
IAS/Park City Mathematics Series
Volume 00, Pages 000–000
S 1079-5634(XX)0000-0

Polynomial-time algorithms in algebraic number theory

Daniël M. H. van Gent

Abstract.

Contents

1 Introduction 2
1.1 Algorithms 2
1.2 Basic computations 3
1.3 Commutative algebra and number theory 3
1.4 Exercises 4

2 Coprime base factorization 5
2.1 Coprime base factorization in number fields 11

3 Finitely generated abelian groups 12
3.1 Lattices and short bases 14
3.2 The LLL-algorithm 17
3.3 The kernel-image algorithm 18
3.4 Applications of the kernel-image algorithm 19
3.5 Homomorphism groups of finitely generated abelian groups 21
3.6 Structure theorem for finitely generated abelian groups 23

4 Computing symbols 24
4.1 Jacobi symbols in number rings 26
4.2 Signs of permutations 26
4.3 Computing signs of group automorphisms 28
4.4 Computing Jacobi symbols in number rings 29

5 Finite commutative rings 30
5.1 Polynomial-time reductions 32
5.2 Trace radicals 33
5.3 Discriminants 34
5.4 Proof of the main theorems 36
5.5 Exercises 37

6 Inverting ideals 38
6.1 Blowing up 41

2010 Mathematics Subject Classification. Primary 14Dxx; Secondary 14Dxx.
Key words and phrases. Park City Mathematics Institute.

©0000 (copyright holder)

1

2 Polynomial-time algorithms in algebraic number theory

6.2 Inverting subgroups with two generators 45
6.3 Multiplicative inversion 47
6.4 Unit products 49

7 Tame orders 49

1. Introduction

In these notes we study methods for solving algebraic computational prob-
lems, mainly those involving number rings, which are fast in a mathematically
precise sense. Our motivating problem is to decide for a number field K, elements
a1, . . . ,at ∈ K∗ and n1, . . . ,nt ∈ Z whether

∏
i a
ni
i = 1, which turns out to be

non-trivial. From basic operations such as addition and multiplication of integers
we work up to computation in finitely generated abelian groups and algebras
of finite type. Here we encounter lattices and Jacobi symbols. Some difficult
problems in computational number theory are known, for example computing a
prime factorization or a maximal order in a number field. We will however focus
mainly on the positive results, namely the problems for which fast computational
methods are known.

1.1. Algorithms To be able to talk about polynomial-time algorithms, we should
first define what an algorithm is. We equip the set of natural numbers N = Z⩾0

with a length function l : N → N that sends n to the number of digits of n in
base 2, with l(0) = 1.

Definition 1.1. A problem is a function f : I→ N for some set of inputs I ⊆ N and
we call f a decision problem if f(I) ⊆ {0, 1}. An algorithm for a problem f : I → N

is a ‘method’ to compute f(x) for all x ∈ I. An algorithm for f is said to run
in polynomial time if there exist c0, c1, c1 ∈ R>0 such that for all x ∈ I the time
required to compute f(x), called the run-time, is at most (c0 + c1l(x))

c2 . We say a
problem f is computable if there exists an algorithm for f.

This definition is rather empty: we have not specified what a ‘method’ is, nor
have we explained how to measure run-time. We will briefly treat this more
formally. The reader for which the above definition is sufficient can freely skip
the following paragraph. The main conclusion is that we will not heavily rely on
the formal definition of run-time in these notes.

In these notes, the word algorithm will be synonymous with the word Turing
machine. For an extensive treatment of Turing machines, see [4]. A Turing ma-
chine is a model of computation described by Alan Turing in 1936 that defines an
abstract machine which we these days think of as a computer. The main differ-
ences between a Turing machine and a modern day computer is that the memory
of a Turing machine is a tape as opposed to random-access memory, and that a
Turing machine has infinite memory. The run-time of a Turing machine is then

Daniël M. H. van Gent 3

measured as the number of elementary tape operations: reading a symbol on
the tape, writing a symbol on the tape and moving the tape one unit forward or
backward. It is then immediately clear that it is expensive for a Turing machine
to move the tape around much to look up data, as opposed to the random-access
memory model where the cost of a memory lookup is constant, regardless of
where the data are stored in memory. This also poses a problem for our formal
treatment of run-time, as it may depend on our model of computation. However,
both models of computation are able to emulate each other in such a way that
it preserves the property of computability in polynomial time, even though the
constants c0, c1 and c2 as in Definition 1.1 may increase drastically. We use this
as an excuse to be informal in these notes about determining the run-time of an
algorithm.

1.2. Basic computations In these notes we build up our algorithms from basic
building blocks. First and foremost, we remark that the basic operations in Z and
Q are fast. Addition, subtraction, multiplication and division (with remainder in
the case of Z) can be done in polynomial time, as well as checking the sign of
a number and whether numbers are equal. We assume here that we represent a
rational number by a pair of integers, a numerator and a denominator. We may
even assume the numerator and denominator are coprime: Given a,b ∈ Z we can
compute their greatest common divisor gcd(a,b) and solve the Bézout equation
ax+ by = gcd(a,b) for some x,y ∈ Z using the (extended) Euclidean algorithm
in polynomial time (we define gcd(0, 0) = 0). Applying these techniques in bulk
we can also do addition, subtraction and multiplication of integer and rational
matrices in polynomial time. Least trivially of our building blocks, using the
theory of lattices we can compute bases for the kernel and the image of an integer
matrix in polynomial time, which is the topic of Section 3.

1.3. Commutative algebra and number theory

Definition 1.2. Let R be a commutative ring. We write R∗ for the set of units
and specR for the set of prime ideals of R. We say R is local if R has a unique
maximal ideal. For an ideal I ⊆ R we define the radical

√
I of I to be the ideal

{x ∈ R | (∃n ∈ Z>0) x
n ∈ I}. We call nil(R) =

√
0R the nilradical of R and we call

the elements of nil(R) the nilpotents of R. We say R is reduced when nil(R) = 0. We
say ideals I, J ⊆ R are coprime when I+ J = R.

Definition 1.3. A number field is a field K containing the field of rational numbers
Q such that the dimension of K over Q as vector space is finite. A number ring is
a subring of a number field.

For a number ring R, write Rp for the localization at the prime ideal p of R.

Definition 1.4. Let R be a number ring and let K = R0R be its field of fractions. A
fractional ideal of R is a finitely generated non-zero R-submodule of K. A fractional
ideal of R is integral if it is contained in R. A fractional ideal of R is principal if

4 Polynomial-time algorithms in algebraic number theory

it is of the form xR for some x ∈ K. We write I+ J and I · J for the R-modules
generated by {i + j | i ∈ I, j ∈ J} respectively {i · j | i ∈ I, j ∈ J}. A fractional
ideal I of R is invertible if there exists some fractional ideal J of R such that I · J is
principal. A non-invertible prime ideal is called singular. For fractional ideals I
and J of R write I : J = {x ∈ K | xJ ⊆ I}.

Definition 1.5. An order is a commutative ring whose additive group is isomor-
phic to Zn for some n ∈ Z⩾0. We say R is an order of a number field K if R is an
order such that R ⊆ K and R0R = K.

Any reduced order is contained in some finite product of number fields. In
our algorithms we encode an order by first specifying its rank n, and then writing
down its n×n multiplication table for the standard basis vectors. By distributiv-
ity this completely and uniquely defines a multiplication on the order. We encode
a number field K simply by an order R such that R0R = K.

1.4. Exercises

Exercise 1.6. Let Qalg be some algebraic closure of Q.
a. Show that #Qalg = #N.
b. Show that there are precisely #N number fields contained in Qalg.
c. Show that there are precisely #R subfields of Qalg.
d. The same question as (a) and (b), but counting the fields up to isomor-

phism.
e. Do there exist #R subfields of Qalg that are pairwise isomorphic?
f. Let K ̸= Q be a number field. Show that there are precisely #N orders

and #R subrings in K with field of fractions K. What differs for K = Q?
g. Argue why it is natural to restrict the input of our algorithms to orders

and number fields as opposed to general number rings.

Exercise 1.7. Show that there exists a polynomial-time algorithm that, given a
cube integer matrix, determines whether it encodes an order.

Exercise 1.8. Let R be a commutative ring. Show that R is a local ring if and only
if R \ R∗ is an additive subgroup of R.

Exercise 1.9. Let R be an order of a number field K. Prove that R = OK if and
only if the sum of every two invertible ideals is again invertible.

Exercise 1.10. Let R be a commutative ring. Show that nil(R) is equal to the
intersection of all prime ideals of R. Moreover, show that if nil(R) is finitely
generated, then nil(R) is nilpotent, i.e. nil(R)n = 0 for some n > 0.

Exercise 1.11. Show that any finite commutative domain is a field. Conclude that
in a general commutative ring prime ideals of finite index are maximal.

Exercise 1.12. Let R be a commutative ring and let I1, . . . , Im, J1, . . . , Jn ⊆ R be
ideals such that for all i, j we have Ii + Jj = R. Show that I1 · · · Im + J1 · · · Jn = R.

Daniël M. H. van Gent 5

Conclude that for any two distinct maximal ideals m, n ⊆ R and any m,n ∈ Z⩾0

we have mm + nn = R.

Exercise 1.13 (Chinese remainder theorem for ideals). Let R be a commutative
ring and let I1, . . . , In ⊆ R be pairwise coprime ideals. Show that

⋂n
i=1 Ii =∏n

i=1 Ii and prove that the natural homomorphism

R/
(n⋂
i=1

Ii

)
→

n∏
i=1

(R/Ii)

is an isomorphism.

Exercise 1.14. Let I, J be fractional ideals of a number ring R.
a. Show that if IJ = R, then J = R : I.
b. Show that if I is invertible, then I : I = R.
c. Show that IJ is invertible if and only if I and J are invertible.

Exercise 1.15. Let I be a non-zero ideal in a number ring R. Show that if all prime
ideals I ⊆ p ⊆ R are invertible, then I factors as a product of invertible prime
ideals and in particular is invertible.

Exercise 1.16. Let I be a non-zero ideal in a number ring R.
a. Show that there exist prime ideals p1, . . . , pn ⊆ R that contain I and satisfy

p1 · · · pn ⊆ I.
b. Suppose I is a product of prime ideals. Show that I : I = R if and only if I

is invertible.
Hint: First suppose I is prime. If I is non-invertible and a ∈ p is non-zero, then
p1 · · · pt ⊆ aR ⊆ I and without loss of generality p1 = I. Any b ∈ p2 · · · pn \ aR

satisfies bI ⊆ aR.

Exercise 1.17. Let α be an algebraic integer of degree at least 3 and let p be a
prime number. Show that R = Z + pZ[α] is a domain, and that I = αZ + R is a
fractional R-ideal. Moreover, prove that I : I = R and that I is not invertible.
Note: This provides a counter-example to the converse of Exercise 1.14.b.

2. Coprime base factorization

In this section we treat the following problem, which will be the motivation
for the coprime base algorithm.

Theorem 2.1. There is a polynomial-time algorithm that on input t ∈ N, q1, . . . ,qt ∈
Q∗ and n1, . . . ,nt ∈ Z decides whether

(2.1)
t∏
i=1

q
ni
i = 1.

It is clear we can determine whether such a product has the correct sign: Sim-
ply take the sum of all ni for which qi < 0 and check whether the result is even.
It is then sufficient to prove the following theorem instead.

6 Polynomial-time algorithms in algebraic number theory

Theorem 2.2. There is a polynomial-time algorithm that on input t ∈ N, a1, . . . ,at,
b1, . . . ,bt ∈ Z>0 and n1, . . . ,nt,m1, . . . ,mt ∈ Z decides whether

(2.2)
t∏
i=1

a
ni
i =

t∏
i=1

b
mi
i .

In this form, the problem looks deceptively easy. Consider for example the
most straightforward method to decide (2.2).

Method 2.3. Compute
∏t
i=1 a

ni
i and

∏t
i=1 b

mi
i explicitly and compare the re-

sults.

This method is certainly correct in that it is able to decide (2.2). However, it
fails to run in polynomial time even when t = 1. For n ∈ Z>0 we have that
l(2n) = n+ 1 ≈ 2l(n). Hence the length of 2n is not bounded by any polynomial
in l(n). We wouldn’t even have enough time to write down the number regardless
of our proficiency in multiplication because the number is too long.

Another method uses the fundamental theorem of arithmetic, also known as
unique prime factorization in Z.

Method 2.4. Factor a1, . . . ,at,b1, . . . ,bt into primes and for each prime that
occurs compute the number of times it occurs in the products

∏t
i=1 a

ni
i and∏t

i=1 b
mi
i and compare the results.

It is true that once we have factored all integers into primes only a polynomial
number of steps remains. If we write xip for the exponent of the prime p in ai,
then we may compute

∑t
i=1 nixip, the exponent of p in

∏t
i=1 a

ni
i , in polynomial

time. Moreover, the number of prime factors of n ∈ Z>0 is at most l(n), so the
number of primes occurring is at most

∑t
i=0(l(ai) + l(bi)), which is less than

the length of the combined input. The problem lies in the fact that we have not
specified how to factor integers into primes. As of July 21, 2022, nobody has been
able to show that we can factor integers in polynomial time. Until this great open
problem is solved, Method 2.4 is out the window.

An interesting observation is that the main obstruction in Method 2.3 lies in
the exponents being large, while for Method 2.4 the obstruction is in the bases.
Our proof for Theorem 2.2 will be to slightly tweak Method 2.4. Namely, observe
that we do not need to factor into prime elements but that it suffices to factor into
pairwise coprime elements. The following lemma follows readily from unique
prime factorization.

Lemma 2.5 (Unique coprime factorization). Let s ∈ N and let c1, . . . , cs ∈ Z>1 be
pairwise coprime. If for n1, . . . ,ns,m1, . . . ,ms ∈ Z⩾0 we have

(2.3)
s∏
i=1

c
ni
i =

s∏
i=1

c
mi
i ,

then ni = mi for all i. □

Daniël M. H. van Gent 7

We now propose the following algorithm for deciding (2.2).

Method 2.6. Factor a1, . . . ,at,b1, . . . ,bt into pairwise coprime c1, . . . , cs ∈ Z>0.
For each ci compute the number of times it occurs in

∏t
i=1 a

ni
i and

∏t
i=1 b

mi
i

and compare the results.

Now to prove Theorem 2.2 and in turn Theorem 2.1 it suffices to prove the
following.

Theorem 2.7 (Coprime base factorization). There is a polynomial-time algorithm that
on input t ∈ N and a1, . . . ,at ∈ Z>0 computes s ∈ N, c1, . . . , cs ∈ Z>1 and (nij) ∈
Zt×s⩾0 such that c1, . . . , cs are pairwise coprime and ai =

∏s
j=1 c

nij
j for all i.

We state the algorithm first and prove the theorem later.

Method 2.8. Construct a complete simple graph G and label the vertices with
a1, . . . ,as. We call it a labeling because the map sending a vertex to its label need
not be injective. While there are edges in G, repeat the following 5 steps:

(1) Choose an edge {U,V} of G, delete it from the graph, and let u and v be
the labels of U respectively V .

