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Abstract

We consider the approximate nearest neighbour search problem on the Hamming Cube {0, 1}d.
We show that a randomised cell probe algorithm that uses polynomial storage and word size dO(1)

requires a worst case query time of Ω(log log d/ log log log d). The approximation factor may be
as loose as 2log1−η

d for any fixed η > 0. This generalises an earlier result [6] on the deterministic
complexity of the same problem and, more importantly, fills a major gap in the study of this
problem since all earlier lower bounds either did not allow randomisation [6, 19] or did not allow
approximation [5, 2, 16]. We also give a cell probe algorithm which proves that our lower bound
is optimal.

Our proof uses a lower bound on the round complexity of the related communication problem.
We show, additionally, that considerations of bit complexity alone cannot prove any nontrivial cell
probe lower bound for the problem. This shows that the Richness Technique [20] used in a lot of
recent research around this problem would not have helped here.

Our proof is based on information theoretic techniques for communication complexity, a theme
that has been prominent in recent research [7, 1, 24, 15]. In particular, we make heavy use of the
round elimination and message compression ideas in the recent work of Sen [24] and Jain, Rad-
hakrishnan, and Sen [15], and also introduce a new technique which we call message switching.

1 Introduction

Nearest neighbour searching is one of those basic and fascinating theoretical problems in computer
science that has a host of applications in problems from very diverse fields. To give a sense of this
diversity we note that the literature includes applications in molecular biology [27, 22], information
retrieval [10, 23], and pattern recognition [8, 11], and that this is far from an exhaustive list of fields.
Typically, in these applications, the objects of interest are represented as points in Euclidean space by
abstracting their features. The problem of nearest neighbour searching is that of finding, in a database
of points, the closest one to a given query point.

When the ambient space that the database and query points come from is the Euclidean plane,
the nearest neighbour search problem has well known efficient solutions using classical computational
geometry techniques of space decomposition such as Voronoi diagrams (see, e.g., [9]). However,
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in most applications the dimension of the ambient space is high: anywhere from tens to thousands.
The classical techniques still work in such spaces, but the resulting algorithms require storage and/or
running time exponential or worse in the dimension: a phenomenon which is sometimes called the
“curse of dimensionality.”

It is by now well established that the way to avoid this curse is to not insist on the absolute nearest
neighbour but to allow some approximation; this is certainly acceptable in the aforementioned ap-
plications, since the abstraction of objects into points in Euclidean space already involves heuristics
and approximations. Efficient algorithms for approximate nearest neighbour searching (henceforth,
ANN) that scale well with dimension were obtained independently by Indyk and Motwani [14] and
Kushilevitz, Ostrovsky, and Rabani [18]; some improvements were then made by Har-Peled [13].

Soon after the discovery of these algorithms, lower bounds on nearest neighbour searching were
obtained by Chakrabarti, Chazelle, Gum, and Lvov [6] and simultaneously by Borodin, Ostrovsky,
and Rabani [5]. These results had a serious shortcoming: the former applied only to deterministic
algorithms and the latter applied only to the exact nearest neighbour (henceforth, ENN) problem. Since
all the aforementioned algorithms were randomised and approximate, there was no direct comparison
possible between the upper and lower bounds obtained in recent research. Subsequent work by Liu [19]
and Barkol and Rabani [2] improved the respective lower bounds quantitatively but did not address this
shortcoming.

In this paper, for the first time, we obtain a randomised lower bound for ANN, thus addressing this
shortcoming. Moreover, we show that our lower bound is optimal.

1.1 Our Results

The approximate nearest neighbour search problem is an instance of what may be called data structure
query problems, i.e., problems in which we are required to build a data structure out of some given data
and then efficiently query this data structure. Formally, a data structure query problem involves three
spaces: a space of queries A , a space of databases B, and a space of answers C . The problem itself
is a relation ρ ⊆ A × B × C to be interpreted as follows. We will be a given a y ∈ B to preprocess
and will then be given a query x ∈ A and must produce any z ∈ C such that (x, y, z) ∈ ρ. We shall
assume, w.l.o.g., that at least one such z exists.

The standard framework for analysing the complexity of such problems is the cell probe model
first defined by Yao [26]. The model assumes that the preprocessing phase deterministically constructs
from y a data structure which is represented as a table consisting of s cells each of which holds w
bits. The query phase gets x as input and then accesses t cells of the table; the choice of cells may, in
general, be randomised as well as adaptive. Based on the information gathered from these cells, the
algorithm must then compute an answer z which is required to be correct — i.e., to satisfy (x, y, z) ∈ ρ
— with probability at least 1−ε, for some small non-negative ε. Such an algorithm is called an ε-error
t-probe algorithm with table size s and word size w. When ε is not specified we assume that it is 1

4 .
Like all earlier lower bounds for ANN, our bound is shown with the ambient space being the d-

dimensional Hamming cube equipped with the Hamming (i.e., `1) metric. Note that this immediately
implies the same lower bound for R

d equipped with the `1 metric and a similar lower bound for
Euclidean space (i.e., R

d with the `2 metric) up to a square in the approximation ratio. We now
precisely define our problem and state our main result.

Definition 1.1 (Approximate Nearest Neighbour) Consider the data structure query problem given
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by

A = {0, 1}d, B =

(
{0, 1}d

n

)
, C = {0, 1}d

∀(x, y, z) ∈ A × B × C : (x, y, z) ∈ ρ ⇐⇒ z ∈ y ∧ (∀z ′ ∈ y (dist(x, z) ≤ β ·dist(x, z ′))) ,

where “dist” denotes Hamming distance in {0, 1}d . We call this the Approximate Nearest Neighbour
search problem and abbreviate it as ANN

β
d,n.

We shall allow a rather loose approximation ratio β. We set

β := 2blog
1−η dc , (1)

where η is an arbitrarily small positive constant. Notice that taking η = 0 would make ANN
β
d,n a

completely trivial problem, since we could return any database point as an answer to any query.1 Our
main result is the following lower bound on the randomised cell probe complexity of the problem.

Theorem 1.2 (Main Theorem) Suppose n ∈ 2Ω(log2 d)∩2O(
√

d). If ANN
β
d,n has a randomised t-probe

algorithm with table size s = nO(1) and word size w = dO(1), then t = Ω(log log d/ log log log d).

Let us examine our result in the light of past work on the problem. Chakrabarti, Chazelle, Gum,
and Lvov [6] had obtained the same bound as above but only for deterministic algorithms. Liu [19]
greatly improved their bound to d1−o(1), still for deterministic algorithms. On the flip side, Borodin,
Ostrovsky, and Rabani [5] gave a lower bound of Ω(log d) for randomised algorithms that did not
allow approximation. This was subsequently strengthened to Ω(d/ log n) by Barkol and Rabani [2].
Thus, our result is the first lower bound that allows both randomisation and approximation.

We also prove two upper bounds on ANN: the first is a cell probe upper bound that matches our
lower bound, showing that it is tight. A similar upper bound has been independently discovered by
Beame and Guruswami [4].

Theorem 1.3 (Optimality) Let α > 1 be any constant. Then ANN
α
d,n has a cell probe algorithm with

O(log log d/ log log log d) probes, table size nO(1) and word size dO(1).

The best previous cell probe upper bound on ANN under the same conditions was O(log log d). This
bound is implicit in the work of Kushilevitz, Ostrovsky, and Rabani [18], Indyk and Motwani [14], and
Har-Peled [13]. Our algorithm beats these earlier ones in the cell probe model but, unlike in earlier
work, we do not dwell on issues of real running time.

