .

To finish the proof it suffices to show that S′′
k = o(1). Let et be the minimum number of edges in the union of k not

mutually disjoint copies of H, provided that these copies together have exactly t vertices. It is known (see [7, p. 66])
that if H is strictly balanced, k�2 and v� t < kv then et > te/v. Thus by Lemma 2.1 the probability that Gn,d contains
such a k-tuple is at most (1 + o(1))(d/n)et = o((d/n)te/v) = o(n−t ). On the other hand, the number of k-tuples of
copies of H which together have exactly t vertices is O

(
n
t

) = O(nt ). Therefore S′′
k = o(1), completing the proof. �

5. Concluding remarks and open questions

• Our proof of Theorem 1.3 showed that the variance of X is o(E[X]2). It would be of interest to compute the right
order of magnitude of this variance and other fixed moments of (X − E[X]).

• Our results and proofs (especially the main lemma) show that with respect to the small subgraph problem, Gn,d

behaves (asymptotically) the same way as G(n, p) where p = d/n. This similarity between the two models has
been discovered in many other problems such as coloring, independent sets, connectivity, etc. (see [12]). Recently,
Kim and Vu [10] proved a general theorem which states that in a certain range of d, the two models Gn,d and
G(n, d/n) are asymptotically the same with respect to most natural problems. In particular, their theorem implies
that for d �n1/3−o(1), a random regular graph Gn,d contains a random graph G(n, p) inside it, for some p ≈ d/n.
Via this result one can obtain another proof of Theorem 1.3 in the case where H is fairly sparse, m(H) < 3

2 .
• Another well-known problem concerning small graphs is the problem of estimating the probability that a random

graph (with density well above the threshold) does not contain a copy of a fixed graph H. Answering a question
of Erdős and Rényi, Janson et al. [6] showed that this probability is at most e−�(�H ) where

�H = min{E[X(F)]|F ⊆ H, eF > 0}
and X(F) is the number of copies of F in the random graph G(n, p). The above mentioned result of Kim and Vu
implies that this bound holds also for random d-regular graphs but only in a certain range of d and provided that
H is sufficiently sparse. Therefore, it would be interesting to obtain such a bound in the general case.

• Although we cannot get the strong bound shown in the previous paragraph, using Lemma 2.1 we can get an
exponentially small estimate on the probability that Gn,d with d?n1−1/m(H)+� does not contain a copy of a fixed
graph H. This proof is little bit sketchy and the reader is invited to fill in the details. Let �(n) be a function which
tends to infinity arbitrarily slowly with n and let k=d/(�(n)n1−1/m(H)). Consider a random partition of the vertex
set of Gn,d into k almost equal parts V1, . . . , Vk . For the sake of convenience, we assume that k and d ′ = d/k are
integers. For a vertex v ∈ G=Gn,d , let di(v) denote the number of neighbors of v in the part Vi . We will condition
on the particular sequence {di(v)}. It is easy to see that the probability di(v) 
= (1 + o(1))d ′ for some i and v is
exponentially small. Therefore we can consider only the sequences in which di(v)=(1+o(1))d ′ for all pairs i and
v. Then every induced subgraph Gi = G[Vi] is a random graph with a fixed degree sequence where every degree
in the sequence is (1 + o(1))d ′?n1−1/m(H). Moreover, these random graphs are conditionally independent. Now
using Lemma 2.1 as in proof of Theorem 1.3 we can show that probability that each Gi contains no copy of H is
o(1)�e−�1(n) for some function �1(n) going to infinity with n. Therefore probability that G = Gn,d contains no
H is at most e−k�1(n) which is exponentially small. Following these arguments, it is easy to figure out the optimal
value of k.
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