(2) Compute w = gcd(u, v) using the Euclidean algorithm.
(3) Add a vertex W labeled w to G and connect it to U, V and those vertices

which are neighbors of both U and V .
(4) Update the labels of U and V to u/w and v/w respectively.
(5) For each S ∈ {U,V ,W}, if the label of S is 1, then delete S and its incident

edges from G.
Now V = {c1, . . . , cs} consists of the required pairwise coprime elements. The
remaining output can now be computed in polynomial time.

In the graph that we construct and update, the edges represent the pairs of
numbers of which we do not yet know whether they are coprime, while a missing
edge denotes that we know the pair to be coprime.

Example 2.9. We apply Method 2.8 to (a1,a2) = (4500, 5400). Since there are
only two vertices our graphs will fit on a single line. We denote the edge we
choose in each iteration with a bullet and edges we have to erase are dotted. On
the right we show how to keep track of the factorization of 4500 with minimal
bookkeeping by writing it as a product of vertices in the graph.

8 Polynomial-time algorithms in algebraic number theory

Iteration 1: 4500 • 5400 4500
Iteration 2: 5 • 900 6 5 · 900

Iteration 3: 1 5 • 180 6 52 · 180

Iteration 4: 1 5 • 36 6 53 · 36

Iteration 5: 5 1 36 • 6 53 · 36

Iteration 6: 5 6 • 6 1 53 · 6 · 6

Iteration 7: 5 1 6 1 53 · 62

Iteration 8: 5 6 53 · 62

We obtain (c1, c2) = (5, 6) and 4500 = 53 · 62. By trial division we obtain 5400 =

52 · 63.

Example 2.10. We apply Method 2.8 to (a1,a2,a3) = (15, 21, 35).

35

•

15 21

7

5 •

3 21

1

5 • 7

3 3

5 1 7

3 • 3

5 7

•

1 3 1

5 7

1

3

The resulting coprime base is (c1, c2, c3) = (3, 5, 7). In the fifth graph something
interesting happens. Vertex 7 suddenly becomes disconnected from the graph
because we know it is coprime to one of the 3’s.

Proof of Theorem 2.7. We claim Method 2.8 is correct and runs in polynomial time.
One can show inductively that throughout the algorithm two vertices in the graph
G are coprime when there is no edge between them. When the algorithm termi-
nates because there are no edges in the graph, we may conclude that c1, . . . , cs
are coprime. Additionally, one shows inductively that the numbers a1, . . . ,at can

Daniël M. H. van Gent 9

be written as some product of the vertices of G. Hence c1, . . . , cs forms a coprime
base for a1, . . . ,at, so Method 2.8 is correct. It remains to show that it is fast.

Write Pn for the product of all labels of the vertices in the graph at step n.
Note that P0 = a1 · · ·as and that Pn+1 | Pn for all n ∈ N. Since P0 has at most
B = l(P0) prime factors counting multiplicities, there are at most B steps n for
which Pn+1 < Pn and at most B vertices in G. The steps for which Pn = Pn+1 are
those where the edge we chose is between coprime integers, meaning no vertices
or edges are added to the graph and one edge is deleted. As the number of edges
is at most B2, then so is the number of consecutive steps for which Pn = Pn+1.
Hence the total number of steps is at most B3, which is polynomial in the length
of the input. Lastly, note that each step takes only polynomial time because the
values of the vertices are bounded from above by B and the Euclidean algorithm
runs in polynomial time. Hence Method 2.8 runs in polynomial time. □

The speed of this algorithm heavily depends on how fast the product of all
vertices decreases. In each step we want to choose our edge {u, v} such that
gcd(u, v) ≫ 1. A heuristic for this could be to choose edges between large num-
bers. For those interested in the efficiency of coprime base factorization we refer
to [2] for a provably faster algorithm.

Exercise 2.11. Show that there exists a polynomial-time algorithm that, given
a,b, c,d ∈ Z>0 such that ab = cd, computesw, x,y, z ∈ Z>0 such that (a,b, c,d) =
(wx,yz,wz, xy).

Exercise 2.12 (Modified Euclidean algorithm). Recall that gcd(0, 0) = 0.
a. Show that for all a,b ∈ Z with b ̸= 0 there exist r,q ∈ Z with a = qb+ r

and |r| ⩽ |b|/2.
b. Show that for all q,b, r ∈ Z with a = qb+ r we have gcd(a,b) = gcd(b, r)

and gcd(a, 0) = |a|.
c. Prove that there exists a polynomial-time algorithm that, given a,b ∈ Z,

computes gcd(a,b) as well as x,y ∈ Z such that ax+ by = gcd(a,b).
d. Conclude that there exists a polynomial-time algorithm that, given a,n ∈

Z with n > 1, decides whether a ∈ (Z/nZ)∗ and if so computes some
a ′ ∈ Z such that aa ′ ≡ 1 mod n.

e. Prove that there exists a polynomial-time algorithm that, given a,b,m,n ∈
Z with n,m > 1, decides whether there exists some c ∈ Z such that
c ≡ a mod m and c ≡ b mod n and if so computes such a c.

Exercise 2.13. Show that there exists a polynomial-time algorithm that, given
k,a1, . . . ,ak,n ∈ Z satisfying n ⩾ 1 and a2

i ≡ 1 mod n for all i, decides whether
there exists some non-empty subset I ⊆ {1, . . . ,k} such that

∏
i∈I ai ≡ 1 mod n

and if so computes one such I. Hint: Factor n.

Exercise 2.14. We equip Q2 \ {(0, 0)} with an equivalence relation ∼ where (x1,y1) ∼

(x2,y2) if and only if there exists some λ ∈ Q∗ such that (λx1, λy1) = (x2,y2).

10 Polynomial-time algorithms in algebraic number theory

Write P1(Q) = (Q2 \ {(0, 0)})/ ∼ for the projective line and write (x : y) for the
image of (x,y) in P1(Q). Let a,b ∈ Z>0 and let c1, . . . , cn be the coprime base for
a and b produced by Method 2.8.

a. For p | ab prime write f(p) = (ordp(a) : ordp(b)) ∈ P1(Q). Show that
every ci naturally corresponds to a fiber of f and give the prime factoriza-
tion of ci.

b. Suppose n = 7. Show that ab ⩾ 1485890406000 and equality holds for
exactly 8 pairs (a,b).

c. (difficult) Give an asymptotic formula for the minimum of ab in terms of
n.

Exercise 2.15. Let n ∈ Z>0. We encode matrices M = (mij)i,j over Z/nZ as a
matrix M = (mij)i,j over Z such that 0 ⩽ mij < n and mij ≡ mij mod n for all
i, j. Show that there exist polynomial-time algorithms for the following problems:

a. given n ∈ Z⩾0 and matrices M and N over Z/nZ, compute M+N and
M ·N if well-defined;

b. given n,k ∈ Z>0 and a square matrix M over Z/nZ, compute Mk;
Note: An algorithm that takes k steps is not polynomial-time!

c. given n ∈ Z>0 and a matrix M over Z/nZ, compute a row-echelon form
of M;

d. given n ∈ Z>0 and a square matrix M over Z/nZ, compute det(M) and
Tr(M);

e. given n ∈ Z>0 and a matrix M over Z/nZ, decide whether M−1 exists
and if so compute it.

You may use the following fact: For every k,B ∈ Z>0 and matrix M = (mij)i,j ∈
Zk×k with |mij| ⩽ B for all i, j it holds that |det(M)| ⩽ Bk ·kk/2 (see Hadamard’s
inequality, Exercise 3.10).

f. Show that there exists a polynomial-time algorithm that, given a square
integer matrix M, computes det(M) and Tr(M).

Exercise 2.16. Show that there exists a polynomial-time algorithm that, given
a,b,k,n ∈ Z with k,n > 0 and ak ≡ 1 mod n and bk ≡ −1 mod n, computes
some c ∈ Z such that a ≡ c2 mod n. Hint: First consider n odd and k a power
of 2.

Exercise 2.17. Show that there exist polynomial-time algorithms for the following
problems:

a. given a,p,q ∈ Z with p and q prime and gcd(a,p) = 1, compute u, e ∈
Z such that gcd(u,q) = 1 and such that the order of a in (Z/pZ)∗

equals uqe;
b. given a,p ∈ Z with p prime, decide whether a is a square modulo p;
c. given a,b,p ∈ Z with p prime, a a square modulo p and b not a square

modulo p, compute c ∈ Z such that c2 ≡ a mod p;

Daniël M. H. van Gent 11

d. given a,b,p ∈ Z with p prime, compute c ∈ Z such that c2 equals a, b or
ab modulo p.

2.1. Coprime base factorization in number fields We would like to generalize
Theorem 2.1 to arbitrary number fields, by which we mean that there is an addi-
tional input K, a number field, and that we take q1, . . . ,qt ∈ K∗. The theorem we
will prove in the final sections is the following.

Theorem 2.18. There exists a polynomial-time algorithm that, given a number field K,
an n ∈ Z⩾0 and a1, . . . ,an ∈ K∗, computes the kernel of the map Zn → ⟨a1, . . . ,an⟩
given by (k1, . . . ,kn) 7→

∏
i a
ki
i .

In Section 3 we will actually define what it means to compute the kernel of a
linear map. When we try to prove this theorem by generalizing the theorems
from the previous section, we run into some classic problems in (computational)
number theory.

Theorem 2.2, to which we reduce, is a statement about integers. Hence we
replace Z by an order R in K. One problem is that R∗ will generally contain
more than just {±1}, and it is not obvious how to pick a set R>0 ⊆ R \ {0} of
representatives of (R \ {0})/R∗ like the positive integers for Z. Another problem
is that we would like to at least compute the set R∗, which is a finitely generated
abelian group of known rank by Dirichlet’s unit theorem, but it is not known how
to do this in polynomial time. Even if we disregard run-time issues, we want a
Lemma 2.5 for orders. However, generally R will not be a UFD like Z, making
Theorem 2.7 hard to generalize.

The ‘correct’ way to generalize the theory is to translate it into a theorem about
ideals, since the maximal order OK of K has unique ideal factorization. Moreover,
as opposed to the elements of OK \ {0} themselves, the ideals are invariant under
multiplication by units. However, computing OK is also difficult. Luckily this is
something we can work around. First we generalize Lemma 2.5.

Lemma 2.19 (Unique coprime factorization for ideals). Let s ∈ N, let R be an order
and let c1, . . . , cs ⊊ R be pairwise coprime invertible integral ideals. If for n1, . . . ,ns,
m1, . . . ,ms ∈ Z⩾0 we have

(2.4)
s∏
i=1

cnii =

s∏
i=1

cmii ,

then ni = mi for all i.

Proof. Since the ideals are invertible we may divide out cmin{ni,mi}
i and thus as-

sume without loss of generality that ni = 0 or mi = 0 for all i. But then the
product on the left hand side of (2.4) and the product on the right hand side of
(2.4) are coprime, so the products equal R. By the Chinese remainder theorem for
ideals we get 0 = R/(

∏s
i=1 c

ni
i) =

∏s
i=1(R/c

ni
i), so cnii = R for all i. If ni > 0 we

have ci ⊇ cnii = R, so ci = R, a contradiction. Thus ni = mi = 0 for all i. □

12 Polynomial-time algorithms in algebraic number theory

We would now like to prove the following theorem.

Theorem 2.20. There exists a polynomial-time algorithm that, given an order R, an
n ∈ Z⩾0 and non-zero ideals a1, . . . , an ⊆ R, computes either an order S ⊋ R or a
coprime base c1, . . . , cm ⊊ R of invertible ideals for a1, . . . , an.

To prove this theorem we we are required to do some more work. First of all we
require some definitions on how to encode orders and ideals. Then, we should
construct algorithms to do arithmetic on ideals in polynomial time. More gener-
ally, we will study algorithms for finitely generated abelian groups in the next
section.

Exercise 2.21. Suppose we can compute a basis of the image and kernel of a
morphism Zn → Zm encoded by an integer matrix in polynomial time (we can,
but this is non-trivial). For an order R of rank n we encode a fractional ideal a of
R as an injective linear map Zn → K with image a. Show that for an order R and
fractional ideals a and b of R we may compute a + b, a · b and a : b and decide
whether a = b in polynomial time.

Exercise 2.22. Suppose that we may compute for ideals a and b the ideals a + b,
a · b and a : b and decide whether a = b. Show that there exists an algorithm that,
given an order R, n ∈ Z⩾0 and non-zero ideals a1, . . . , an ⊆ R, computes either
an order S ⊋ R or a coprime base c1, . . . , cm ⊊ R of invertible ideals for a1, . . . , an.
Show that your algorithm runs in polynomial time when the input is restricted
to ideals of the form aR with a ∈ Z>0. Hint: You can assume every ideal you
encounter is invertible.

3. Finitely generated abelian groups

In this section we treat algorithms on finitely generated abelian groups. Many
important objects in algebraic number theory are finitely generated abelian groups.
For example, the additive group of orders R in number fields, as well as finitely
generated modules over R, notably its ideals I and quotients R/I. In this section
we will use additive notation for our abelian groups and we will use [3] as our
reference. Other finitely generated abelian groups of interest are unit groups of
finite commutative rings like Z/nZ or Fq, or an elliptic curve. However, as we
will soon see, there is an obstruction in working with these groups.

We begin by specifying a representation for our finitely generated groups. Re-
call that every finitely generated abelian group A fits in some exact sequence

Zm Zn A 0.α f

Namely, we obtain n and f by writing down some generators a1, . . . ,an ∈ A for
A and let f map the i-th standard basis vector to ai. For m and α we repeat the
procedure with A replaced by ker(f). Note that α, being a morphism between
free Z-modules, has a natural representation as a matrix with integer coefficients.
By the isomorphism theorem A ∼= Zn/ ker(f) = Zn/ im(α) = coker(α), so A is

Daniël M. H. van Gent 13

completely defined by α. Thus we choose to encode A as the matrix correspond-
ing to α. A morphism f : A → B of finitely generated abelian groups in terms of
this representation gives a commutative diagram of exact sequences

(3.1)
Zk Zl A 0

Zm Zn B 0.

α

φ f

β

Here φ is any morphism that makes the diagram commute. We encode f by the
matrix representing φ. Important to note is that not every φ defines a morphism
f : A → B. It defines a morphism precisely when im(φ ◦ α) ⊆ im(β), however
it is not immediately obvious how to test this. Computing the composition of
morphisms and evaluating morphisms in this form is straightforward, as it is just
matrix multiplication.

To work with abelian groups in our algorithms it takes more than just to specify
an encoding. The following is a list in no particular order of operations we would
like to be able to perform in polynomial time.

(1) decide whether a matrix encodes a morphism of given groups;
(2) compute kernels, images and cokernels of group homomorphisms;
(3) test if a group homomorphism is injective/surjective and if bijective com-

pute an inverse;
(4) decide if two group homomorphisms are equal;
(5) compute an element in the preimage of a given group element under a

group homomorphism;
(6) compute direct sums, tensor products and homomorphism groups of

pairs of groups;
(7) compute the order of a given group element;
(8) compute the order/exponent of a finite group;
(9) split exact sequences;

(10) compute the torsion subgroup of a group;
(11) write a group as a direct sum of cyclic groups.