Our second upper bound is more technical but it proves that a certain simple technique — the so-
called “richness technique” — that yields a number of interesting cell probe lower bounds must fail in
the case of ANN. We state this result in Section 1.3.

1.2 Overview of the Proof

We give a brief overview of the proof of the Main Theorem. We start by showing a reduction from
another data structure query problem problem, which we call longest prefix match (henceforth, LPM),
to ANN. In LPM we must preprocess a database of m-letter words over a large alphabet so as to
quickly find, given a query m-letter word, a word in the database which has the longest prefix that
matches a prefix of the query. The point of introducing this auxiliary problem will be explained soon.

1There is a small catch. If the database contains the query point, the only valid answer is the query. But this degenerate
case can be handled by, say, perfect hashing [12] which has O(1) cell probe complexity.
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Following Miltersen, Nisan, Safra, and Wigderson [20], we shall prove a cell probe lower bound
for LPM via a lower bound on the corresponding communication problem. We shall consider only two
party communication problems in this paper. A communication problem is the same thing as a data
structure query problem, i.e., a relation ρ ⊆ A ×B×C . The input is split between two players called
Alice and Bob: Alice is given x ∈ A and Bob is given y ∈ B. The players then take turns exchanging
messages according to a possibly randomised protocol, at the end of which Alice outputs a z such that
(x, y, z) ∈ ρ with probability at least 1 − ε. Each message transfer is called a round of the protocol.

Remark : Throughout this paper all randomised communication protocols will be assumed to be public
coin unless explicitly qualified otherwise.

Definition 1.4 (Notation for Protocols) An 〈a1, a2, . . . , at〉
A-protocol is one with exactly t messages

exchanged, the ith being ai bits long. The superscript “A” indicates that Alice sends the first message
in the protocol; we use a “B” superscript if Bob starts. An [a, b, t]A-protocol is one with t rounds
and Alice starting, in which each of Alice’s messages is a bits long and each of Bob’s messages is
b bits long. An [a, b, t]B -protocol is the same thing except that Bob starts. An [a, b, t; a0]

A-protocol
is a t-round protocol where Alice starts, each of Bob’s messages is b bits long, and as for Alice, her
first message is a0 bits long and all subsequent messages are a bits long. Similarly, an [a, b, t; b0]

B-
protocol is a t-round protocol where Bob starts, each of Alice’s messages is a bits long, Bob’s first
message is b0 bits long and all his subsequent messages are b bits long.

The following simple observation links the cell probe and communication models.

Fact 1.5 If a data structure query problem has a t-probe algorithm with table size s and word size w,
then it has a [log s, w, 2t]A-protocol.

We prove a communication lower bound for LPM based on the round elimination techniques pioneered
by Miltersen et al. [20] and recently refined by Sen [24] in his work on another data structure query
problem called the predecessor problem. In fact, we shall need a further strengthening of Sen’s round
elimination lemma for the problem we consider here. We shall establish this stronger lemma by using
a version of the information cost paradigm introduced by Chakrabarti, Shi, Wirth, and Yao [7] and
refined by Bar-Yossef, Jayram, Kumar, and Sivakumar [1], together with a new technique which we
refer to as message switching.

Loosely speaking, a round elimination lemma lets us “remove” the first round of communication
in a protocol for a certain problem, leaving us with a protocol one round shorter that solves a somewhat
smaller instance of the same problem. If we start with too short a protocol, repeated application of the
lemma would eliminate all the rounds while still leaving us with a nontrivial communication problem.
This contradiction would prove that such a short protocol cannot exist.

The proof of a round elimination lemma involves “embedding” a smaller instance of the problem
under consideration into a larger instance. Such an embedding turns out to be natural if the problem
has to do with strings and substrings: a property that LPM has but ANN does not. This is why we work
with LPM. We remark that our use of LPM is inspired by the work of Chakrabarti et al. [6] who used
similar ideas but did not explicitly define the LPM problem.

1.3 Is There a Simpler Proof?

We make an additional interesting observation about ANN. Thus far there have been two main tech-
niques used in almost all of the research on cell probe lower bounds: the so-called “richness technique”
and the aforementioned round elimination technique. Both these techniques originated in the work of
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Miltersen et al [20]. Of these, the richness technique, which establishes a lower bound on the bit com-
plexity of a communication problem, is considerably simpler. Lower bounds given by the richness
technique have the following form: “either Alice sends a bits or Bob sends b bits;” notice that round
complexity is not a consideration.

Jayram, Khot, Kumar, and Rabani [16] recently used the richness technique to obtain a randomised
cell probe lower bound for the so-called exact partial match problem, which reduces to the exact
nearest neighbour (ENN) problem. Even more recently, Liu [19] gave a strong cell probe lower bound
for deterministic ANN using the richness technique; his proof is considerably simpler than that of
Chakrabarti et al. [6] who implicitly used round elimination ideas. In view of this history it is natural
to ask whether there is a much easier proof of the Main Theorem using the richness technique.

Suppose ANN
α
d,n has a randomised t-probe algorithm with table size s = nO(1) and word size

w = dO(1). Fact 1.5 tells us that it has a randomised [O(log n), dO(1), 2t]A-protocol. In this protocol
Alice sends O(t log n) bits and Bob sends tdO(1) bits. For the richness technique to yield an interesting
result we would have to show that this is impossible for small t, i.e., that there is no protocol in which
Alice sends only O(t log n) bits and Bob sends tdO(1).

However, the following theorem shows that such a protocol is possible even with t a constant!
Thus the richness technique, which can handle randomised ENN and deterministic ANN, is provably
too weak to handle randomised ANN.

Theorem 1.6 (Failure of the Richness Technique) For n ∈ 2Ω(log2 d) and α > 1 there is a private
coin randomised communication protocol for ANN

α
d,n in which Alice sends O(log n) bits and Bob

sends dO(1) bits.

1.4 Organisation of the Paper

The rest of the paper is organised as follows. Section 2 formally defines LPM and gives the reduction
from LPM to ANN. Section 3 prepares a toolkit of three lemmas for manipulating protocols; included
here is our new message switching lemma, as well as our adaptation of the message compression ideas
of Jain et al [15]. Section 4 is the heart of our lower bound proof and contains our improved round
elimination lemma; it uses the toolkit developed in Section 3. The brief Section 5 puts everything
together to prove the Main Theorem. Section 6 contains the proofs of our two upper bounds, one in
each subsection.

2 The Longest Prefix Match Problem and a Reduction to ANN

In this section we fix d to be a sufficiently large integer and we also fix a finite alphabet Σ with
|Σ| = 2

√
d. For strings x1, x2 ∈ Σm, we let match(x1, x2) denote the length of the longest prefix of

x1 which is also a prefix of x2; thus 0 ≤ match(x1, x2) ≤ m.
We will prove that the following auxiliary problem can be reduced to ANN:

Definition 2.1 (Longest Prefix Match) Consider the data structure query problem given by

A = Σm, B =

(
Σm

n

)
, C = Σm

∀(x, y, z) ∈ A × B × C : (x, y, z) ∈ ρ ⇐⇒ z ∈ y ∧ (∀z ′ ∈ y (match(x, z) ≥ match(x, z ′))) .

We call this the Longest Prefix Match problem and abbreviate it as LPM
d
m,n.
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For a ∈ {0, 1}d and r an integer, we shall refer to a subset {x ∈ {0, 1}d : dist(x, a) ≤ r} of the
Hamming cube as the Hamming ball of radius r centred at a. Notice that every Hamming ball, except
for the entire cube {0, 1}d itself, has a unique centre.

