An algebraic algorithm for non-commutative rank over any field.

In 1967, J. Edmonds introduced the problem of computing the rank over the rational function field of an $n \times n$ matrix $M_1x_1 + \dots M_mx_m$ whose entries are homogeneous linear polynomials in commuting variables x_1, x_2, \dots, x_m with integer coefficients.

We consider the non-commutative version of Edmonds' problem over an arbitrary field. The "non-commutative" rank can be interpreted as the rank of the linear matrix $M_1x_1+\ldots+M_mx_m$ in the free skewfield generated by the non-commuting variables x_1,\ldots,x_m . This non-commutative rank is an upper bound for the rank of $M_1x_1+\ldots+M_mx_m$ in the commuting variables x_1,\ldots,x_m .

We present a deterministic polynomial time algorithm which, given a collection M_1, \ldots, M_m of n by n matrices over the field \mathbb{F} , computes the non-commutative rank r, and outputs d by d matrices $T_1, \ldots T_m$ such that the nd by nd block matrix $M_1 \otimes T_1 + \ldots + M_m \otimes T_m$ has rank rd.

When r < n we also compute n by n invertible matrices L and R such that for some integer ℓ , the upper right $r - \ell$ by ℓ block of LM_jR is zero for all $j = 1, \ldots, m$ providing evidence to the fact that all these matrices compress a subspace of dimension ℓ into a subspace of dimension $n - (r - \ell)$.

The key ingredient of the algorithm is an analogue of augmenting paths for matchings in bipartite graphs, combined with a regularity property of "blown up" matrix spaces. (The d-blowup of the matrix space generated by M_1, \ldots, M_m is just the matrix space where the output sits: the space of nd by nd matrices of the form $M_1 \otimes T_1 + \ldots + M_m \otimes T_m$, where the T_j are arbitrary d by d matrices.)

It is known that this problem relates to the following ring of matrix semi-invariants denoted R(n,m). For a field $\mathbb F$ it is the ring of semi-invariant polynomials for the action of $\mathrm{GL}(n,\mathbb F) \times \mathrm{GL}(n,\mathbb F)$ on tuples of matrices $:(A,C) \in \mathrm{GL}(n,\mathbb F) \times \mathrm{GL}(n,\mathbb F)$ sending (M_1,\ldots,M_m) to $(AM_1C^{\mathrm{T}},\ldots,AM_mC^{\mathrm{T}})$. Then (M_1,M_2,\ldots,M_m) with non-commutative rank r < n, correspond to points where all non constant polynomials in R(n,m) vanish.

This is joint work with Gábor Ivanyos and Youming Qiao.