We will spend this section working up to the last element of this list: An algorith-
mic version of the fundamental theorem of finitely generated abelian groups.

All algorithms for the above problems will be very straight-forward. The only
serious complication arises at the fundamentals, namely that when doing linear
algebra over the integers you need your coefficients to remain small after every
manipulation. For this, lattice basis reduction helps.

Finally, we address an important subtlety that arises from our choice of encod-
ing.

Lemma 3.1. Assuming the above problems have polynomial-time algorithms, we may
solve the discrete logarithm problem in polynomial time. That is, given an abelian

14 Polynomial-time algorithms in algebraic number theory

group A and elements a,b ∈ A, decide whether there exists some positive integer n such
that na = b and if so compute such n.

It is well known that the discrete logarithm problem for F∗q or elliptic curves over
finite fields is difficult, i.e. not known to be solvable in polynomial time, even
though both are finitely generated abelian groups. The difficulty is representing
F∗q and its elements in our encoding. For starters, we need to write down genera-
tors for F∗q and subsequently write the input to our algorithms in terms of these
generators. Doing so is almost equivalent to the discrete logarithm problem.

Exercise 3.2. Prove Lemma 3.1.

Exercise 3.3. Show that there exists a polynomial-time algorithm that, given
finitely generated abelian groups A and B, computes the group A× B and the
corresponding inclusions and projections.

3.1. Lattices and short bases To understand general finitely generated abelian
groups, we first need to understand the simplest instances, the free abelian groups.
It will turn out to be fruitful to consider free abelian groups together with an in-
ner product. This will allow us later to compute images and kernels of linear
maps.

Definition 3.4. A Euclidean (vector) space is a finite-dimensional real inner product
space. For an element x in an inner product space we will write q(x) = ⟨x, x⟩. A
lattice is a discrete subgroup of a Euclidean space.

A Euclidean space we naturally encounter for any number field K is K⊗Z R,
which we equip with the inner product

⟨x,y⟩ = 1
[K : Q]

∑
σ:K⊗ZR→C

σ(x) · σ(y)

where the sum ranges over all R-algebra homomorphisms. In this Euclidean
space every order of K is a lattice.

Proposition 3.5. A lattice Λ in a Euclidean space V is a free Z-module with rkΛ ⩽

dimV and the restriction of the inner product to Λ is Z-bilinear, real-valued, symmetric
and satisfies inf{⟨x, x⟩ | x ∈ Λ \ {0}} > 0. Conversely, every free Z-module Λ of finite
rank equipped with a Z-bilinear, real-valued, symmetric form φ for which inf{φ(x, x) |

x ∈ Λ \ {0}} > 0 can be embedded in a Euclidean vector space such that the inner product
restricted to Λ equals φ. □

This proposition shows that we have an equivalent definition of a lattice that
does not require an ambient vector space. The bilinear form φ in the proposi-
tion is again naturally given by a matrix F = (φ(bi,bj))1⩽i,j⩽n, the Gram-matrix,
where (b1, . . . ,bn) is the basis encoding Λ. For our computational purposes it is
practical to restrict to matrices with rational entries. This will be our encoding for
lattices.

Daniël M. H. van Gent 15

An algorithmic problem we will encounter is computing a ‘short basis’ for a
lattice Λ ⊆ Zn.

Definition 3.6. Let Λ be a lattice and let (b1, . . . ,bn) be a basis of Λ. Consider
the matrix B = (⟨bi,bj⟩)1⩽i,j⩽n. We define the determinant of Λ to be det(Λ) =

|det(B)|1/2.

Exercise 3.7. Show that the determinant of a lattice does not depend on the choice
of basis.

The determinant det(Λ) also equals the volume of the parallelepiped spanned by
a basis of Λ. Since the determinant is an invariant, finding a ‘shorter’ basis is
equivalent to finding a ‘more orthogonal’ basis. In the lattice Zb1 + Zb2 below
we can find a better basis.

b2

b1

b2 − 2b1

Taking c1 = b1 and c2 = b2 − 2b1 produces the following basis:
c2

c1

For a Euclidean space the Gram–Schmidt algorithm transforms a basis into an
orthogonal one as follows.

Definition 3.8. Let V be a Euclidean space with basis B = (b1, . . . ,bn). We itera-
tively define

µij =
⟨bi,b∗j ⟩
⟨b∗j ,b∗j ⟩

for 1 ⩽ j < i and b∗i = bi −
∑
j<i

µijb
∗
j for 1 ⩽ i ⩽ n.

We call B∗ = (b∗1 , . . . ,b∗n) and (µij)j<i the Gram–Schmidt basis respectively Gram–
Schmidt coefficients corresponding to B.

When interpreting M = (µij)j<i as an upper-triangular matrix, we note that
that (id+M)B∗ = B. In particular det(B) = det(B∗). Since b∗1 , . . . ,b∗n are in-
deed pairwise orthogonal, they form an orthogonal basis of V . Sadly the Gram–
Schmidt coefficients will generally not be integers, meaning that if B is a basis
for a lattice Λ, then generally B∗ will not be. This is quite unsurprising, as not
every lattice even has an orthogonal basis. A possible solution is to round the
Gram-Schmidt coefficients to integers in every step, so that we are guaranteed to
obtain a basis for Λ. However, this does not yield the necessary bounds on our
basis.

Exercise 3.9. (difficult) We say a basis B = (b1, . . . ,bn) is Gram–Schmidt reduced
if |µij| ⩽ 1

2 holds for all Gram–Schmidt coefficients µij of B. Show that the

16 Polynomial-time algorithms in algebraic number theory

following algorithm is guaranteed to terminate, and hence computes a Gram–
Schmidt reduced basis: Let (b1, . . . ,bn) be a basis.

(1) Compute the Gram–Schmidt coefficients (µij)j<i of (b1, . . . ,bn).
(2) If |µij| ⩽ 1

2 for all i, j, then return (b1, . . . ,bn) and terminate.
(3) Choose any i, j such that |µij| > 1

2 and replace bi by bi − ⌈µij⌋bj.
(4) Go to step 1.

The algorithm of Exercise 3.9 will not run in polynomial time. In the next
section we will state the existence of a better algorithm.

Exercise 3.10. Let (b1, . . . ,bn) be a basis of a lattice Λ in a Euclidean space V .
Write Λk =

∑
j⩽kZbi for all 0 ⩽ k ⩽ n.

a. Show that

q(bi) ⩾ q(b
∗
i) =

(det(Λi)
det(Λi−1)

)2
.

b. Conclude Hadamard’s inequality: For B the matrix with columns b1, . . . ,bn
we have

|det(B)| ⩽
n∏
i=1

∥bi∥

with equality if and only if the bi are pairwise orthogonal.

Exercise 3.11. Let V be a Euclidean space. For a subspace W ⊆ V we write
W⊥ = {v ∈ V | ⟨v,W⟩ = 0}.

a. Show that for all W ⊆ V the natural map W⊥ → V/W is an isomorphism
of vector spaces.

We equip V/W with the natural Euclidean vector space structure induced by W⊥.
Suppose Λ ⊆ V is a lattice with a sublattice Λ ′ such that Λ/Λ ′ is a torsion free
group.

b. Show that the natural map Λ/Λ ′ → V/RΛ ′ is injective and that its image
is a lattice.

c. Show that det(Λ) = det(Λ/Λ ′) · det(Λ ′).

Exercise 3.12. Let Λ be a lattice and define the Λ† to be the group Hom(Λ, Z)

together with the map ⟨·, ·⟩ : Λ† ×Λ† → R given by

⟨f,g⟩ = sup
x∈Λ\{0}

f(x)g(x)

⟨x, x⟩
.

a. Show that Λ† is a lattice. We will call Λ† the dual lattice of Λ.
b. Suppose Λ ⊆ Rn has rank n and let Λ ′ = {x ∈ Rn | ⟨x,Λ⟩ ⊆ Z}. Show

that Λ ′ is a lattice.
c. Show that Λ† ∼= Λ ′ and (Λ†)† ∼= Λ.
d. Show that det(Λ†) = det(Λ)−1.
e. For a homomorphism φ : Λ1 → Λ2 of groups write φ† : Λ†2 → Λ

†
1 for the

map f 7→ f ◦φ. Show that

det(ker(φ)) · det(im(φ)) · det(Λ†1) = det(ker(φ†)) · det(im(φ†)) · det(Λ2).

Daniël M. H. van Gent 17

3.2. The LLL-algorithm In this section we state the existence the LLL-algorithm,
which produces a ‘small’ basis for a given lattice. We will not prove the correct-
ness of the algorithm, nor will we actually describe the algorithm. What we will
do is define what we mean by ‘small’ bases in the context of the LLL-algorithm
and derive some of their properties. In this section we will use [6] as our refer-
ence. A reference on the LLL-algorithm we do not draw upon which may be of
interest to a reader is [8].

Definition 3.13. Let Λ be a lattice with basis B = (b1, . . . ,bn) and let (b∗1 , . . . ,b∗n)
and (µij)j<i be its corresponding Gram–Schmidt basis and coefficients as defined
in Definition 3.8. Let 4

3 ⩾ c. We say B is c-reduced if
(1) For all 1 ⩽ j < i ⩽ n we have |µij| ⩽

1
2 .

(2) For all 1 ⩽ k < n we have cq(b∗k+1) ⩾ q(b
∗
k).

Note that the first condition states that B is Gram–Schmidt reduced in the
sense of Exercise 3.9. We may compute a c-reduced basis, and in particular it
always exists, by Exercise 3.20. That we may in fact compute it in polynomial
time is non-trivial.

Theorem 3.14 (LLL-algorithm). Let c > 4
3 . There exists a polynomial-time algorithm

that, given a lattice Λ, produces a c-reduced basis of Λ. □

Although the algorithm does not fundamentally differ when we modify c, it
cannot be part of the input because then the algorithm would no longer run in
polynomial time. We should warn the reader that the literature contains various
definitions of a ‘reduced basis’, and even in the context of the LLL-algorithm
there are at least two.

Definition 3.15. Let Λ be a lattice of rank n. For 0 < i ⩽ n we define the i-th
successive minimum to be the value

λi(Λ) = min{r ∈ R⩾0 | rk⟨x ∈ Λ | q(x) ⩽ r⟩ ⩾ i}.

A basis of vectors attaining the successive minima is the gold standard of
‘small’ bases, although it does not always exist. The following proposition gives
bounds on how far away a reduced basis can be from these minima.

Proposition 3.16. Let c ⩾ 4
3 and suppose (b1, . . . ,bn) is a c-reduced basis for a lattice

Λ. Then for all 0 < i ⩽ n we have c1−n · q(bi) ⩽ λi(Λ) ⩽ ci−1 · q(bi).

Proof. See Exercise 3.18. □

Exercise 3.17. Show that there exists a lattice Λ for which no basis b1, . . . ,bn
attains the successive minima, i.e. satisfies q(bi) = λi(Λ) for all i. Hint: Consider
2Zn ⊆ Λ ⊆ Zn.

Exercise 3.18. Let c ⩾ 4
3 and 0 < i ⩽ n and suppose (b1, . . . ,bn) is a c-reduced

basis of Λ.

18 Polynomial-time algorithms in algebraic number theory

a. Show that q(b∗j) ⩽ c
i−jq(b∗i) for all j ⩽ i.

b. Recall that bi = b∗i +
∑
j<i µijb

∗
j . Show that q(bi) ⩽ ci−1q(b∗i).

c. Show that q(bj) ⩽ ci−1q(b∗i) ⩽ c
i−1q(bi) for all j ⩽ k.

d. Conclude that λi(Λ) ⩽ max{q(bj) | j ⩽ i} ⩽ ci−1q(bi).
Write Λk =

∑
j⩽kZbj for all 0 ⩽ k ⩽ n.

e. Prove that for all 0 < k ⩽ n and x ∈ Λk \Λk−1 we have q(x) ⩾ q(b∗k).
Write S = {x ∈ Λ | q(x) ⩽ λi(Λ)} and let k be minimal such that S ⊆ Λk.

f. Show that k ⩾ rk⟨S⟩ ⩾ i.
g. Conclude that λi(Λ) ⩾ q(b∗k) ⩾ c

1−nq(bi).

Exercise 3.19. Let c ⩾ 4
3 and suppose (b1, . . . ,bn) is a c-reduced basis of a lattice

Λ. Show that

det(Λ)2 ⩽
n∏
i=1

q(bi) ⩽ c(
n
2) det(Λ)2.

Exercise 3.20. Let c > 4
3 . Show that the following algorithm is guaranteed to

terminate, and hence computes a c-reduced basis: Let (b1, . . . ,bn) be a basis.
(1) Compute the Gram–Schmidt basis (b∗1 , . . . ,b∗n) and coefficients (µij)j<i

of (b1, . . . ,bn).
(2) If there exists some 1 ⩽ k < n such that cq(b∗k+1) < q(b

∗
k) and |µk+1,k| ⩽

1
2 , choose any such k, swap bk+1 and bk and go to step 1.

(3) If there exist some 1 ⩽ j < i ⩽ n such that |µij| > 1
2 , choose any such i, j,

replace bi by bi − ⌈µij⌋bj and go to step 1.
(4) Return (b1, . . . ,bn) and terminate.

Hint: Let Λk =
∑k
i=1 Zbi. What can you say about

∏n
k=1 det(Λk) in step 2?

3.3. The kernel-image algorithm The LLL-algorithm allows us to prove the
kernel-image algorithm, from which most of the algorithms for finitely generated
abelian groups from the beginning of this section follow without much effort. We
first need a theorem from linear algebra.

Theorem 3.21 (Cramer’s rule). Suppose A ∈ Rn×n is an invertible matrix and let
b ∈ Rn. Write Ai for the matrix obtained from A by replacing the i-th column with
b. Then there exists a unique x ∈ Rn such that Ax = b, and it is given by x =

det(A)−1 · (det(A1), . . . , det(An)). □

Exercise 3.22. Let n ⩾ 0. Suppose N ⊆M ⊆ Zn are subgroups such that N⊕P =

Zn for some P ⊆ Zn. Show that rk(M) = rk(N) if and only if M = N.

Theorem 3.23 (Kernel-image algorithm). There exists a polynomial-time algorithm
that, given a linear map φ : Zn → Zm, computes the rank r of φ and injective linear
maps ι : Zr → Zn and κ : Zn−r → Zn such that im(φ ◦ ι) = im(φ) and im(κ) =

ker(φ).

Proof. Write B for the largest absolute value of a coefficient of the matrix defining
φ. Compute

ω = 2n−1 ·nn+1 ·B2n + 1

Daniël M. H. van Gent 19

and note that its length is polynomially bounded by the size of the input. Hence
we can consider the lattice L = Zn together with the bilinear form given by
q(x) = ∥x∥2 +ω∥φ(x)∥2. Using the LLL-algorithm, compute a 2-reduced basis
(b1, . . . ,bn) of L. We will show that this basis has the following properties:

(a) q(bi) < ω for 0 < i ⩽ n− r;
(b) (b1, . . . ,bn−r) is a basis for ker(φ);
(c) q(bi) ⩾ ω for n− r < i ⩽ n;
(d) (φ(bn−r+1), . . . ,φ(bn)) is a basis for im(φ).