Definition 2.2 A family of balls is said to be α-separated if the distance between any two points
belonging to distinct balls in the family is more than α times the distance between any two points
belonging to any one ball in the family. Here α is any positive real quantity.

Lemma 2.3 Let β be as defined in Equation (1). There exists a rooted tree T whose vertices are
Hamming balls in {0, 1}d and which satisfies the following properties:
(i) If v is a child of u in T , then v ⊆ u.
(ii) Each non-leaf vertex of T has exactly 2

√
d children.

(iii) Each depth-i vertex (the root being a depth-0 vertex) has radius d/(16β)i.
(iv) The depth-i vertices form a β-separated family.
(v) The leaves of T are at depth logη/2 d, where η is the constant from (1).

Proof : This lemma follows directly from a construction by Chakrabarti et al. [6, Lemmas 3.2–3.4]
and involves routine volume arguments. We omit the details.

Lemma 2.4 (Reduction from LPM to ANN) Let β be as defined in (1) and set m := logη/2 d. If
ANN

β
d,n has a t-probe algorithm using table size s and word size b, then so does LPM

d
m,n.

Proof : Fix a tree T whose existence is guaranteed by Lemma 2.3 and a numbering of its vertices so
that we can refer to “the ith child” of a vertex. Let L ⊆ {0, 1}d be the set of centres of the leaves of T .

Recalling that |Σ| = 2
√

d, identify the letters in Σ with the integers in [2
√

d] in some arbitrary
manner. We can now define a mapping ϕ : Σm → L as follows. Given a string σ = a1a2 . . . am ∈ Σm

we consider the root-to-leaf path in T obtained by starting from the root, going to its ath
1 child, then

going to the ath
2 child of that vertex, and so on (notice that the leaves are at depth m); we define ϕ(σ)

to be the centre of the leaf reached by this path. By the properties of T enumerated in Lemma 2.3, ϕ
is clearly a bijection.

Now, based on a cell probe algorithm A for ANN
β
d,n, we get a cell probe algorithm for LPM

d
m,n

as follows. Given a database y ⊆ Σm, we preprocess the set ϕ(y) := {ϕ(w) : w ∈ y} ⊆ {0, 1}d

as A would. Then, given a query x ∈ Σm, we use the query scheme of A to find a point z̃ that is a
β-approximate nearest neighbour of ϕ(x) in the set ϕ(y). We return z := ϕ−1(z̃) as the answer to the
LPM query. Clearly this algorithm uses the same number of probes, table size, and word size as A.

Let k := match(x, z) and let z ′ be an arbitrary string in y. To prove that this algorithm is correct,
it suffices to show that match(x, z′) ≤ k. Suppose k < m, for otherwise there is nothing to prove.
Then the (k + 1)th symbols of x and z are different, whence ϕ(x) and ϕ(z) lie in distinct balls each
of which is a depth-(k + 1) vertex of T . Now

dist(ϕ(x), ϕ(z′)) ≥
dist(ϕ(x), ϕ(z))

β
>

2d

(16β)k+1
,

where the first inequality holds because ϕ(z) is a β-approximate nearest neighbour and the second
follows from Lemma 2.3 Parts (iii) and (iv). Thus, ϕ(x) and ϕ(z ′) cannot both lie inside the same
depth-(k + 1) vertex of T , whence match(x, z ′) ≤ k.
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3 Protocol Manipulations

As mentioned in Section 1.2, our strategy is to prove a certain round elimination lemma for LPM and
thus obtain a communication lower bound. For this we first develop a toolkit of three lemmas that
allow us to manipulate protocols in certain ways.

The first of these, which we call the Message Switching Lemma, says that the order of the first
two messages in a protocol can be switched at the cost of blowing up the sizes of the messages. In
the communication problems arising from the cell probe model, Bob’s message bits are considerably
“cheaper” than Alice’s, so it is not too bad if Bob’s message size blows up. Our exploitation of this
asymmetry is crucial and was missing in Sen’s work on the predecessor problem [24].

The second lemma in the toolkit, which we call the Uninformative Message Lemma, is concerned
with protocols where the first message conveys only a fraction of a bit of information about the input
and is thus essentially uninformative; the lemma says that we may modify the protocol so that this
first message is never sent. This lemma was proven by Sen [24] in just the form we need. Finally, the
third of our toolkit lemmas, called the Message Compression Lemma, says that if the first message in
a protocol is long in terms of number of bits but conveys a much smaller amount of information about
the input, then we may compress this message so that its length is linear in the amount of information
conveyed. This lemma is new and was not required in earlier work, but it is strongly inspired by the
work of Jain, Radhakrishnan, and Sen [15] on direct sum theorems.

The last two lemmas increase the error of the protocol but only by a small additive amount, a fact
that will be crucial in our applications.

Lemma 3.1 (Message Switching Lemma) Let P be a deterministic [a, b, t; a0]
A-protocol with t ≥ 2.

Then there exists a deterministic [a+a0, b, t−1; 2a0b]B-protocol that computes the exact same function
as P .

Proof : There are exactly 2a0 different messages that Alice may send as her first message. We design
a new protocol Q in which Bob starts by sending his responses, as in P , to every one of these. If
t = 2, we stop here. Otherwise, we let Alice’s first message in Q be the concatenation of her first
two messages in P ; we can do this since Bob’s first message gives Alice all the information she needs.
At this point Alice and Bob both have all the information that they would have had after three rounds
of P . So from now on they just follow P and clearly this results in their computing the exact same
function as P . It is also clear that Q is an [a + a0, b, t − 1; 2a0b]B-protocol. In fact only the first of
Alice’s messages in Q needs the extra a0 bits but we will be happy with the weaker conclusion.

For the other two lemmas in the toolkit, we need some more notation and a definition. Let P be a
communication protocol and D a distribution on the possible inputs to P . We remark that D has two
“parts” — one for Alice, one for Bob — but need not be a product distribution; for such distributions D,
we denote Alice’s part (i.e., its marginal distribution) by DA and Bob’s part by DB . We let err(P,D)
denote the distributional error probability of P under this input distribution. When P is a protocol with
Alice starting, we let msg(P, x) denote Alice’s first message in P when her input is x. Note that this
may be a random variable if P is a randomised protocol. Slightly abusing notation, we use msg(Q, y)
to denote Bob’s first message when his input is y for protocols Q in which Bob starts.

Definition 3.2 (Information Cost) The information cost of a protocol P with respect to input distri-
bution D, denoted icost(P,D), is defined to be the mutual information I(X : msg(P,X)), where X
is a random input distributed according to DA (if Alice starts P ) or DB (if Bob starts). We stress that
our notion of information cost deals only with the first message of a protocol.

7



Now let us define a universal constant:

γ :=

√
ln 2

2
. (2)

Lemma 3.3 (Uninformative Message Lemma) Let P be a private coin 〈a1, a2, . . . , at〉
A-protocol

for a communication problem ρ. Then, for any input distribution D, there is a deterministic 〈a2, . . . , at〉
B-

protocol P ′ for ρ such that err(P ′,D) ≤ err(P,D) + γ
√

icost(P,D).

Remark : Notice that this lemma says something nontrivial only when icost(P,D) is a small fraction.

Proof : A proof can be found in [24]. We remark that the constant γ comes from the so-called Average
Encoding Theorem [17] which is used in the proof of this lemma.