Once we have shown this, it is clear how to compute r and the maps ι and κ in
polynomial time.

Claim: For all 0 < i ⩽ n− r we have λi(Λ) ⩽ nn+1B2n.
Proof. By Cramer’s rule, we may find linearly independent vectors a1, . . . ,an−r ∈
ker(φ) for which the coefficients are determinants of r× r submatrices of F. Then
by Hadamard’s inequality (Exercise 3.10), each coefficient is bounded in absolute
value by rr/2Br ⩽ nn/2Bn. Hence q(ai) = ∥ai∥2 ⩽ nn+1B2n for all 0 < i ⩽ n− r.
The claim now follows from the independence of the ai. ■

From Proposition 3.16 and the claim it follows that

q(bi) ⩽ 2n−1 · λi(Λ) ⩽ 2n−1 ·nn+1 ·B2n < ω

for all 0 < i ⩽ n− r, proving (a). Clearly for all x ∈ Λ such that ω > q(x) =

∥x∥2 +ω∥φ(x)∥2 we have ∥φ(x)∥2 = 0 and thus x ∈ ker(φ). In particular, we have
linearly independent b1, . . . ,bn−r ∈ ker(φ). From Exercise 3.22 we may conclude
it is in fact a basis for ker(φ), proving (b). It follows from (b) that bi ̸∈ ker(φ)
and thus q(bi) ⩾ ω for all n− r < i ⩽ n, proving (c). Lastly, (d) follows from (b)
and the homomorphism theorem. □

Note that in the proof of Theorem 3.23 we could have constructed a c-reduced
basis for values of c other than 2. Moreover, the exact value of ω is not important,
as long as it is sufficiently large (while still being computable in polynomial time).
Exercise 3.33 will prove a version of the kernel image algorithm for general finitely
generated abelian groups.

Exercise 3.24. Show that for a matrix φ : Zn → Zn we have # coker(φ) = |det(φ)|
if det(φ) ̸= 0. Conclude that there exist a polynomial-time algorithm that, given
an abelian group A, decides whether A is finite and if so computes #A. Note: The
matrix representing A need not be injective.

3.4. Applications of the kernel-image algorithm In this subsection we provide
a polynomial-time algorithm for most problems in the beginning of this section.
An immediate consequence of the kernel-image algorithm is the following.

Corollary 3.25. There exists a polynomial-time algorithm that, given a linear map φ :

A→ B of finitely generated free abelian groups, decides whether φ is injective/surjective.

Proof. Injectivity is obvious. For surjectivity add Exercise 3.24. □

20 Polynomial-time algorithms in algebraic number theory

Proposition 3.26. There exists a polynomial-time algorithm that, given linear maps
φ : A → C and ψ : B → C of finitely generated free abelian groups, decides whether
im(ψ) ⊆ im(φ).

Proof. Using Theorem 3.23 compute the kernel κ : K→ A×B of A×B→ C as in
the following diagram.

A

K A×B C

B

φ

κ

πA

πB ψ

The image of πB ◦ κ is precisely the set of elements b ∈ B for which there exists
an a ∈ A such that φ(a) = ψ(b). Hence it suffices to decide using Corollary 3.25
whether πB ◦ κ is surjective. □

Corollary 3.27. There exists a polynomial-time algorithm that, given finitely generated
abelian groups A and B, represented by linear maps α : A0 → A1 respectively β : B0 →
B1, and a linear map φ : A1 → B1, decides whether φ represents a morphism f : A→ B.

Proof. Recall φ represents a morphism precisely when im(φ ◦α) ⊆ im(β). □

Corollary 3.28. There exists a polynomial-time algorithm that, given finitely generated
abelian groups A and B and morphisms f,g : A→ B, decides whether f = g.

Proof. Considering h = f− g it suffices to be able to decide whether a morphism
is zero. With η the matrix representing h and β the matrix representing B, we
have h = 0 precisely when im(η) ⊆ im(β). □

Proposition 3.29. There exists a polynomial-time algorithm that, given a morphism
f : A→ B of finitely generated abelian groups, decides whether f is injective/surjective.

Proof. Write α : A0 → A1 and β : B0 → B1 for the representatives of A respectively
B and φ for the representative of f. Note that f is surjective if and only if B =

im(f) = im(φ)/ im(β) if and only if B1 = im(φ) + im(β). It suffices to decide
whether the map A1 × B0 → B1 induced by φ and β is surjective, for which we
have Corollary 3.25. Note that f is injective if and only if ker(φ) ⊆ im(α). Using
Theorem 3.23 we compute a linear map κ : K → A1 with im(κ) = ker(φ), and
apply Proposition 3.26 to decide im(κ) ⊆ im(α). □

Proposition 3.30. There exists a polynomial-time algorithm that, given a linear map
φ : A→ B of free abelian groups A and B and b ∈ B, decides whether an element a ∈ A
exists such that φ(a) = b, and if so computes one.

Proof. Consider the linear map ψ : A× Z → B that sends (a, x) to φ(a) + xb.

Daniël M. H. van Gent 21

I A

K A× Z B

Z

ι φ

κ

χ
πZ

ψ

b

Compute using Theorem 3.23 the kernel κ : K→ A×Z of ψ and in turn ι : I→ K

a preimage of χ = πZ ◦ κ. Note that φ(a) = b has a solution precisely when −1 is
in the image of χ. Moreover, if we find k ∈ K such that χ(k) = −1, then its image
under K → A× Z → A gives an element a ∈ A such that φ(a) = b. Note that
I ⊆ Z. If I = 0 no solution to χ(k) = −1 exists, and otherwise k ∈ ι({±1}) gives a
solution if it exists. □

Corollary 3.31. There exists a polynomial-time algorithm that, given a homomorphism
f : A → B of finitely generated abelian groups A and B and b ∈ B, decides whether an
element a ∈ A exists such that f(a) = b, and if so computes one.

Proof. Let φ : A1 → B1 be the representative of f. Simply apply Proposition 3.30
to φ and some representative of b in B1. □

Exercise 3.32. Give a direct proof of Proposition 3.26 or Proposition 3.30 by giving
an algorithm that applies the LLL-algorithm only once, similar to Theorem 3.23.

Exercise 3.33. Show that there exists a polynomial-time algorithm that, given a
morphism f : A → B of finitely generated abelian groups, computes injective
morphisms k : K→ A and i : I→ B such that im(k) = ker(f) and im(i) = im(f).

3.5. Homomorphism groups of finitely generated abelian groups Although
we can algorithmically work with individual morphisms f : A → B of finitely
generated abelian groups, we have yet to treat the group of homomorphisms
Hom(A,B) as a whole. Certainly, we would like to compute Hom(A,B), but we
have to decide what that means. Firstly, we have to give an abelian group H rep-
resented by H0 → H1 such that H ∼= Hom(A,B). Secondly, we want to evaluate
elements of Hom(A,B) at elements of A. For this we give two possibilities:

• Note that morphisms are already encoded as matrices in Zn×m, so we
simply give a map H1 → Zn×m that maps H1 to matrices representing
morphisms A→ B and H0 to the zero morphisms.

• We give a bilinear map A×H → B, i.e. a linear map A⊗H → B, which
corresponds to the evaluation map A×Hom(A,B) → B under the isomor-
phism H ∼= Hom(A,B).

Regardless of which representation we choose, when we talk about computing
Hom(A,B) we mean computing both a group isomorphic to Hom(A,B) as well
as a way to evaluate its elements in A.

Exercise 3.34. Show that the above representations for Hom(A,B) are ‘polyno-
mially equivalent’, i.e. there exist polynomial-time algorithm that transforms one
representation of Hom(A,B) into the other.

22 Polynomial-time algorithms in algebraic number theory

The moral of Exercise 3.34 is that as long as it is easy to describe how elements
from H correspond to homomorphisms, it does not matter how we encode this.

Theorem 3.35. There exists a polynomial-time algorithm that, given finitely generated
abelian groups A and B, computes Hom(A,B).

Proof. Consider the case where A is a free abelian group and B is a finitely gen-
erated abelian group represented by β : B0 → B1. We may compute the matrix
β∗ : Hom(A,B0) → Hom(A,B1) given by f 7→ β ◦ f. Since A is free we get an
exact functor Hom(A,) such that[
B0

β−→ B1 → B→ 0
] Hom(A,)
=======⇒

[
Hom(A,B0)

β∗−−→ Hom(A,B1) → Hom(A,B) → 0
]
,

and thus Hom(A,B) ∼= coker(β∗). Evaluating an element of Hom(A,B) in A

reduces to evaluating an element of Hom(A,B1) in A, which is just matrix multi-
plication.

Now consider the general case where A and B are general finitely generated
abelian groups represented by α : A0 → A1 respectively β. We note that the
functor Hom(,B) is left-exact and contravariant. Applied to the exact sequence
of A we get[
A0

α−→ A1 → A→ 0
] Hom(,B)
=======⇒

[
0 → Hom(A,B) → Hom(A1,B) α

∗
−−→ Hom(A0,B)

]
.

Hence Hom(A,B) ∼= ker(α∗). By the previous case we may compute Hom(A1,B)
and Hom(A0,B) since A1 and A0 are free. It is not difficult to show we may
then compute α∗ and in turn its kernel using Exercise 3.33. Evaluation in A of
elements in Hom(A,B) reduces to evaluation in A1 of elements in Hom(A1,B),
which we may also do by the previous case. □

Exercise 3.36 (Group exponent). Show that there exists a polynomial-time algo-
rithm that, given a finitely generated abelian group A

(a) and an element a ∈ A, decides whether a is torsion and if so computes
ord(a);

(b) decides whether A is finite and if so computes its exponent and an a ∈ A
with that order.

Exercise 3.37 (Splitting exact sequences). Show that there exists a polynomial-
time algorithm that, given morphisms f : A → B and g : B → C of finitely
generated abelian groups,

(a) decides whether the sequence 0 → A
f−→ B

g−→ C→ 0 is exact;
(b) if so, decides whether the sequence is split;
(c) if so, produces a left-inverse of f and a right-inverse of g.

Hint: Consider the map g∗ : Hom(C,B) → Hom(C,C).

Note that by taking C = 0 in Exercise 3.37 we may conclude that there exists
a polynomial-time algorithm that, given a morphism f : A → B of finitely gener-
ated abelian groups, decides whether f is an isomorphism and if so computes its
inverse.

Daniël M. H. van Gent 23

3.6. Structure theorem for finitely generated abelian groups The structure the-
orem for finitely generated abelian groups is the following.

Theorem 3.38. Suppose A is a finitely generated abelian group. Then there exists a
unique sequence (r,m,n1,n2, . . . ,nm) of integers with r,m ⩾ 0 and n1, . . . ,nm > 1
such that nm | · · · | n2 | n1, for which

A ∼= Zr ×
m∏
k=1

(Z/nmZ).

In this section we will prove its algorithmic counterpart.

Exercise 3.39. Let n > 0 and M ⊆ Qn. For subgroups H ⊆ M write H⊥ = {x ∈
M | ⟨x,H⟩ = 0}. Show that for all subgroups N ⊆M we have (N⊥)⊥ = (QN)∩M.
Hint: First consider the case where M and N are Q-vector spaces.

Lemma 3.40. There exists a polynomial-time algorithm that, given a finitely generated
abelian group A, computes its torsion subgroup.

Proof. For a subgroup H of Zn write H⊥ = {x ∈ Zn | ⟨x,H⟩ = 0}, or equivalently
for a map h : H → Zn write h⊥ : H⊥ → Zn for the kernel of the map Zn →
Hom(H, Z) given by x 7→ (y 7→ ⟨x,h(y)⟩). Note that using Theorem 3.23 we may
compute h⊥ in polynomial time. In particular, we may compute (α⊥)⊥ : T → A1

for the representative α : A0 → A1 of A. It follows from Exercise 3.39 that (α⊥)⊥

is the torsion subgroup of A: Its image is precisely the set of those elements of
A1 for which a positive integer multiple is in α(A0). □

Theorem 3.41. There exists a polynomial-time algorithm that, given a finitely generated
abelian group A, computes integers (r,m,n1, . . . ,nm) with r,m ⩾ 0 and n1, . . . ,nm >

1 such that nm | · · · | n1 and computes for A an isomorphism

A ∼= Zr ×
m∏
k=1

(Z/nmZ),

i.e. projections to and inclusions from the individual factors on the right hand side.

Proof. We may compute using Lemma 3.40 the torsion subgroup T of A. Using the
image algorithm of Exercise 3.33 we may compute an isomorphism Zr → A/T .
We have an exact sequence 0 → T → A → A/T → 0 which splits, hence by
Exercise 3.37 we may compute maps A → T and A/T → A such that A ∼= T ×
(A/T). Replacing A by T we may now assume A is torsion. If A = 0 we are done.
Using Exercise 3.36 we may compute an element a ∈ A with order equal to the
exponent e of A. Again we have an exact sequence 0 → Za→ A→ A/(Za) → 0
which is split to which we apply Exercise 3.37. We proceed recursively with
A replaced by A/(Za). Note that the exponent of A/(Za) is a divisor of the
exponent of A, so indeed we will get nm | · · · | n1. □

Corollary 3.42. There exists a polynomial-time algorithm that, given a finitely generated
abelian group A and a set S of integers, computes r,m ∈ Z⩾0 and c1, . . . , cm ∈ Z>1

24 Polynomial-time algorithms in algebraic number theory

and n1, . . . ,nm ∈ Z>0 such that any two ci are either coprime or a power of the same
integer, and every ci either divides some power of an element of S or is coprime to all
elements of S, and computes for A an isomorphism

A ∼= Zr ×
m∏
k=1

(Z/ckZ)nk .

Proof. Apply Theorem 3.41 and compute a coprime basis from S ∪ {n1, . . . ,nm}

using Theorem 2.7. Write every ni in terms of this basis and proceed as in Theo-
rem 3.41. □

Exercise 3.43. For a sequence of integers n1, . . . ,nk > 0 we define

rex(n1, . . . ,nk) =
∏
p

pgcd(ordpn1,...,ordpnk).

a. Show that rad(n1 · · ·nk) | rex(n1, . . . ,nk).
b. Show that there exists a polynomial-time algorithm that computes rex.

For a finite abelian groupA isomorphic to
∏k
i=1(Z/niZ) write rex(A) = rex(n1, . . . ,nk).

c. Show that rex(A) is well-defined (i.e. does not depend on the choice of ni)
and can be computed in polynomial time.

4. Computing symbols

In algebraic number theory we find lots of ‘symbols’. It is not well-defined
what a symbol is, but generally they are maps which encode algebraic properties
of its parameters which also satisfies some reciprocity law. In this section we
will use [5] as reference. In this section we will define and give algorithms for
computing some of these symbols. The father of all symbols is the Legendre
symbol.

Definition 4.1. Let p be an odd prime and let a be an integer coprime to p. We
define the Legendre symbol(

a

p

)
=

{
+1 a is a square in Z/pZ

−1 otherwise

or equivalently
(
a
p

)
≡ a

p−1
2 mod p.

It is easy to see that we can compute the Legendre symbol directly from the
(equivalent) definition in polynomial time using a square-and-multiply algorithm
modulo p.

Theorem 4.2 (Quadratic reciprocity). Suppose p and q are distinct odd primes. Then(
p

q

)(
q

p

)
= (−1)

p−1
2 ·

q−1
2 . □

Definition 4.3. Let b be a positive odd integer and a an integer coprime to b. In
terms of the prime factorization b = p

k1
1 · · ·pknn of b we define the Jacobi symbol(

a

b

)
=

(
a

p1

)k1

· · ·
(
a

pn

)kn
,

Daniël M. H. van Gent 25

where
(
a
pi

)
is the Legendre symbol defined previously.

Note that the Jacobi symbol extends the Legendre symbol, which justifies using
the same notation for both. To compute the Jacobi symbol directly from the def-
inition we need to be able to factor b, which is unfeasible. Quadratic reciprocity
for the Jacobi symbol gives us a better method.

Proposition 4.4 (Quadratic reciprocity). Suppose a and b are coprime positive odd
integers. Then (

a

b

)(
b

a

)
= (−1)

a−1
2 ·

b−1
2 .

Proof. Note that for fixed b the maps a 7→
(
a
b

)(
b
a

)
and a 7→ (−1)

a−1
2 ·

b−1
2 are

multiplicative. Hence it suffices to prove the proposition for a prime. Applying
the same reasoning to b we have reduced to Theorem 4.2. □

Exercise 4.5. Let p be an odd prime. Show that 2 is a square in Fp if and only if
p ≡ ±1 mod 8. Conclude that

(2
b

)
= (−1)(b

2−1)/8 for all odd b > 0. Hint: Write√
2 in terms of 8-th roots of unity.

Exercise 4.6. Let x0, x1, x2, x3 ∈ Z such that x1 is odd and xn+2 ≡ xn mod xn+1

for all n. Show that when the expressions are well-defined we have the following
equalities.

a.
(
x0

x1

)
= (−1)(x1−1)(x2−1)/4 ·

(
x1

x2

)
if x2 ≡ 1 mod 2,

b.
(
x0

x1

)
=

(
x2

x3

)
if x2 ≡ 0 mod 4

and c.
(
x0

x1

)
= (−1)(x1x3−1)(x1x3+x2−1)/8 ·

(
x2

x3

)
if x2 ≡ 2 mod 4

Theorem 4.7. There exists a polynomial-time algorithm that, given coprime positive odd
integers a and b, computes the Jacobi symbol

(
a
b

)
.

Proof. We define the gcd sequence of positive integers x0 and x1 to be the sequence
(x0, . . . , xN) where xn+2 is the unique integer such that 0 ⩽ xn+2 < xn+1 and
xn+2 ≡ xn mod xn+1 and with xN = 0. The proof of the Euclidean algorithm
shows that this sequence contains only linearly many elements and can be com-
puted in polynomial time. Moreover, xN−1 = gcd(x0, x1).

Compute the gcd sequence of a and b. As gcd(xn, xn+1) = gcd(a,b) = 1 for
all n < N, the symbols

(
xn
xn+1

)
are defined. Using Exercise 4.6 we may express(

a
b

)
= sn ·

(
xn
xn+1

)
for some sn ∈ {±1} iteratively for n with xn+1 odd. Clearly we

may compute these sn in polynomial time. As
(xN−2
xN−1

)
=

(xN−2
1

)
= 1, we simply

return sN−1. □

Exercise 4.8. The Euclidean algorithm implied by Exercise 2.12 produces a differ-
ent type of ‘gcd sequence’ than those used in Theorem 4.7, namely those where
|xn+2| ⩽ |xn+1|/2 and xn+2 ≡ xn mod xn+1 for all n. Give a proof of Theorem 4.7
using such gcd sequences.

26 Polynomial-time algorithms in algebraic number theory

The Jacobi symbol is defined on a subset of the integers. As is the theme in
this document, we will ‘extend’ the Jacobi symbol to number rings.

Remark 4.9. One is sometimes interested in a more general Jacobi symbol
(
a
b

)
where b is not necessarily odd or positive, by defining(

a

2

)
= (−1)

a2−1
8 and

(
a

−1

)
=
a

|a|
=

{
+1 if a > 0

−1 if a < 0
.

This is called the Kronecker symbol. The Kronecker symbol can be computed in
polynomial time by writing b = uc2k where u = ±1 and c is odd and positive,
and applying Theorem 4.7 to the factor

(
a
c

)
in

(
a
b

)
=

(
a
u

)(
a
c

)(
a
2
)
k.

4.1. Jacobi symbols in number rings First we define the Legendre symbol for a
general number ring.

Definition 4.10. Let p be a prime ideal in a number ring R of odd index np = (R :

p) and let a ∈ R such that aR+ p = R. We define the Legendre symbol(
a

p

)
=

{
+1 if a is a square in R/p

−1 otherwise
,

or equivalently
(
a
p

)
= a

np−1
2 mod p.

Extending the definition to general ideals as for the Jacobi symbol cannot be
done similarly, unless R is a Dedekind domain, because it would require prime
factorization of ideals. Instead, we consider the following.

Definition 4.11. Suppose b is an ideal of a number ring R. For a prime p we
define lp(b) such that (Rp : bp) = (R : p)lp(b). For (R : b) odd and a ∈ R with
aR+ b = R we define the Jacobi symbol by(

a

b

)
=

∏
p∈spec R

(
a

p

)lp(b)
.

Theorem 4.12. There exists a polynomial-time algorithm that, given an order R, an ideal
b of R such that (R : b) is odd and a ∈ R such that aR+ b = R, computes the Jacobi
symbol

(
a
b

)
.

We will prove this theorem by expressing the Jacobi symbol in terms of yet
another symbol.

Exercise 4.13. Let p and b be ideals in a number ring R with p prime and take any
composition series 0 = M0 ⊊ M1 ⊊ · · · ⊊ Mn = R/b of R/b as R-module. Show
that lp(b) equals the number of quotients Mi+1/Mi that is isomorphic to R/p as
an R-module.

4.2. Signs of permutations In this section we will consider the following sym-
bol.

Daniël M. H. van Gent 27

Definition 4.14. Let B be a finite abelian group and let σ ∈ Aut(B). We define
(σ,B) to be the sign of σ as element of the permutation group on B.

Lemma 4.15. Suppose A and C are sets and α ∈ Aut(A) and γ ∈ Aut(C) are per-
mutations. Write α ⊔ γ respectively α × γ for the induced permutation on the dis-
joint union A ⊔ C and product A × C. Then sgn(α ⊔ γ) = sgn(α) · sgn(γ) and
sgn(α× γ) = sgn(α)#C · sgn(γ)#A.

Proof. That sgn(α ⊔ γ) = sgn(α) · sgn(γ) follows from the fact that α ⊔ γ = αγ

when Aut(A) and Aut(C) are naturally mapped to Aut(A⊔C).
For the second part write α ′ = α× idC and γ ′ = idA×γ and note that α×γ =

α ′ · γ ′. Now α ′ acts as α on #C disjoint copies of A, hence by the previous
sgn(α ′) = sgn(α)#C. Mutatis mutandis we obtain the same for γ ′, and the lemma
follows from multiplicativity of the sign. □

Proposition 4.16. Suppose B is a finite abelian group and β ∈ Aut(B). Suppose we have
an exact sequence 0 → A→ B→ C→ 0 such that β restricts to an automorphism α of
A. Then β induces an automorphism γ of C such that the following diagram commutes

0 A B C 0

0 A B C 0

f

α

g

β γ

f g

and if #C is odd we have (β,B) = (α,A) · (γ,C)#A.

Proof. The map γ exists by a diagram chasing argument. Since #C is odd we may
write C = {0}⊔D⊔ (−D) for some subset D ⊆ C. Choosing any section D→ B of
g (which is not a group homomorphism!), we may extend it to a section h : C→ B

in such a way that h(−c) = −h(c). Now the maps f and h together give a bijection
of sets A×C→ B and let β ′ be the induced action of β on A×C. By Lemma 4.15
we have that (α×γ,A×C) = (α,A)#C · (γ,C)#A, hence to prove the proposition it
suffices to show that σ = (α× γ)−1 ·β ′ is an even permutation. For all d ∈ D the
action of σ restricts to A× {d}. Note that σ commutes with −1, hence the action
of σ on A× {−d} is isomorphic to the action on A× {d}. Hence the restriction of
σ to A× (C \ {0}) is even. Finally, σ is the identity on A× {0}, so we conclude σ is
even, as was to be shown. □

The exact sequence 0 → 2Z/4Z → Z/4Z → Z/2Z → 0 resists application of
Proposition 4.16. If we choose the non-trivial automorphism σ given by x 7→ −x

on Z/4Z we see that its sign is −1, while the induced maps on the other terms
are trivial. Hence (σ, Z/4Z) is not an F2-linear combination of (σ, 2Z/4Z) and
(σ, Z/2Z).

Exercise 4.17. Show that for k ∈ Z⩾2 and a ∈ (Z/2kZ)∗ we have

(x 7→ ax, Z/2kZ) = (−1)
a−1

2 .

Hint: Write Z/2kZ = (Z/2kZ)∗ ⊔ (2Z/2kZ) and show (x 7→ ax, (Z/2kZ)∗) = −1
if and only if a generates (Z/2kZ)∗.

28 Polynomial-time algorithms in algebraic number theory

Exercise 4.18. Suppose B is an abelian group. For b ∈ B write λb : B→ B for the
map x 7→ x+ b.

a. Show that sgn(λb) = −1 if and only if (B : ⟨b⟩) is odd and 2 | #B.
Suppose B has order 2k for some k ⩾ 1 and let β ∈ Aut(B).

b. Show that there exists a subgroup A ⊆ B such that β(A) = A and (B :

A) = 2.
c. Let b ∈ B such that B = A∪ (b+A). Show that (β,B) = −1 if and only if
A = ⟨β(b) − b⟩.

d. Suppose (β,B) = −1. Show that B = Z/2kZ or B = (Z/2Z)2.
e. Show that there exists a polynomial-time algorithm that, given a finite

abelian group B and β ∈ Aut(B) such that 2 | #B, computes (β,B).

4.3. Computing signs of group automorphisms In this section we will prove
we can compute the sign of group automorphisms in polynomial time. We will
need an elementary lemma about determinants that mirrors Proposition 4.16.

Lemma 4.19. Let F be a field and let 0 → A → B → C → 0 be an exact sequence of
finite dimensional F-vector spaces together with automorphism α, β and γ such that the
diagram

0 A B C 0

0 A B C 0

α β γ

commutes. Then det(β) = det(α) · det(γ). □

In terms of matrices, the above lemma simply states that for square matrices A
and C and a matrix P that fits, the block matrix B =

(
A P
0 C

)
satisfies det(B) =

det(A) · det(C).

Theorem 4.20. Suppose b ∈ Z>0 is odd and B is a free (Z/bZ)-module of finite rank.
Then for all σ ∈ Aut(B) we have (σ,B) =

(det(σ)
b

)
.

Proof. For B = 0 the theorem clearly holds, so assume b ̸= 1 and that B has rank
at least 1.

First suppose b is prime and B has rank 1. Then σ is given by multiplication
with a ∈ (Z/bZ)∗. If a generates (Z/bZ)∗, then the corresponding permutation
fixes 0 and acts transitively on the b− 1 remaining elements of B, so that (σ,B) =
−1 =

(
a
b

)
=

(det(σ)
b

)
. By multiplicativity of both symbols in σ, this also proves the

case where a is not a generator.
Now we prove using induction the case for general rank of B. Suppose σ

is given by an upper or lower triangular matrix. Then there exists a subspace
0 ⊊ A ⊆ B such that σ restricts to A. Hence we have a split exact sequence
0 → A → B → C → 0 with C = B/A and let α and γ be the induced maps
on A respectively C. Then by Proposition 4.16, the induction hypothesis and

Daniël M. H. van Gent 29

Lemma 4.19 we get

(σ,B) = (α,A) · (γ,C) =
(

det(α)
b

)
·
(

det(γ)
b

)
=

(
det(α)det(γ)

b

)
=

(
det(σ)
b

)
.

Since every matrix can be written as a product of upper and lower triangular
matrices, the case for general α follows.

Now we prove the theorem for general b with induction to the number of
divisors of b. We have just proven the induction base with b prime. For b not
prime we may take a divisor 1 < d < b of b. Let A = dB and C = B/A and note
that they are free modules over Z/bdZ respectively Z/dZ. Moreover, σ induces
maps α and γ on A respectively C that make the usual diagram commute. It
follows from the definition of the determinant that det(α) ≡ det(σ) mod b

d and
det(γ) ≡ det(σ) mod d. Then

(σ,B) = (α,A)(γ,C) =
(

det(α)
b/d

)(
det(γ)
d

)
=

(
det(σ)
b/d

)(
det(σ)
d

)
=

(
det(σ)
b

)
.

The theorem now follows by induction. □

Theorem 4.21. There exists a polynomial-time algorithm that, given an finite abelian
group B and an automorphism σ of B, computes the symbol (σ,B).

Proof. If 2 | #B we have Exercise 4.18, so suppose B has odd order. Using Theo-
rem 3.41, write B as a product

∏m
k=1(Z/nkZ) of non-trivial cyclic groups such

that nj | nk for all j > k. Note that B fits in an exact sequence 0 → A→ B→ C→
0 with A = nmB and C = B/A, such that σ restricts to A and C. Then

A =

m∏
k=1

(nmZ/nkZ) ∼=

m−1∏
k=1

(
Z

/
nk
nm

Z

)
and C ∼= (Z/nmZ)m.

Since C is a free (Z/nmZ)-module, we may compute (σ,C) using Theorem 4.20
in polynomial time. Note that A is a product of strictly less cyclic groups than B,
as well as having smaller order. While A ̸= 0 we compute (σ,A) recursively and
apply Proposition 4.16 to compute (σ,B). Since m is polynomially bounded in
the length of the input, there is only polynomially many recursive steps and the
algorithm runs in polynomial time. □

4.4. Computing Jacobi symbols in number rings To compute Jacobi symbols in
polynomial time it now suffices to reduce to Theorem 4.21.

Lemma 4.22. Suppose b is an ideal in a number ring R odd index (R : b), and suppose
a ∈ R satisfies aR+ b = R. Then

(
a
b

)
= (α,R/b) where the map α is multiplication by

a.