Lemma 3.4 (Message Compression Lemma) Let P be a private coin 〈a1, a2, . . . , at〉
A-protocol for

a communication problem ρ. Suppose, for an input distribution D, we have icost(P,D) = a. Then,
for any δ > 0, there is a deterministic 〈(1 + a)/δ2 + 1/δ, a2, . . . , at〉

A-protocol P ′ for ρ such that
err(P ′,D) ≤ err(P,D) + 4δ.

To prove this lemma, we need the following information theoretic lemma (inspired by the work of
Jain, Radhakrishnan, and Sen [15] on direct sum theorems) whose proof we defer to Appendix A in
order to avoid a digression into technicalities.

Lemma 3.5 Let X and M be correlated random variables with ranges X and M respectively, and
let a = I(X : M). Then, for any function f : X ×M → [0, 1] and any sufficiently small δ > 0, there
is a subset M ′ of M and a function g : X → M ′ such that
(i) log |M ′| ≤ (1 + a)/δ2 + 1/δ, and
(ii) EX [f(X, g(X))] ≤ EX,M [f(X,M)] + 4δ.

Proof of Lemma 3.4: Assume that protocol P is parametrized by three independent uniform random
strings: RA1, the string that Alice uses to provide the randomness in her first message, RA2, the string
she uses for her subsequent messages, and RB , the string Bob uses to randomise his messages. It is
not hard to see that P can always be cast in this form, so this assumption does not lose generality. Let
εP be the following error indicator function for P : εP (x, y,m, rA2, rB) is either 0 or 1 according as
P produces a correct or an incorrect answer on input x, y when RA2 = rA2, RB = rB , and Alice
sends m as her first message. Let µP (x, rA1) be the function that Alice computes to produce her first
message in P . Then

err(P,D) = EX,Y,RA1,RA2,RB

[
εP (X,Y, µP (X,RA1), RA2, RB)

]
, (3)

where (X,Y ) is distributed according to D and the R’s are distributed uniformly. The key observation
is that if a protocol Q is identical to P except for Alice’s first message which is set to µQ(x) for some
(deterministic) function µQ, then err(Q,D) = EX,Y,RA2,RB

[εP (X,Y, µQ(X), RA2, RB)]; note that
we are still using the same error indicator function εP .

Let A and M be the domains of Alice’s input and her first message respectively. Let M =
µP (X,RA1) and define f : A ×M → [0, 1] by f(x,m) = EY,RA2,RB

[εP (x, Y,m,RA2, RB)] where
Y is distributed according to (DB |X = x). Noting that I(X : µP (X,RA1)) = icost(P,D) = a and
applying Lemma 3.5, we see that there exists a subset M ′ of messages with log |M ′| ≤ (1 + a)/δ2 +
1/δ and a function g : A → M ′ such that

EX [f(X, g(X))] ≤ EX,M [f(X,M)] + 4δ = err(P,D) + 4δ ,
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where the final equality follows from (3). Let P̃ be a protocol that follows P precisely except that
Alice sends g(x) as her first message on input x. By our key observation above, EX [f(X, g(X))] is
precisely err(P̃ ,D). Now, fixing the random coins in P̃ gives us a deterministic protocol P ′ whose
distributional error under D is at most err(P̃ ,D) ≤ err(P,D) + 4δ. The upper bound on log |M ′|
implies P ′ is a 〈(1 + a)/δ2 + 1/δ, a2, . . . , at〉

A-protocol which completes the proof.

4 Round Elimination for LPM

We now come to the central part of our proof where we show how to eliminate messages one by one
from a protocol for LPM. Fix a sufficiently large d and an alphabet Σ with |Σ| = 2

√
d over which to

define instances of LPM. We define a couple of parametrized predicates (recall that protocols are by
default public coin randomised).

Definition 4.1 A(m,n, a, b, t, ε) denotes the statement “LPM
d
m,n has an ε-error [a, b, t]A-protocol.”

Similarly B(m,n, a, b, t, ε; b0) denotes the statement “LPM
d
m,n has an ε-error [a, b, t; b0]

B-protocol.”

Lemma 4.2 (Round Elimination Lemmas for LPM) Let m,n, a, b, t, k, and ` be positive integers
with k dividing m and ` dividing n, and let ε, δ be sufficiently small positive reals. Let γ be the
constant defined in (2).
(i) If t ≥ 2 and k ≤ a, then A(m,n, a, b, t, ε) ⇒ B

(
m/k, n, a

(
1+ 2

δ3k

)
, b, t− 1, ε+5δ; 22a/(δ3k)b

)
.

(ii) If ` ≤ 2
√

d, then B(m,n, a, b, t, ε; b0) ⇒ A
(
m − 1, n/`, a, b, t − 1, ε + γ

√
b0/`

)
.

Remark : Actually, our technique does yield a new general round elimination lemma in the style of
Sen [24] and not just one for LPM. However, we choose to avoid extra notation by not stating it.

Proof of Part (i): Assume A(m,n, a, b, t, ε). We shall demonstrate the existence of a randomised
[a(1 + 2

δ3k
), b, t − 1; 22a/(δ3k)b]B-protocol for LPM

d
m/k, n with low error. Let S := Σm/k. By Yao’s

minimax principle [25], it suffices to give, for any input distribution D on S × Sn, a deterministic
protocol for LPM

d
m/k, n with the same message lengths and distributional error ε+5δ. For this we first

construct a distribution D̃ on Sk ×Skn as follows: draw k independent samples (x1, y1), . . . , (xk, yk)
from D, choose i ∈ [k] uniformly at random, and output (x1x2 . . . xk, x1 . . . xi−1yis

k−i) where s ∈ S
is some arbitrary fixed string.2 By (the easy half of) Yao’s minimax principle, there is a deterministic
[a, b, t]A-protocol P for LPM

d
m,n with distributional error ε under input distribution D̃.

Let I denote the distribution over [k] × S∗ obtained as follows: choose i ∈ [k] uniformly at
random and then choose σ ∈ Si−1 from distribution Di−1

A . Recall that DA is our notation for the
marginal distribution of “Alice’s portion” of D.

We shall now construct a family {Qi,σ}, indexed by (i, σ) in the support of I , of private coin
protocols for LPM

d
m/k, n, each of which uses P as a black box. Protocol Qi,σ works as follows: on

input (x, y) ∈ S × Sn, Alice constructs the string x̃ := σxXi+1 . . . Xk where the Xj’s are random
strings drawn independently from DA, and Bob constructs the set ỹ := σysk−i of strings; they then run
protocol P on input (x̃, ỹ) and output the ith block of whatever string P outputs. From the description
of the LPM problem it is clear that Qi,σ works whenever its call to P works. Therefore we have

Ei,σ[err(Qi,σ,D)] ≤ err(P, D̃) ≤ ε , (4)

2If σ is a string and y a set of strings, σy denotes the set {στ : τ ∈ y} of strings.
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where the expectation is over (i, σ) distributed according to I . Furthermore, if X = X1X2 . . . Xk

denotes a random string drawn from D̃A, with each Xj ∈ S, then msg(Qi,σ, Xi) has the same distri-
bution as msg(P,X) conditioned on the event that X1 . . . Xi−1 = σ. This gives us

Ei,σ[icost(Qi,σ,D)] = 1
k

∑
i∈[k] Eσ[I(Xi : msg(Qi,σ, Xi))]

= 1
k

∑
i∈[k] Eσ[I(Xi : msg(P,X) |X1 . . . Xi−1 = σ)]

= 1
k

∑
i∈[k] I(Xi : msg(P,X) |X1 . . . Xi−1)

= 1
k · I(X : msg(P,X)) (5)