Proof. First suppose b is a prime ideal and suppose a generates (R/b)∗. Then(
a
b

)
= −1. As a acts transitively on an even number of elements (R/b) \ {0}, we

conclude that (x 7→ ax,R/b) = −1 =
(
a
b

)
. The case for general a follows from

multiplicativity of both symbols.
Now consider the case of general b. Choose some composition series 0 =

M0 ⊊ M1 ⊊ · · · ⊊ Mn = R/b of R/b as R-module. Consider the exact sequence

30 Polynomial-time algorithms in algebraic number theory

0 →Mi →Mi+1 →Mi+1/Mi → 0 and note that Mi+1/Mi ∼= R/p as R-modules
for some prime ideal pi of R. By applying Proposition 4.16 inductively we obtain
(α,B) =

∏n
i=1(α,Mi+1/Mi) =

∏n
i=1

(
α
pi

)
. It follows from Exercise 4.13 that the

latter equals
(
α
b

)
. □

Proof of Theorem 4.12. Compute R/b and the map α : R/b → R/b given by x 7→ ax.
Using Theorem 4.21 compute (α,R/b), which equals

(
a
b

)
by Lemma 4.22. □

5. Finite commutative rings

Often problems in algebraic number theory can be reduced to a problem con-
cerning finite commutative rings. In this section we will state theorems that show
a relation between computational questions about rings of integers and finite com-
mutative rings, namely that they are ‘equally hard’ in some precise sense. Some
important examples of finite commutative rings are the following:

• the ring Z/mZ, for some m ∈ Z>0;
• the field Fq of cardinality q, for some prime-power q;
• the ring R/I, where R is a number ring and I is a non-zero R-ideal;
• the ring Fq[X]/(g), where g ∈ Fq[X] is a non-zero polynomial;
• the group ring Fq[G], where G is a finite abelian group.

To apply algorithms to finite commutative rings, we will first need to be able
to encode them. We encode them as finitely generated abelian groups A, together
with a multiplication morphism x 7→ ax for every generator a of A.

Theorem 5.1 (Structure Theorem for Finite Commutative Rings). Let A be a finite
commutative ring. Then for all n ∈ Z>0 sufficiently large, the natural map A →∏

p∈specAA/p
n given by a 7→ (a + pn)p is an isomorphism of rings. Hence, A is

isomorphic to a finite product of local rings with nilpotent maximal ideals.

Proof. By Exercise 1.10, Exercise 1.11 and Exercise 1.12 we have

A ⊇ nil(A) =
⋂

p∈specA

p =
∏

p∈specA

p.

It is clear that nil(A) is finitely generated, and thus nil(A) is nilpotent by Exer-
cise 1.10. Hence, we have

∏
mmn = 0 for all n sufficiently large. By the Chinese

remainder theorem (Exercise 1.13) and Exercise 1.12 we get

A ∼= A/
∏
p

pn ∼=
∏
p

A/pn.

Notice that for each p ∈ specA the unique maximal ideal p/pn of A/pn is nilpo-
tent. □

Proposition 5.2. There exists a polynomial-time algorithm that, given a finite com-
mutative ring A and a sequence of coprime integers m1, . . . ,mn such that exp(A+) |

Daniël M. H. van Gent 31

m1 · · ·mn, computes for A a ring isomorphism

A ∼=

n∏
i=1

(A/miA).

Proof. Note that
⋂n
i=1(miA) =

∏n
i=1(miA) ⊆ exp(A+) ·A = 0 since the ideals

niA are coprime. Then by the Chinese remainder theorem (Exercise 1.13) the nat-
ural isomorphism of abelian groups A ∼=

∏n
i=1(A/miA) is a ring homomorphism.

We may compute this isomorphism using Corollary 3.42. □

We may apply Theorem 5.1 to the ring Z/mZ for some m ∈ Z>0. We
have spec(Z/mZ) = {pZ/mZ |p prime, p|m} and get a decomposition Z/mZ ∼=∏
p(Z/p

kpZ) as rings, where p ranges over the primes and mp is the order of
p in m. Since we have no algorithm to factor integers, this also implies that
we have no polynomial-time algorithm to compute decompositions as in Theo-
rem 5.1. However, it is possible to decide whether an integer is a prime number
in polynomial-time using an AKS primality test [1] [7]. Similarly, we can decide
whether a finite commutative ring is a local ring (see Exercise 5.6). We are able
to trivially factor prime powers into a product of primes by taking roots, and
similarly we get the following for local rings.

Theorem 5.3. There is a polynomial-time algorithm that, given a finite commutative
ring A with #A a prime power, computes nil(A).

Lemma 5.4. Let A be a commutative ring and let n,k ∈ Z⩾1. Then nil(A/nkA) is the
inverse image of nil(A/nA) under the natural map A/nkA→ A/nA.

Proof. We have (nA)k ≡ 0 mod nkA, so nA ⊆ nil(A/nkA). □

Algorithm 5.5. Let A be a finite commutative ring of prime power order.
(1) Compute #A and find p prime and n ∈ Z⩾0 such that #A = pn.
(2) Compute B = A/pA, which is an Fp-algebra, and the least t ∈ Z⩾0 such

that dimFp B < p
t.

(3) Let F : B→ B be the Frobenius map b 7→ bp and compute K = ker(Ft).
(4) Return the inverse image of K under the natural map π : A→ B.

Proof of Theorem 5.3. We will show Algorithm 5.5 satisfies our requirements. Note
that all steps in the algorithm involve only basic computations as described in
Section 1.2 and Section 3. Most importantly, we use that F and thus Ft is a linear
map, to compute K. Hence the algorithm runs in polynomial time. We will thus
show it is correct. For each x ∈ nil(B) and m ⩾ #A we have xm = 0, so x ∈ nil(B)
if and only if Ft(x) = 0. Then K = nil(A) by Lemma 5.4, so the algorithm is
correct. □

Exercise 5.6. Suppose there exists polynomial-time primality test.
a. Show that a finite commutative ring R is local if and only nil(R) is a maximal

ideal.

32 Polynomial-time algorithms in algebraic number theory

b. Show that a finite reduced commutative ring R is a field if and only if #R =

pk for some prime p and integer k > 0 and for no 0 < m < k the homomorphism
x 7→ xp

m
is the identity map.

c. Conclude that there exist a polynomial-time algorithm that, given a finite
commutative ring R, decides whether R is local and if so computes its maximal
ideal.

5.1. Polynomial-time reductions Intuitively, a problem f is easier than a prob-
lem g if you can solve f once you know how to solve g, or more specific to
algorithms, when you can solve them in polynomial time. We can make this
more formal.

Definition 5.7. Let f and g be two problems. We say f can be reduced to g, or
symbolically f ⪯ g, if there exists an algorithm X for f that takes as additional
input and algorithm Y for g which X may use as a sub-algorithm, and such that
X spends only polynomial time not running Y. We say f and g are equally hard, or
symbolically f ≈ g, if f ⪯ g ⪯ f.

Note that if there exists a polynomial-time algorithm for f, then we always
have f ⪯ g for any problem g. This shows the concept of reductions is not very
useful for problems for which we know a polynomial-time algorithm exists.

Example 5.8. An example of a reduction is given after Theorem 5.1: We can
reduce factoring integers to decomposing finite commutative rings into a product
of local rings with nilpotent maximal ideals. We can construct our algorithm X

as in Definition 5.7 as follows. For an integer input m we call our algorithm Y for
decomposing finite commutative rings on Z/mZ. The definition of a reduction
then grants us polynomial-time to transform the output (Ai)i∈I of Y satisfying
Z/mZ ∼=

∏
i∈IAi, into a prime factorization of m. As noted before, we only

have to find primes pi and integers mi in polynomial time such that #Ai = p
mi
i ,

which we can do by naively taking roots.

The radical or square-free part of a positive integer m, written rad(m), is the
product of the prime divisors of m. We say m is square-free if rad(m) = m. We
call rad(m) the radical because rad(m)Z =

√
mZ. We say a commutative ring R

is reduced if nil(R) = 0. We may now state the two main theorems of this section,
which we prove in Section 5.4.

Theorem 5.9. The following three computational problems are equally hard:
(1) Given a number field K, compute OK.
(2) Given a finite ring A, compute nil(A).
(3) Given an integer m > 0, compute rad(m).

Each of the problems in Theorem 5.9 has an associated decision problem,
which we will show are all equally hard as well.

Theorem 5.10. The following three decision problems are equally hard:

Daniël M. H. van Gent 33

(1) Given an order R in a number field K, decide whether R = OK.
(2) Given a finite commutative ring A, decide whether A is reduced.
(3) Given an integer m > 0, decide whether m is square-free.

As of July 21, 2022, for none of the six above problems there are known
polynomial-time algorithms. Note that each decision problem trivially reduces
to its corresponding computational problem.

5.2. Trace radicals Let A ⊆ B be commutative rings such that B is free of finite
rank over A, meaning that B ∼= An as A-modules for some n ∈ Z⩾0. Then
the ring EndA(B) of A-module endomorphisms of B is isomorphic to Matn(A),
the ring of n× n-matrices with coefficients in A. This isomorphism induces a
determinant det : EndA(B) → A and trace Tr : EndA(B) → A on EndA(B) which
are multiplicative respectively A-linear. We have a natural map B → EndA(B)
given by b 7→ (x 7→ bx) which induces the A-module homomorphism TrB/A :

B→ A when composed with Tr, which we call the trace of B over A.

Exercise 5.11. Show that Tr : EndA(B) → A and det : EndA(B) → A are indepen-
dent of the chosen A-basis of B.

Exercise 5.12. Suppose B is a free A-module and let n and m be coprime integers
such that nm = #A. Then B ∼= (B/nB) × (B/mB) and B/nB is a free A/nA-
module. Show that Tr and det commute with this isomorphism when B has finite
rank.

Definition 5.13. Let A ⊆ B be commutative rings such that B is free over A as
A-module. Then we define the trace radical of B over A as

Trad(B/A) = {x ∈ B | TrB/A(xB) = 0} = ker(x 7→ (y 7→ TrB/A(xy))).

It follows trivially that Trad(B/A) is an ideal of B. In fact, it is the largest
ideal contained in ker(TrB/A). We may compute Trad(B/A) in polynomial time
using linear algebra over the integers. As the following exercise in linear algebra
shows, the trace function can in some sense test nilpotency. Similarly, we hope to
compute nil(B) from Trad(B/A).

Exercise 5.14. Let A be a field and let B be a finite dimensional A-vector space.
Suppose A has characteristic 0 or p for some prime p > dimA(B). Show that
M ∈ EndA(B) is nilpotent if and only if Tr(Mn) = 0 for all n ∈ Z>0. Conclude
that Trad(B/A) = nil(B) when B is an A-algebra. What happens when we replace
A by a local ring and B by a free A-module?
Hint: Consider the characteristic polynomial of M and use Newton’s identities.

Proposition 5.15. Let m be a square-free integer and a free module B over A = Z/mZ.
If p > rkA(B) for all primes p dividing m, then Trad(B/A) = nil(B).

Proof. We have A ∼=
∏
p|m(Z/pZ) and B ∼=

∏
p|m(B/pB), and without loss of

generality we assume this is an equality. Clearly nil(B) =
∏
p|m nil(B/pB), and

34 Polynomial-time algorithms in algebraic number theory

from Exercise 5.12 it follows that also Trad(B/A) =
∏
p|m Trad((B/pB)/(A/pA)).

Note that p > rkA(B) ⩾ rkA/pA(B/pB) for all p | m. Hence it suffices to prove
the proposition for m prime, which is Exercise 5.14. □

With this proposition, we may prove the following.

Theorem 5.16. There exists a polynomial-time algorithm that, given a finite commuta-
tive ring A and the integer rad(#A), computes nil(A).

Algorithm 5.17. Let A be a finite commutative ring and let r = rad(#A) and
l = log2(#A).

(1) Apply Algorithm 2.8 to {r, #A}∪ {p | p ⩽ l, p prime} to compute a coprime
basis.

(2) Factor #A =
∏n
i=1 c

ki
i uniquely with the ci in the coprime basis and

ki ⩾ 1.
(3) Apply Proposition 5.2 to compute the natural surjectionA→

∏n
i=1(A/ciA).

(4) For each ci compute nil(A/ciA) as follows:
(a) If ci ⩽ l is a prime, then apply Algorithm 5.5.
(b) Otherwise, compute nil(A/ciA) as Trad((A/ciA)/(Z/ciZ)) using lin-

ear algebra.
(5) Return the inverse image of

∏n
i=1 nil(A/ciA) under the mapA→

∏n
i=1(A/ciA).

Proof of Theorem 5.16. Clearly Algorithm 5.17 runs in polynomial time if it is cor-
rect. Because r is square-free, the coprime basis consists of square-free integers.
In particular all ci are square-free. Moreover, every ci is either a prime at most
l, or all primes dividing it are greater than l. In the first case, Algorithm 5.5
correctly computes nil(A/ciA) by Theorem 5.3. In the second case, A/ciA over
Z/ciZ indeed satisfies the conditions to Proposition 5.15. By Lemma 5.4 we
indeed compute nil(A) in the final step. □

5.3. Discriminants We now move from the trace radical to the discriminant. Let
A ⊆ B be commutative rings such that B is free over A of rank n. Then the
discriminant of B over A is ∆B/A = det(M) ∈ A, where M = (TrB/A(eiej))1⩽i,j⩽n

is a matrix and (e1, . . . , en) is a basis for B over A. This definition depends on a
choice of basis for B (see Exercise 5.18). However, for A = Z the discriminant is
uniquely determined, and we write ∆(B) = ∆B/Z in this case. If C ⊆ B is of finite
index and both are free over Z, then |∆(B)| = (B : C)2 · |∆(C)|. In this section
we will use the following two elementary facts from number theory regarding
discriminants.

Exercise 5.18. Prove that ∆B/A is defined up to multiples of (A∗)2. Conclude that
∆B/A is uniquely defined for A = Z.

Exercise 5.19. Suppose d ∈ Z is non-zero and let K = Q(
√
d).

(1) Show that if d ≡ 1 mod 4 and d is square-free, then OK = Z[(
√
d+ 1)/2].

(2) Show that if d ≡ 2, 3 mod 4 and d is square-free, then OK = Z[
√
d].

Daniël M. H. van Gent 35

(3) Show that we can write d = □(d)2 ·⊠(d) uniquely with □(d) ∈ Z>0 and
⊠(d) square-free.

(4) Conclude that ∆(OK)/⊠ (d) ∈ {1, 4}.

Exercise 5.20. Let R be an order of a number field K and let p be a prime number.
Show that p | (OK : R) if and only if R has a singular (i.e. non-invertible) prime
ideal containing p.

Proposition 5.21. Let R be an order of a number field K and let a ∈ Z>1. Let a be the
product of all prime ideals of R containing a. Then the following are equivalent:

(1) The integer a is coprime to (OK : R);
(2) The ideal a is invertible;
(3) We have a strict inclusion R ⊊ a : a.

Proof. That (1) and (2) are equivalent follows from Exercise 5.20 and Exercise 1.14.c.
That (2) and (3) are equivalent follows from Exercise 1.16. □

The result of Exercise 5.20 as stated is algorithmically impractical, because it
requires us to compute OK. However, we have that (OK : R)2 | ∆(R) and the latter
we can compute. In this form we recover a single implication: If R is singular
above p, i.e. R has a singular prime ideal containing p, then p | ∆(R). To get an
implication in the reverse direction we use the reduced discriminant.

Definition 5.22. Let R be an order in a number field K. We define the trace dual
R† of R as the fractional R-ideal

R† = {x ∈ K | TrK/Q(xR) ⊆ Z}.