≤ a/k , (6)

where (5) is a standard result in information theory and (6) holds because msg(P,X) is a distribution
over a-bit strings. Combining (4) and (6) gives

Ei,σ

[
err(Qi,σ,D) +

δk · icost(Qi,σ,D)

a

]
≤ ε + δ . (7)

Therefore there exists an i and a σ ∈ S i−1 such that err(Qi,σ,D) + (δk/a)icost(Qi,σ,D) ≤ ε + δ.
Fix this pair (i, σ). By the above inequality, the corresponding protocol Qi,σ has distributional error
at most ε + δ and, assuming ε + δ < 1, has information cost at most a/(δk) under input distribution
D. Applying the Message Compression Lemma 3.4 to Qi,σ, we see that there exists a deterministic
[a, b, t; a0]

A-protocol Q′ with distributional error at most ε + 5δ under D, for

a0 = (1 + a/(δk))/δ2 + 1/δ ≤ 2a/(δ3k) ,

where the last inequality follows because k ≤ a. Applying the Message Switching Lemma 3.1 to Q ′

gives us a deterministic [a
(
1 + 2

δ3k

)
, b, t − 1; 22a/(δ3k)b]B-protocol Q with the same error probability

as Q′. The protocol Q has all the properties we sought and we are done.

Proof of Part (ii): Assume B(m,n, a, b, t, ε; b0). Let S = Σm−1. As before, for an arbitrary
input distribution D on S × Sn/`, we demonstrate the existence of a deterministic [a, b, t − 1]A-
protocol for LPM

d
m−1,n/` with low distributional error. Fix ` distinct strings s1, . . . , s` ∈ Σ; we

can do this because |Σ| = 2
√

d ≥ `. We construct a distribution D̃ on ΣS × (ΣS)n as follows:
draw ` independent samples (x1, y1), . . . , (x`, y`) from D, choose i ∈ [`] uniformly at random, and
output (sixi, s1y1 ∪ · · · ∪ s`y`). By the easy half of Yao’s minimax principle there is a deterministic
[a, b, t; b0]

B-protocol P for LPM
d
m,n with distributional error ε under input distribution D̃.

We construct a family {Qi}i∈[`] of private coin protocols for LPM
d
m−1,n/`, each of which uses P

as a black box. In Qi, on input (x, y) ∈ S × Sn/`, Alice constructs the string x̃ := six and Bob
constructs the set ỹ := s1Y1 ∪ · · · ∪ si−1Yi−1 ∪ siy ∪ si+1Yi+1 ∪ · · · ∪ s`Y` of strings, where the Yj’s
are random sets of strings drawn independently from DB ; they then run protocol P on input (x̃, ỹ)
and output whatever string P outputs with the first symbol deleted. From the description of the LPM

problem it is clear that Qi works whenever its call to P works. Thus, arguing as in the proof of Part (i),
Ei[err(Qi,D)] ≤ ε. Meanwhile, if Y = Y1Y2 . . . Y` denotes a random string drawn from D̃B , with
each Yj ∈ Sn/`,

Ei[icost(Qi,D)] = 1
`

∑
i∈[`] I(Yi : msg(Qi, Yi))

= 1
`

∑
i∈[`] I(Yi : msg(P, Y ))

≤ 1
` · I(Y : msg(P, Y )) (8)

≤ b0/` , (9)
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where (8) holds because the Yi’s are independent and (9) holds because msg(P, Y ) is a distribution
over b0-bit binary strings. Set ε′ := ε + γ

√
b0/`. By the concavity of the square root function,

Ei

[
err(Qi,D) + γ

√
icost(Qi,D)

]
≤ ε′ ,

whence there exists an i such that err(Qi,D) + γ
√

icost(Qi,D) ≤ ε′. Applying the Uninformative
Message Lemma 3.3 to this Qi we see that there exists a deterministic [a, b, t − 1]A-protocol Q with
distributional error ε′ under D which has all the properties we sought. This completes the proof.

Combining the two parts of the above round elimination lemma, and weakening the resulting
statement (using m/k − 1 ≥ m/(2k)), gives us the following corollary.

Corollary 4.3 With m,n, a, b, t, k, `, and ε as above, ` ≤ 2
√

d, k ≤ a, and t ≥ 2,

A(m,n, a, b, t, ε) =⇒ A


 m

2k
,

n

`
, a

(
1 +

2

δ3k

)
, b, t − 2, ε + 5δ + γ

√
22a/(δ3k)b

`


 .

We can now prove the following result about the communication complexity of LPM
d
m,n.

Theorem 4.4 Suppose m = logη/2 d and n ∈ 2Ω(log2 d) ∩ 2O(
√

d). If A(m,n, a, b, t, 1
4) with a =

λ log n and b = dµ for some constants λ, µ, then t = Ω(log log d/ log log log d).

Remark : We have not tried to optimise the range of n in this theorem.

Proof : Assume, w.l.o.g., that λ ≥ 2. Define

ξ :=
η log log d

2 log log log d
, (10)

so that ξξ ≤ logη/2 d = m. We shall start by assuming A(m,n, a, b, ξ
3λ , 1

4) and derive a contradiction,

which will prove that t > ξ
3λ = Ω(log log d/ log log log d). We ignore divisibility issues to avoid

notational clutter. Set δ = ξ−1, k = ξ4, and ` = n5λ/ξ . We claim that for any non-negative integer
i ≤ ξ

6λ ,

A

(
m

(2k)i ,
n
`i , a

(
1 + 2

ξ

)i
, b, ξ

3λ − 2i, 1
4 + 6iδ

)
. (11)

We prove by our claim by induction on i. The base case i = 0 holds by our initial assumption.
Suppose (11) holds for some particular i ≤ ξ

6λ − 1. Note that our setting of parameters gives us

δ3k = ξ ,

a
(
1 + 2

ξ

)i (
1 + 2

δ3k

)
= a

(
1 + 2

ξ

)i+1
,

a
(
1 + 2

ξ

)i
≤ a

(
1 + 2

ξ

)ξ/8
≤ 2a ,

γ

√
22(2a)/(δ3k)b

`
= γ

√
n4λ/ξdµ

n5λ/ξ
≤ δ , (12)
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where the final inequality follows from the lower bound on n. The upper bound on n ensures that
` ≤ 2

√
d, so Corollary 4.3 applies and we conclude that (11) holds for i + 1 as well. This completes

the proof of the claim.
Now set i = ξ

6λ in (11). Some simple algebra shows that

(2k)i = (2ξ4)ξ/(6λ) ≤ (ξ5)ξ/(6λ) ≤ m5/(6λ) ≤ m5/6 ,

`i = n(5λ/ξ)(ξ/(6λ)) = n5/6 ,

1
4 + 6iδ = 1

4 + 6· ξ
6λ ·

1
ξ = 1

4 + 1
λ ≤ 3

4 ,

whence we obtain A(m1/6, n1/6, 2a, b, 0, 3
4). But this is a contradiction as we are solving a nontrivial

communication problem with non-negligible success probability but with zero communication.

5 The Cell Probe Lower Bound for ANN

Finally, putting everything together gives us our main theorem.

Theorem 5.1 (Main Theorem restated) Suppose n ∈ 2Ω(log2 d) ∩ 2O(
√

d). If ANN
β
d,n has a t-probe

algorithm with table size s = nO(1) and word size w = dO(1), then t = Ω(log log d/ log log log d).