We define the reduced discriminant δ(R) to be the exponent of the finite abelian
group R†/R.

Note that we compute the trace dual and reduced discriminant in polynomial
time.

Theorem 5.23. Let R be an order in a number field K and p > [K : Q] be a prime number.
Then there exists a singular prime ideal p ⊆ R over p if and only if p2 | δ(R).

Proof. See Exercise 5.24 and Exercise 5.25. □

Exercise 5.24. Let R be an order of a number field K and let p > [K : Q] be a prime
number. Suppose that p ∤ (OK : R).
a. Show that R(p) is Dedekind and that Trad((R/pR)/Fp) = (pR† ∩ R)/pR.
Since R(p) is Dedekind there exists a unique m : specR(p) → Z such that R†

(p)
=∏

p p
m(p).

b. Show that for all p ∈ specR(p) we have m(p) = 1 − e(p).
c. Conclude that pR† ⊆ R and thus p2 ∤ δ(R).

Exercise 5.25. Let R be an order of a number field K and let p > [K : Q] be a prime
number. Write a for the product of all prime ideals p ⊆ R containing p.

36 Polynomial-time algorithms in algebraic number theory

a. Show that Trad((R/pR)/Fp) = a/pR = rad(R/pR).
b. Show that TrR/Z induces a perfect pairing ψ : R/a⊗ R/a → Fp of Fp-vector

spaces given by

(x+ a,y+ a) 7→ (TrR/Z(xy) + pZ).

In other words, show that ψ is a well-defined Fp-linear map and that for any
y ∈ R/a the map R/a → Hom(R/a, Fp) given by x 7→ [y 7→ ψ(x,y)] is an
isomorphism of Fp-vector spaces.

c. Show that there is a short exact sequence

0 −→ ((pR†)∩ (a : a))/a −→ (a : a)/a −→ Hom(R/a, Fp) −→ 0.

Hint: The map (a : a)/a → Hom(R/a, Fp) can be obtained by naturally extend-
ing the isomorphism R/a → Hom(R/a, Fp) from part (b).

d. Suppose that p | (OK : R). Show that R†/R contains an element of order p2

and conclude that p2 | δ(R).

5.4. Proof of the main theorems First we give a tool to compute the ring of
integers OK of a number field K given an order R of K and enough information
about the singular primes of R.

Theorem 5.26. There is a polynomial-time algorithm that, given an order R in a number
field K and square-free integer d contained in all singular prime ideals, decides whether
R = OK. Moreover, if R ̸= OK, then it additionally computes an order S ⊋ R of K.

Note that a possible d in the above is any (square free) multiple of rad(∆(R)) by
Exercise 5.20. To compute the ring of integers we repeatedly apply the algorithm
to S if R is not already the ring of integers.

Algorithm 5.27. Let R be an order in a number field K and let d be square-free.
(1) Compute rad(R/dR) using Algorithm 5.17.
(2) Compute the inverse image a of rad(R/dR) under the projection R →

R/dR.
(3) If a : a = R, return true. Otherwise, return false and a : a.

Proof of Theorem 5.26. We will show Algorithm 5.27 does as we want. Clearly it
runs in polynomial time because of Theorem 5.16. Note that if a, because it is
an ideal of R, indeed satisfies a : a ̸= R, then clearly R ⊊ (a : a) ⊆ OK. Then for
correctness, it suffices to show that R = OK when a : a = R.

We have

rad(R/dR) =
∏

p∈spec(R/dR)

p =
∏

p∈spec(R)
dR⊆p

(p + dR),

hence a is the product of all prime ideals containing d. If a : a = R, then d is
coprime to (OK : R) by Proposition 5.21, hence (OK : R) = 1 by definition of d.
Thus the algorithm is correct. □

We can now prove the main theorems.

Daniël M. H. van Gent 37

Proof of Theorem 5.9. If we have an algorithm to compute rad(#A), then Theo-
rem 5.16 gives us an algorithm to compute nil(A). Conversely, we have that
rad(m) = # nil(Z/mZ). Hence we may compute rad(m) if we have an algorithm
to compute nil(Z/mZ). Therefore problem (2) and (3) are equally hard.

Suppose we have an algorithm for (1). We compute OK for K = Q(
√
m) and in

turn we compute ∆(OK). Then from Exercise 5.19.d we obtain ⊠(m) and in turn
□(m). Finally, we compute rad(m) = lcm(⊠(m),□(m)), so (3) reduces to (1).

Suppose we have an algorithm for (3). Let R be the order encoding K. Then
we may compute a positive integer d that is a multiple of rad |∆(R)|, for example
d = |∆(R)|. By Theorem 5.26 and Exercise 5.20 we have an algorithm that either
tells us that R = OK or gives an order S ⊋ R. If R = OK we are done, so suppose
we have an order S ⊋ R. Then |∆(R)| = (R : S)2 · |∆(S)|, so we may recursively
apply our algorithm to S with the same d. In each recursive step |∆(R)| decreases
by a factor of at least 4, so the number of steps is bounded by log4 |∆(R)|, which in
turn is bounded by a polynomial in the input size. Hence we have a polynomial-
time algorithm for (1). □

Proof of Theorem 5.10. As before, (3) reduces to (2) by considering A = Z/mZ.
For the converse, we compute d = exp(A+) and note that if A is to be reduced
we need d to be square-free. Assuming we have a polynomial-time algorithm
for (3) we can check this, so we may assume d is square-free. However, in this
case d = rad(#A), so we may apply Theorem 5.16 to compute nil(A). Hence (2)
reduces to (3). The reduction from (3) to (1) follows from Exercise 5.19 as in the
proof of Theorem 5.9.

Now suppose we have a polynomial-time algorithm for (3). Then we may
simply check whether δ(R) is square-free to conclude that either R ̸= OK or that
the singular primes of R must lie over primes p ⩽ [K : Q] by Theorem 5.23. We
then take d to be the product of all such primes that divide ∆R/Z and apply
Theorem 5.26 with this choice of d. Hence (1) reduces to (3). □

5.5. Exercises

Exercise 5.28. Let q be a prime power, let C6 be a cyclic group of order 6, and
consider the group ring Fq[C6].
a. Prove # spec(Fq[C6]) = 6, 2, 2, 3, 4 for q ≡ 1, 2, 3, 4, 5 mod 6 respectively.
b. Write F[C6] explicitly as a product of local rings for q = 2, 3, 4, 5, 7.

Exercise 5.29. The reductions of algorithmic problems in we consider are Cook
reductions, where f ⪯ g if we can construct an algorithm for f using an ‘oracle’ for
g. We can also consider a different type of reduction, more similar to a Karp reduc-
tion, where the oracle can only be consulted once. Prove a version of Theorem 5.9
for Karp reductions.

Exercise 5.30. Let n,m ∈ Z>0. Prove that there exists a number field K such that
[K : Q] = n and gcd(∆K,m) = 1.

38 Polynomial-time algorithms in algebraic number theory

Exercise 5.31. Let A ⊆ B be commutative rings such that B is free over A. Show
that the map B→ HomA(B,A) given by x 7→ (y 7→ TrB/A(xy)) is an isomorphism
of B-modules if and only ∆(B/A) is a unit in A.

Exercise 5.32. Let A be a finite commutative ring, and let m ∈ Z>0 such that
mA = 0.
a. Prove that for some t,b ∈ Z>0 the following is true: for all sequences (di)

t
i=1

consisting of t integers di ⩾ b there exists a sequence (ei)
t
i=1 of integers

satisfying 0 ⩽ ei < di such that for all sequences (fi)ti=1 of monic polynomials
fi ∈ Z[X] satisfying fi ≡ Xdi − Xei mod mZ[X] there exists a surjective ring
homomorphism

Z[X1, . . . ,Xt]/(f1(X1), . . . , ft(Xt)) → A.

b. Prove that there exists an order R in some number field and an ideal I ⊆ R

such that R/I ∼= A as rings.
Note: This ‘proves’ a converse to the statement in the very beginning of this
section. Questions about finite commutative rings can be reduced to questions
about (ideals in) number rings. We do however say nothing about the quality of
such a reduction in the context of algorithms.

Exercise 5.33. Here we show that the conclusions to Exercise 5.24 and Exer-
cise 5.25 fail to hold when we drop the restriction that the prime is at most the
degree of the number field.
a. Show that there exists a quadratic order R for which 2 | (OR0R : R) and 22 ∤

δ(R).
b. Show that there exists a quadratic order R for which 2 ∤ (OR0R : R) and 22 |

δ(R).

6. Inverting ideals

Ideals do not exist without a ring which they are ideals of. However, we should
be prepared to encounter many orders of a fixed number field in our algorithms,
since many of these algorithms have a ‘back door’ that allow them to output a
strictly larger order than it has gotten as input. As a consequence, the ideals put
in the algorithm should also change together with these orders. It will be fruitful
to consider a concept more general than ideals.

Definition 6.1. Let S be a commutative ring. For subsets I, J ⊆ S we write

I+ J = {x+ y : x ∈ I, y ∈ J}

I · J =
{ n∑
i=1

xiyi : n ⩾ 0, x1, . . . , xn ∈ I, y1, . . . ,yn ∈ J
}

I : J = (I : J)S =
{
x ∈ S : xJ ⊆ I

}
.

We also inductively define I0 = (I : I)S and In+1 = In · I for n ⩾ 0. Suppose R ⊆ S
is a subring and I is also an R-module. We say I is invertible over R if there exists

Daniël M. H. van Gent 39

some R-submodule I−1 ⊆ S such that I · I−1 = R. We write I(R) = IS(R) for the
group of subgroups of S that are invertible over R.

Although the operations of Definition 6.1 are defined for arbitrary subsets of S,
we will mostly restrict to (additive) subgroups. Note that if I, J ⊆ S are subgroups,
so are I+ J, I · J and I : J.

Lemma 6.2. Let S be a commutative ring and H, I, J ⊆ S subgroups. Then (i) I : I is a
subring of S; (ii) I1 = I; (iii) I : I = I if and only if I is a subring of S; (iv) if I is finitely
generated and J ∩ S∗ ̸= ∅, then I : J is finitely generated; (v) I : J ⊆ (HI) : (HJ), with
equality if H, I and J are R-modules for some subring R ⊆ S and H is invertible over R;
(vi) if S ⊆ A is a ring extension and J∩ S∗ ̸= ∅, then (I : J)A = (I : J)S.

Proof. (i) This follows directly from the definition. (ii) Since 1 ∈ I : I by (i), we have
I ⊆ (I : I) · I, while (I : I) · I ⊆ I by definition of the quotient. Thus I = (I : I) · I = I1.
(iii) The implication (⇒) follows from (i). For (⇐), suppose I ⊆ S is a subring.
Then I · I ⊆ I and consequently I ⊆ I : I. For x ∈ I : I we have xI ⊆ I, so in
particular x = x · 1 ∈ I and thus I : I ⊆ I. (iv) Let j ∈ J be invertible. Then j−1I is
finitely generated and hence a Noetherian Z-module. Thus I : J ⊆ j−1I is finitely
generated. (v) The inclusion follows directly from the definition. If H is invertible
we get I : J ⊆ (HI) : (HJ) ⊆ (H−1HI) : (H−1HJ) = (RI) : (RJ) = I : J, from which
equality follows. (vi) Clearly (I : J)S ⊆ (I : J)A because S ⊆ A. Let j ∈ J be
invertible. If x ∈ (I : J)A, then x ∈ j−1I ⊆ S, so x ∈ (I : J)S. □

Exercise 6.3. Let S be a commutative ring and R ⊆ S a subring and I ⊆ S an
R-module. Show that if I is invertible over R, then R : I is its inverse and that I is
a finitely generated R-module.

Exercise 6.4. Let K be a number field and I ⊆ K be a subgroup. Then I2 = I if
and only if I is a ring. Hint: If I2 = I, then I is a finitely generated ideal of the
ring Z + I.

Exercise 6.5. Let K ⊆ L be a finite degree field extension. Show for all subgroups
I, J ⊆ L that (KI) : (KJ) ⊇ K(I : J), with equality when J is finitely generated. Give
an example where equality does not hold.

Exercise 6.6. Let R be an order in a number field and recall the definition of R†

from Definition 5.22. Show that the following are equivalent: (1) R† is invertible;
(2) For all fractional ideals I of R it holds that I : I = R if and only I is invertible.

Proposition 6.7. Let S be a commutative ring and I ⊆ S a subgroup. Then the blowup
at I,

Bl(I) = BlS(I) :=
⋃
k⩾0

(Ik : Ik)S,

is a ring. If RI is an invertible R-ideal for some subring R ⊆ S, then Bl(I) ⊆ R. If S is
a number field and I is finitely generated and non-zero, then Bl(I) = (In : In) for some
n ⩾ 0 and Bl(I) is an order.

40 Polynomial-time algorithms in algebraic number theory

Proof. It follows from Lemma 6.2 for all k ⩾ 0 that Ik : Ik is a ring and that
Ik : Ik ⊆ Ik+1 : Ik+1. Hence Bl(I), the direct limit of rings, is a ring.

Suppose RI is an invertible R-ideal. Then RIk = (RI)k is invertible for all k ⩾ 0.
In particular, by Lemma 6.2 we have Ik : Ik ⊆ (RIk) : (RIk) = R : R = R for all k,
so Bl(I) ⊆ R.

Suppose S is a number field and I is finitely generated and non-zero. Then
Ik : Ik is both a subring and a finitely generated subgroup of S by Lemma 6.2,
hence it is an order. Because Ik : Ik ⊆ OS and OS is a Noetherian Z-module, there
must exist some n ⩾ 0 such that In : In = Ik : Ik for all k ⩾ n. Consequently
In : In = Bl(I). □

We will show later that, in the case of orders in number fields, Bl(I)I is invert-
ible over Bl(I).

Exercise 6.8. Let S be a commutative ring and I, J ⊆ S subgroups. Show that
Bl(I) · Bl(J) ⊆ Bl(IJ). Show that Bl(I) = I if and only if I is a subring of S.

Exercise 6.9. Let R ⊆ S be a commutative subrings and and I, J ⊆ S fractional
R-ideals. If I is invertible, then Bl(IJ) = Bl(J).

Exercise 6.10. Give an example of a field K and a finitely generated subgroup
I ⊆ K such that In : In = In+1 : In+1 ̸= Bl(I) for some n ⩾ 1.

Proposition 6.11. Let R ⊆ S be subrings such that R is semi-local and let I ⊆ S be an
R-module. Then I is invertible if and only if there exists some x ∈ S∗ such that I = xR.

Proof. The implication (⇐) is obvious, since xR has inverse x−1R.
Now suppose I is invertible with inverse J. Let m ⊆ R be maximal. As IJ =

R ̸⊆ m there exist xm ∈ I and ym ∈ J such that xmym ∈ R \m. Since R is semi-local,
there exist λm ∈ R for each maximal m ⊆ R such that λm ∈ m ′ if and only if
m ̸= m ′: Namely, let rm ′ ∈ m ′ \m, which exist since the ideals are maximal, and
take λm =

∏
m ′ ̸=m rm ′ . Consider x =

∑
m λmxm and y =

∑
m λmym. Then

xy =
∑
m,m ′

λmλm ′xmym ′ .