Proof : Set m := logη/2 d, a := log s = O(log n), and b := w = dO(1). By Lemma 2.4, LPM
d
m,n has

a t-probe algorithm with table size s and word size w. By Fact 1.5, LPM
d
m,n has an [a, b, 2t]A-protocol,

i.e., the statement A(m,n, a, b, 2t, 1
4) holds. Theorem 4.4 gives us the desired lower bound on t.

6 Upper Bounds

Kushilevitz et al. [18] implicitly obtained an O(log log d) cell probe upper bound for ANN
α
d,n, for any

constant α > 1, via a “dimension reduction” technique for the Hamming cube. In this section we prove
a couple of upper bounds which use this technique, but in more complex ways than [18]. For our first
result, which shows that the lower bound in the Main Theorem is tight, we need to bring in ideas used
by Beame and Fich [3] in their work on upper bounds for the predecessor problem. Incidentally, [3]
actually gives a cell probe algorithm for LPM; here we show that the harder ANN problem can also be
similarly solved.

We need two lemmas which closely follow lemmas from [18]; we include the proofs for complete-
ness. In this section we shall often treat points in Hamming cubes as column vectors over the field
GF (2), so that we can use linear algebraic notation. We will let n and d have their usual roles.

Definition 6.1 Let k be a positive integer and r a real number with r ≥ 1. We define Vr to be the
distribution of a random d-coordinate row vector in which each coordinate is independently chosen to
be 1 with probability 1/(4r) and 0 otherwise. We define Mk

r to be the distribution of a random k × d
matrix where each row is independently chosen from distribution Vr.

Lemma 6.2 Let x ∈ {0, 1}d, r ≥ 1, and α > 1. Then, there exist two numbers δ1(r), δ2(r) ∈ [0, 1],
δ1(r) < δ2(r) such that δ2(r) − δ1(r) is at least some constant that depends only on α and such that
for all z ∈ {0, 1}d ,

dist(x, z) ≤ r ⇒ Pr[Y x 6= Y z] ≤ δ1(r) , and

dist(x, z) > αr ⇒ Pr[Y x 6= Y z] > δ2(r) ,

where Y is a random row vector drawn from distribution Vr.
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Proof : Consider the following equivalent way of choosing Y : first choose a set C ⊆ [d] where each
integer in [d] is put in C independently with probability 1/(2r). Then, for each i ∈ C , let the ith

coordinate of Y be chosen uniformly from {0, 1}. For i /∈ C , set the ith coordinate of y to zero. Let
z ∈ {0, 1}d be arbitrary and let h = dist(x, z). If C does not contain any of the coordinates on which
x and z differ, then clearly Y x = Y z. This happens with probability (1 − 1/(2r))h. Otherwise, if
C contains at least one of the coordinates on which x and z differ, the probability that Y x 6= Y z is
precisely 1/2. Hence,

Pr[Y x 6= Y z] = 1
2

(
1 −

(
1 − 1

2r

)h
)

.

It can be seen that this is a monotonically increasing function of h and that by plugging in r and αr
for h one obtains two constants whose difference is as claimed.

Lemma 6.3 Let u, v ∈ {0, 1}d, r ≥ 1, α > 1, and let k be a positive integer. Let δ(r) = (δ1(r) +
δ2(r))/2, where δ1(r), δ2(r) are as in Lemma 6.2. Then,

dist(u, v) ≤ r ⇒ Pr[ dist(Mu,Mv) > δ(r)·k ] ≤ e−Ω(k) , and

dist(u, v) > αr ⇒ Pr[ dist(Mu,Mv) ≤ δ(r)·k ] ≤ e−Ω(k) ,

where M is a random matrix drawn from distribution Mk
r .

Proof : The lemma follows by combining Lemma 6.2 with the following Chernoff bound: For a
sequence of m independent random variables on {0, 1} such that for all i, Pr[Xi = 1] = p for some p,
Pr[

∑
Xi > (p + τ)m] ≤ e−2mτ2

and similarly Pr[
∑

Xi < (p − τ)m] ≤ e−2mτ2

.

6.1 A Tight Cell Probe Upper Bound for ANN

In this section we show that the lower bound given by the main theorem is tight. We assume throughout
that n > d2 (say), for otherwise an O(1)-probe algorithm is trivial. We start by showing that it is
enough to give a special kind of communication protocol for ANN.

Definition 6.4 (Memoryless Protocols) A communication protocol is said to be memoryless if each
of Bob’s messages depends only on the following: Bob’s input, a random string in case the protocol is
randomised, and the most recent message received from Alice (in a general protocol a message from
Bob would depend on the entire communication history). Note that there is no restriction on Alice.

Lemma 6.5 If ANN
α
d,n has a memoryless public coin [λ log n, dµ, 2t]A-protocol, then it has a cell

probe algorithm with t probes, table size at most nλ+2 and word size dµ.

Proof : Note that the total input to the ANN
α
d,n problem is d + dn bits long. Therefore, the private

versus public coin theorem of Newman [21] implies that it is enough to choose the public random
string uniformly from a set of at most O(d + dn) ≤ n2 special strings. Thus we can modify the
protocol so that only Alice is randomised and Bob is deterministic: Alice starts by choosing at most
2 log n random bits to index into the list of special strings. She includes these 2 log n bits in each of her
messages to Bob so that Bob has access to the random coins of the original protocol and can behave
deterministically. Notice that by including the coins in each message (and not just the first one), we
ensure that the modified protocol — call it P — is also memoryless.

We now obtain the desired cell probe algorithm as follows. Number Alice’s messages in P , which
are each at most (λ + 2) log n bits long, from 1 to nλ+2. The preprocessing phase produces a table
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whose ith entry contains Bob’s response, in P , to message i from Alice; this is well-defined since Bob
behaves deterministically and memorylessly in P . Also, the word size needed to fit Bob’s messages is
dµ. The query phase simply simulates Alice’s behaviour in P , using table lookups instead of messages
from Bob.

Theorem 6.6 (Cell Probe Algorithm for ANN) Let α > 1 be any constant. Then ANN
α
d,n has a cell

probe algorithm with O(log log d/ log log log d) probes, table size nO(1) and word size dO(1).

Remark : A similar upper bound has been independently discovered by Beame and Guruswami [4].

Proof : Without loss of generality, assume that α < 2. Let x ∈ {0, 1}d denote the query point and
B ⊆ {0, 1}d denote the database. For i ∈ {0, 1, . . . , logα d}, let Bi be the set of all database points
within distance αi of x. We start by checking for the degenerate case in which x ∈ B. This can
be done with a constant number of cell probes using the technique of perfect hashing [12]. If indeed
x ∈ B, the protocol outputs x and ends. Similarly, in order to avoid certain boundary cases later, let us
check if there exists a point in B within distance 1 of x. This can also be done with O(1) cell probes
by perfect hashing of all the points within distance 1 of B (there are at most dn such points). Again, if
such a point is found, the protocol outputs it and ends. Hence, we can assume from now on that both
B0 and B1 are empty.

Set t = c0 log log d/ log log log d, with c0 chosen so that

(t/2)t ≥ logα d . (13)

By Lemma 6.5, a memoryless public coin [O(log n), dO(1), O(t)]A-protocol for ANN
α
d,n will suffice.

Our protocol will find an i such that Bi is empty but Bi+2 is not and will output a point in
Bi+2; such a point is clearly an α2-approximate nearest neighbour of x. This is just as good as an
α-approximation; simply readjust α as necessary.

We start the protocol by choosing independent random matrices Mi from distribution Mc1 log n
αi

and independent random matrices Ni from distribution M
(c2 log n)/t
αi (see Definition 6.1), for each

i ∈ {0, . . . logα d}. The constants c1 and c2 will be specified later. Since we are in the public coin
model, these matrices are known to both Alice and Bob. For 0 ≤ j ≤ i ≤ logα d we define the sets

Ci = {z ∈ B : dist(Mix,Miz) ≤ δ(αi) · c1 log n} ,

Di,j = {z ∈ Ci : dist(Njx,Njz) ≤ δ(αj) · (c2 log n)/t} .

Lemma 6.3 says that Ci is an approximation to Bi in the following sense: a point in Bi may be left out
of Ci (and a point not in Bi+1 may get into Ci) with probability at most n−2, provided we choose c1

large enough. Similarly, Di,j is an approximation to the set of points in Ci that are within distance αj

of x. Our protocol will assume that Bi ⊆ Ci ⊆ Bi+1 for all i. Under this assumption, by Lemma 6.3,
a point in Bj is left out of Di,j (and a point in Ci \ Bj+1 may get into Di,j) with probability at
most n−2/t provided we choose c2 large enough. Our protocol will additionally assume that at most a
fraction n−1/t of Bj is not in Di,j and that at most a fraction n−1/t of Ci \ Bj+1 is in Di,j .

Taking the union bound over all i and all n database points, we see that the first assumption is false
with probability at most (logα d)·n·n−2 ≤ 1

8 . For the second assumption, an application of Markov’s
inequality followed by a union bound over all i, j and the two parts of the assumption shows that it is
false with probability at most n−1/t ·(logα d)2 ·2 ≤ 1

8 . Thus, an assumption is false with probability at
most 1

4 ; this will bound the error probability of the protocol.
The protocol proceeds as follows. Alice maintains two integers r and s, initialised to 0 and logα d

respectively. The protocol is composed of at most 3t shrinking phases, each of which consists of at
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most 4 rounds, followed by a completion phase, which consists of at most 6t rounds. The protocol
maintains the invariant that at the start of each shrinking phase r < s, Cr is empty and Cs is nonempty.
Note that this holds at the very beginning (C0 is empty since it is contained in B1). Moreover, each
shrinking phase updates r and/or s in such a way that either s′ − r′ ≤ (s − r)/t + 3 or |Cs′ | ≤
2n−1/t|Cs|, where r′ and s′ denote the updated values of r and s, respectively. When s − r drops
below (say) 3t, the protocol stops the shrinking phases and moves on to the completion phase. As long
as s − r ≥ 3t, (s − r)/t + 3 ≤ 2(s − r)/t. Hence, in view of (13), there can be at most t shrinking
phases in which (s − r) shrinks by a factor of 2/t. On the other hand, since Cs stays nonempty, there
are at most 2t shrinking phases in which |Cs| drops by a factor of 2n−1/t ≤ n−1/(2t). Thus, overall
there are at most 3t shrinking phases, as claimed.

We now describe the completion phase. For i from r + 1 to s, Alice sends Bob the vector Mix
which is O(log n) bits long and gives Bob complete information about Ci. If Ci is empty, Bob replies
“empty,” otherwise he replies with an arbitrary point in Ci which is d bits long. Notice that Bob can do
this memorylessly. Alice stops as soon as she receives a point, which, by the invariant, she eventually
must. Since we enter the completion phase only when s − r < 3t, there are at most 6t rounds in this
phase. Suppose Alice ends up with a point in Ck+1, so that Ck is empty. By our first assumption,
Bk ⊆ Ck is empty and Bk+2 ⊇ Ck+1 contains this point. As observed earlier, this solves ANN

α2

d,n.

Finally, we describe a shrinking phase. For j ∈ [t] define ρj = br + j
t (s − r)c. In the first round

of the phase, Alice sends Bob the vectors Msx,Nρ1
x,Nρ2

x, . . . , Nρtx. Examining the shapes of the
matrices Ni, we see that this message of Alice is only O(log n) bits long. Alice’s message gives Bob
complete information about Cs as well as Ds,ρj

for all j ∈ [t]. Bob replies (again, memorylessly) with
the smallest j ∈ [t] such that |Ds,ρj

| > n−1/t|Cs|. If this j is 1 (CASE 1), we skip the third and fourth
rounds of this phase and Alice updates s to ρ1 +1, leaving r unchanged. Otherwise, in the third round
Alice sends Bob the vector Mρj−1−1x and Bob replies with a bit indicating whether or not Cρj−1−1 is
empty. If it is empty (CASE 2), Alice updates s to ρj + 1 and r to ρj−1 − 1. If it is nonempty (CASE

3), Alice updates s to ρj−1 − 1, leaving r unchanged.
Let us now verify that all the invariants hold after the phase ends. Clearly, in all three cases, r < s.

Moreover, in CASE 1 and CASE 3, Cr is empty since r was not changed and in CASE 2, Cr is empty
according to Bob’s message. Finally, in CASE 3, Cs is nonempty according to Bob’s message. In
order to show that Cs is nonempty in the two other cases, recall that by our assumption, Ds,ρj

contains
at most n−1/t|Cs| points from outside Bρj+1. Therefore, since |Ds,ρj

| > n−1/t|Cs|, it must contain at
least one point from Bρj+1. In particular, Bρj+1 and hence Cρj+1 are nonempty.

In order to complete the proof, notice that in CASE 1 and CASE 2 the difference between the
updated values of r and s is at most

(br + j
t (s − r)c + 1) − (br + j−1

t (s − r)c − 1) ≤ s−t
t + 3 ,

and that in CASE 3 the size of the new Cs is

|Cρj−1−1| ≤ |Bρj−1
| ≤ |Ds,ρj−1

|/(1 − n−1/t) ≤ 2|Ds,ρj−1
| ≤ 2n−1/t|Cs| ,

where we used our assumptions from above. Hence, in all three cases the phase shrinks either s− r or
|Cs| as promised.

6.2 A Protocol for ANN with Low Bit Complexity

Finally, we prove our other upper bound on ANN which shows that the richness technique would have
failed to prove a nontrivial lower bound.
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Theorem 6.7 (Bit Complexity Upper Bound for ANN) For n ∈ 2Ω(log2 d) and α > 1 there is a
private coin randomised communication protocol for ANN

α
d,n in which Alice sends O(log n) bits and

Bob sends dO(1) bits.

Proof : We will present a public coin protocol; a private coin protocol follows from the theorem of
Newman [21]. Let x ∈ {0, 1}d denote the query point given to Alice and B ⊆ {0, 1}d denote the
database given to Bob. For i ∈ {0, . . . , logα d} define Bi as the set of points in B within distance αi

of x. Assume without loss of generality that α < 2. Moreover, as in the previous upper bound, we can
assume without loss of generality that both B0 and B1 are empty. This is done using perfect hashing,
and requires Alice to send only O(log n) bits and Bob to send only O(d) bits.

Let r0 ≥ 2 be the minimum number such that Br0
is non-empty and fix y to be an arbitrary point in

Br0
. Our protocol outputs a point either in Br0

or in Br0+1; this clearly implies a solution to ANN
α2

d,n

and by readjusting α appropriately, this completes the proof. Bob maintains a set of points B ′ ⊆ B
which is initially set to B. Alice keeps a value r which is initially set to logα d. In the following
description of the protocol, we describe certain bad events and we proceed assuming that they never
happen. Later, we show that with high probability none of these events happens.

Our protocol consists of phases where each phase consists of two rounds. In the first round, Bob
sends d2 randomly chosen points from B ′. If Alice finds a point in Br−1 then she decreases r by one
and sends a message to Bob indicating that the phase is complete. Otherwise, we say that a bad event
of the first type happened if |B′ ∩ Br−1| ≥ |B′|/d. Next, Alice randomly chooses a matrix M from
the distribution Mc1 log d

αr−2 where c1 is some constant to be specified later. She sends r and Mx to Bob;
this takes O(log d) bits. Since we are in the public coin model, Bob knows M and can compute the set

{z ∈ B′ : dist(Mx,Mz) ≤ δ(αr−2) · c1 log d}

and he sets the new B ′ to be this set. This ends the phase. We expect that this will shrink |B ′| to at
most 2/d times its previous value; if not, we say that a bad event of the second type happened. We say
that a bad event of the third type happened if r ≥ r0 + 2 and y is no longer in B ′.

The protocol ends when the set B ′ becomes empty and then Alice outputs the point in Br which
she received when she decreased r to its current value.

Assuming none of the bad events happens, each phase either decreases r by one or shrinks the size
of B′ by 2/d. Hence, the number of phases performed by the protocol is at most logα d + logd/2 n
which is O(log n/ log d). Since Alice sends O(log d) bits in each phase, she sends O(log n) bits
overall. Moreover, given that bad events of the third type do not happen, we know that the protocol
stops when r ≤ r0 +1. Also, since Alice decrements r only after seeing an element in Br−1, we know
that she never decrements r below r0. Thus, the final r is either r0 or r0 + 1 and so Alice outputs a
point in Br0

∪ Br0+1 as promised. It remains to bound the probability of the bad events.
Let us consider one phase of the protocol. The probability that a bad event of the first type happens

in this phase is at most

(
1 − 1

d

)d2

≤ e−d .

Assuming that a bad event of the first type did not happen, |B′∩Br−1| < |B′|/d. According to Lemma
6.3, each element of B ′ \Br−1 is in the new B ′ with probability at most 1/d2 for large enough c1. By
Markov’s inequality, the probability that more than a 1/d fraction of the points in B ′ \Br−1 remain is
at most 1/d. Hence, with probability at least 1 − 1/d, the number of points in the new B ′ is at most

1
d · |B′| + 1

d · |B′ \ Br−1| ≤ 1
d · |B′| + 1

d · |B′| = 2
d · |B′| ,
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and therefore a bad event of the second type happens with probability at most 1/d. According to
Lemma 6.3, for r ≥ r0 +2, the probability of y being thrown out of B ′ (the third bad event) is at most
1/d for large enough c1. Summing up over the three bad events and using the union bound over all the
phases, the probability that a bad event happens during the protocol is at most

O

(
log n

log d
·

(
e−d +

1

d
+

1

d

))
≤

1

4
,

which bounds the error probability of the protocol.
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A Proof of Lemma 3.5

We now provide a proof of the information theoretic lemma we used in Section 3. In the proof we use
the following Substate Theorem of Jain, Radhakrishnan, and Sen [15].

Fact A.1 (Substate Theorem [15]) Suppose P and Q are probability distributions on some set A

such that DKL(P ‖Q) = a. Let r ≥ 1. Then, there exists a probability distribution on A such that
‖P − P ′‖1 ≤ 2

r and for all i ∈ A , ρP ′(i) ≤ Q(i) where ρ := (1 − 1
r )2−r(a+1).

Lemma A.2 (Lemma 3.5 restated) Let X and M be correlated random variables with ranges X

and M respectively, and let a = I(X : M). Then, for any function f : X × M → [0, 1] and any
sufficiently small δ > 0, there is a subset M ′ of M and a function g : X → M ′ such that
(i) log |M ′| ≤ (1 + a)/δ2 + 1/δ, and
(ii) EX [f(X, g(X))] ≤ EX,M [f(X,M)] + 4δ.

18



Proof : Let Π denote the distribution of M and let Πx denote the distribution of M conditioned on
X = x. By Fact A.1, for any x ∈ X there exists a probability distribution Π′

x such that

‖Πx − Π′
x‖1 ≤ 2δ (14)

and
∀i ∈ M : ρxΠ

′
x(i) ≤ Π(i)

where ρx := (1 − δ)2−(1+DKL(Πx ‖Π))/δ .
Consider the following (randomised) procedure h, which takes an input x ∈ X and a sufficiently

long string r which is supposed to be set to a uniform random value, and produces an output in M .

Given x and r, repeat the following:
Using r, choose an element i ∈ M according to Π
With probability ρxΠ′

x(i)/Π(i) output this i and stop
Otherwise, continue

Let h(r, x) ∈ M denote the output of the procedure. Notice that ρxΠ
′
x(i)/Π(i) ≤ 1, so that the

procedure is well defined. At any particular iteration the procedure stops with probability

∑

i

Π(i) · ρxΠ′
x(i)/Π(i) = ρx .

Therefore, the probability of outputting i ∈ M is

∑∞
k=1(1 − ρx)k−1 · Π(i) · ρxΠ′

x(i)/Π(i) = ρxΠ
′
x(i) ·

∑∞
k=1(1 − ρx)k−1 = Π′

x(i) .

In other words, if R denotes a uniform random variable uncorrelated with X , then the distribution
of h(R, x) is precisely Π′

x. Let n(r, x) the number of iterations performed by h on input (r, x). For
any x ∈ X , n(R, x) is a geometric random variable with expectation ER[n(R, x)] = 1/ρx. By the
concavity of the log function,

ER[log n(R, x)] ≤ − log ρx = log
1

1 − δ
+

(
1 + DKL(Πx ‖Π)

)
/δ

≤ 1 +
(
1 + DKL(Πx ‖Π)

)
/δ .

Taking the expectation over X and noting that EX [DKL(ΠX ‖Π)] = I(X : M) = a,

EX,R[log n(R,X)] ≤ 1 + (1 + a)/δ ,

whence, by Markov’s inequality,

Pr
(X,R)

[
log n(R,X) ≥ (1 + a)/δ2 + 1/δ

]
≤ δ . (15)

Now let h′ be a modified version of the procedure h that, after 2(1+a)/δ2+1/δ iterations, stops and
outputs some arbitrary fixed element of M . Then, by (15), the probability (over X,R) that the output
of h′ differs from the output of h is at most δ. From this, it is not hard to show that if Π ′′

x denotes the
distribution of h′(R, x),

∑

x∈X

Pr[X = x] · ‖Π′′
x − Π′

x‖1 ≤ 2δ .
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Combining the above with (14) we get
∑

x∈X
Pr[X = x] · ‖Π′′

x − Πx‖1 ≤ 4δ, whence

ER[EX [f(X,h′(R,X))]] = EX [ER[f(X,h′(R,X))]]

=
∑

x∈X

Pr[X = x] · ER[f(x, h′(R, x))]

=
∑

x∈X

Pr[X = x] · Ei∼Π′′
x

[
f(x, i)

]

≤ 4δ +
∑

x∈X

Pr[X = x] · Ei∼Πx

[
f(x, i)

]
(16)

= 4δ + EX,M [f(X,M)] ,

where (16) holds because f takes values in [0, 1]. Therefore, there exists some fixed r0 such that

EX [f(X,h′(r0, X))] ≤ EX,M [f(X,M)] + 4δ .

Let g : X → M be defined by g(x) = h′(r0, x) for all x ∈ X , and let M ′ be the range of g. Since
the procedure h′, by design, stops after 2(1+a)/δ2+1/δ iterations, log |M ′| ≤ (1 + a)/δ2 + 1/δ. This
completes the proof.
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