For all m there is precisely one term not contained in m, which is λmλmxmym,
hence xy ̸∈ m. Since xmym ′ ∈ IJ = R we have xy ∈ R. It follows that xy is a unit
of R, and x is a unit of S. Finally, xR ⊆ I = xyI ⊆ xJI = xR and I = xR. □

Corollary 6.12. Let R ⊆ S be subrings such that R is semi-local. Then IS(R) = S
∗/R∗.

□

Exercise 6.13. Let R be a subring of a number field K. Show that a. R/aR is finite
for all non-zero a ∈ R; b. R is Noetherian; c. every non-zero prime ideal of R is
maximal; and d. if R has a local subring, then R is semi-local. Hint: First suppose
a ∈ Z is a prime (power).

Daniël M. H. van Gent 41

Lemma 6.14. Let R be a domain and K its field of fractions. Then for every localization
S of R the natural map S→ K is injective, and I =

⋂
m∈maxspecR Im for every fractional

ideal I of R.

Proof. The maps S → K are injective since R and hence S is a domain. Clearly
I ⊆ Im. Suppose x ∈

⋂
m Im and x ̸∈ I. Consider J = (I : xR)R ⊊ R is an ideal

not containing 1. Let J ⊆ m ⊆ R be a maximal ideal. Since x ∈ Im there exists
some r ∈ R \m such that rx ∈ I. Then r ∈ J by definition of J, which contradicts
J ⊆ m ̸∋ r. Hence I =

⋂
m Im. □

Exercise 6.15. Let R ⊆ K be subrings such that K is a number field and the field of
fractions of R. Let p ⊆ R be a maximal ideal. Show that if Ip ⊆ Rp is an invertible
ideal over Rp, then J = Ip ∩ R is an invertible ideal over R such that Jp = Ip, and
Jq = Rq for all maximal q ⊆ R not equal to p.

Theorem 6.16. Let K be a number field and R ⊆ S ⊆ K be subrings such that K is the
field of fractions of R. Then we have a group isomorphism IK(S) →

⊕
p∈maxspecR IK(RpS)

given by I 7→ (RpI)p, with inverse (Ip)p 7→
⋂

p Ip. □

Proof. The diagram constructed from maps as in the theorem is commutative.

I(S)
⊕
p⊆R

I(RpS)

⊕
m⊆S

I(Sm)

Hence to show that the horizontal map is an isomorphism, it suffices to prove
this for the downward maps. These maps are both injective with the appropriate
left inverse by Lemma 6.14, while they are surjective by Exercise 6.15. □

Corollary 6.17. Let R be an order in a number field. Then a fractional R-ideal is invertible
if and only if it is locally principal. □

Lemma 6.18. Let K be a number field and R ⊆ S ⊆ K subrings such that K is the field
of fractions of R. Then there is a surjective group homomorphism σ : I(R) → I(S) given
by I 7→ SI.

Proof. The only non-trivial part is surjectivity. Using Theorem 6.16 one verifies
that the induced map σ :

⊕
p⊆R I(Rp) →

⊕
p⊆R I(RpS) is the direct sum of maps

σp : I(Rp) → I(RpS) given by I 7→ SI. Thus it suffices to prove the theorem
when R is local, and hence S is semi-local by Exercise 6.13.d. This case follows
immediately from Corollary 6.12 □

6.1. Blowing up We will prove that for a number field K and a finitely generated
subgroup I ⊆ K the group Bl(I) · I is an invertible Bl(I)-ideal.

42 Polynomial-time algorithms in algebraic number theory

Definition 6.19. Let R be a commutative ring and M an R-module. We define

γR(M) = inf
{

#X : X ⊆M,
∑
x∈X

Rx =M
}

.

Note that M is finitely generated if and only if γR(M) <∞.

Lemma 6.20. Let R be a commutative ring and M an R-module. Then
(1) we have γR(M/N) ⩽ γR(M) for all submodules N ⊆M;
(2) if R is a principal ideal domain, then γR(N) ⩽ γR(M) for all submodules N ⊆

M;
(3) if M is finitely generated and I ⊆ Jac(R), then γR(M) = γR/I(M/IM);
(4) if A is a commutative R-algebra and N an A-module, then

γR(N) ⩽ γR(A) · γA(N) and γA(M⊗RN) ⩽ γR(M) · γA(N),

with equality if A and R are fields.

Proof. (i) We may simply use a generating set of M for M/N. (ii) It suffices
to prove this when M is free, since we may replace M by R(X) for any gen-
erating set X ⊆ M. Since R is a principal ideal domain, N is free of rank
at most #X. Hence γR(N) ⩽ γR(M). (iii) Write J = Jac(R). Then γR(M) ⩾

γR/I(M/IM) ⩾ γR/J(M/JM) by (i). The inequality γR/J(M/JM) ⩾ γR(M) fol-
lows from Nakayama’s lemma. (iv) One can verify for both inequalities that the
product of two generating sets on the modules on the right always gives a gen-
erating set for the module on the left. If A and R are fields, then the remaining
statement follows from linear algebra. □

Exercise 6.21. Let R be a commutative ring and M an R-module. Show that

sup{γR/m(M/mM) : m ∈ maxspecR} ⩽ γR(M),

with equality if R is semi-local and M is finitely generated.

Exercise 6.22. Let f : R → S be a morphism of commutative rings such that S is
finitely generated when interpreted as R-module. Show that the map maxspecS→
maxspecR given by m 7→ f−1m is well-defined and has fibers of size at most γR(S).

Lemma 6.23. Let R be a local ring with maximal ideal p, and S a commutative R-algebra.
Let M ⊆ S be a R-submodule such that M ̸⊆ m for all maximal ideals m ⊆ S. If
maxspecS < #(R/p) <∞, then M∩ S∗ ̸= ∅.

Proof. Since S \ S∗ =
⋃

mm, where the union ranges over the maximal ideals of S,
it suffices to show that

⋃
m(M ∩m) ̸= M. We will prove the stronger statement

that an R-module M cannot be written as a union of k proper submodules for
any 1 ⩽ k < #(R/p). For k = 1 this is trivial, so suppose k ⩾ 2. For the sake
of contradiction suppose M =

⋃
i∈kMi for some submodules Mi ⊊ M. By

removing submodules we may assume there exist no inclusion relations between
these modules. In particular, for each i there exists some mi ∈ Mi that is not
contained in any other subspace. Consider the map ℓ : R → M given by t 7→

Daniël M. H. van Gent 43

tm1 + (1 − t)m2. Since k < #(R/p) there exist s, t ∈ R such that s ̸≡ t mod p and
ℓ(s), ℓ(t) ∈Mi for some i. Note that s− t ∈ R∗ because s− t ̸≡ 0 mod p. We have
(s− t)(m1 −m2) = ℓ(s) − ℓ(t) ∈ Mi, so m1 −m2 ∈ Mi. Hence im(ℓ) ⊆ Mi and
m1,m2 ∈Mi, which is a contradiction. □

Proposition 6.24. Let Z be a principal ideal domain and R ⊆ S commutative Z-algebras
such that R is local and S is a Noetherian Z-module. Let M ⊆ S be an R-submodule
such that M ̸⊆ m for all maximal ideals m ⊆ S. If Mn : Mn = R for some integer
n ⩾ γR(S) − 1, then M = Ru for some u ∈ S∗.

Proof. For a local ring A with unique maximal ideal m write κ(A) = A/m for the
residue field. By localizing Z at the maximal ideal of R we may assume without
loss of generality that Z is local.

We will first show that there exists an R-algebra A which is local and free
of finite rank d such that #κ(A) > d · # maxspecS. Because S is semi-local (see
Exercise 6.22), we may choose A = R if κ(R) is infinite. Thus assume κ(R) is finite,
hence κ(R) = Fq for some power q of a prime p. Choose d sufficiently large
such that #κ(R)d > d · # maxspecS. Then consider the field extension κ(R) ⊆
Fqd = Fq(α) for some α ∈ Fqd . Let f ∈ R[X] be some monic lift of the minimal
polynomial of α over κ(R). Clearly A = R[X]/(f) is free of rank d as R-module.
Since R has a unique maximal ideal p, the maximal ideals of A correspond to
those of A/pA = Fqd by Exercise 6.22, which is a field. Hence A is local with
κ(A) = Fqd . Finally, #κ(A) = #κ(R)d > d · # maxspecS, as was to be shown.

Write (−)A for the functor −⊗R A and q for the maximal ideal of A. We want
to apply Lemma 6.23 to MA, for which we now verify the conditions. Note that
(−)A is exact since A is free as R-module. In particular, MnA : MnA = (Mn :

Mn)A = RA = A and S → SA is injective. If MA ⊆ n for some maximal
n ⊆ SA then also M =MA ∩ S is contained in the maximal ideal of n ∩ S of S by
Exercise 6.22, which is a contradiction. Lastly, # maxspecSA ⩽ d · # maxspecS <
#κ(A). Thus there exists some u ∈MA ∩ S∗A by Lemma 6.23.

We will first show MA = Au, or equivalently show that I :=MAu−1 equals A.
Consider I∞ =

⋃
k⩾0 I

k ⊆ SA, which is the smallest subring containing I. Using
Lemma 6.20 we obtain

γZ/(q∩Z)(κ(A)) · dimA/q(I
∞/qI∞) = γZ/(q∩Z)(I

∞/qI∞) ⩽ γZ(I
∞) ⩽ γZ(SA)

⩽ γZ(A) · γA(SA) = γZ/(q∩Z)(κ(A)) · γA(SA) ⩽ γZ/(q∩Z)(κ(A)) · γR(S),

and thus dimA/q(I∞/qI∞) ⩽ γR(S) ⩽ n + 1. From 1 ∈ I it follows that I0 ⊆
I1 ⊆ I2 ⊆ · · ·, so (I0 + qI∞)/qI∞ ⊆ (I1 + qI∞)/qI∞ ⊆ · · · with dimA/q((I0 +

qI∞)/qI∞) = 1. We conclude that (Ir + qI∞)/qI∞ = (Ir+1 + qI∞)/qI∞ for some
r ⩽ n. It follows that (In + qI∞)/qI∞ = I∞/qI∞. Equivalently In + qI∞ = I∞, so
by Nakayama’s lemma we have In = I∞. As In is a ring we have I ⊆ In = In :

In = A ⊆ I by Lemma 6.2, so I = A.

44 Polynomial-time algorithms in algebraic number theory

It follows that

1 = γA(MA) = γA/q(MA/qMA) = γA/q((M/pM)⊗R/p (A/q))

= γR/p(M/pM) = γR(M).

Hence M = Rv for some v ∈ M. If v ̸∈ S∗, then v ∈ m for some maximal m ⊆ S

and M = vR ⊆ m, a contradiction. Thus v is a unit. □

Definition 6.25. Let R ⊆ S be orders in a number field. Then the conductor fS/R
of S over R is the largest ideal of S contained in R.

Clearly the conductor is well-defined: It is the sum of all ideals of S contained
in R, or equivalently (R : S)S. As S/R is finite we have #(S/R) · S ⊆ R. Thus
#(S/R) · S ⊆ fS/R and the latter is non-zero.

Theorem 6.26. Let K be a number field and I ⊆ K a finitely generated non-zero subgroup.
Then Q(Bl(I)) = Q(Ix−1) for any non-zero x ∈ I, and Bl(I) = In : In for any n ⩾ [K :

Q] − 1. For all subrings R ⊆ K, the ideal RI is invertible if and only if Bl(I) ⊆ R.

Proof. Write A = In : In and F = Q(Bl(I)). We will first show that Bl(I) = A.
Clearly A ⊆ Bl(I) by definition of the blowup, so by Proposition 6.7 it suffices

to show that AI is an invertible A-ideal. Since OFI is an invertible OF-ideal there
exists some invertible ideal H of A such that OFI = OFH by Lemma 6.18. Consider
J = I(A : H)F, which is an A-ideal. To prove AI is an invertible A-ideal it suffices
by Lemma 6.2 to show J is an invertible A-ideal. Note that (Jn : Jn)F = (In :

In)F = A since (A : H)F is invertible. Thus we may assume without loss of
generality that OFI = OF by replacing I with J.

Consider the conductor f = fOF/A. We have f = fOF = fOFI = fI ⊆ AI = I and
I ⊆ OF. From OFI = OF it also follows that I ̸⊆ m for all maximal ideals m ⊆ OF.
Now apply Proposition 6.24 with A/f, OF/f and I/f in the place of respectively
R, S and M, using γR(S) ⩽ γZ(OF) ⩽ [F : Q] ⩽ n+ 1. Then I = Ax+ f for some
x ∈ OF coprime to f. Thus Ip = Apx if p + f = A and Ip = Ap1 + fp = Ap if f ⊆ p.
Hence I is locally principal and thus invertible by Corollary 6.17, as was to be
shown.

Proposition 6.7 states that for all subrings R ⊆ K, the ideal RI is invertible if
and only if Bl(I) ⊆ R.

It remains to be shown that Q(Bl(I)) = Q(Ix−1) for any non-zero x ∈ I. Since
Bl(I) = Bl(aI) for any a ∈ K∗, we may replace I by Ix−1, so that 1 ∈ I, and show
that Q(Bl(I)) = Q(I). Since IQ(I) = Q(I) is invertible over Q(I) we conclude that
Bl(I) ⊆ Q(I). As 1 ∈ Iwe have a chain QI0 ⊆ QI1 ⊆ QI2 ⊆ · · ·, and since K is finite
dimensional it stabilizes at say QIk. Then I ⊆ (QIk : QIk) = Q(Ik : Ik) ⊆ Q(Bl(I))
by Exercise 6.5, from which Q(I) = Q(Bl(I)) follows. □

Corollary 6.27. There exists a polynomial-time algorithm that, given a number field K
and a finitely generated subgroup I ⊆ K, computes Bl(I). □

Daniël M. H. van Gent 45

Exercise 6.28. Let K be a number field and R ⊆ K a subring. Show that for all
finitely generated subgroups I, J ⊆ K we have Bl(IJ) = Bl(I) · Bl(J). Conclude
Bl(Rα+ Rβ) = R · Bl(Zα+ Zβ) for all α,β ∈ K∗.

Exercise 6.29. Let K be a number field and I ⊆ K a finitely generated non-zero
subgroup. If RI is invertible over R = In : In, then R = Bl(I).

Exercise 6.30. Let R be a number ring and I a fractional ideal of R. Show that
Bl(I) is a subring of (R : I) : (R : I).

Exercise 6.31. Let R ⊆ S be orders of maximal rank in a number field. Show
that ker(I(R) → I(S)) = (S/fS/R)

∗/(R/fS/R)
∗. Conclude that this kernel equals

I(R)tors when S is the maximal order.

Exercise 6.32. Let R be an order and let K be its field of fractions. Show that that
the following are equivalent:

1) There exist a finite Boolean ring B, i.e. a ring isomorphic to FI2 for some set I,
a subring A ⊆ B and a surjection f : OK → B such that R = f−1A.

2) There exists an equivalence relation ∼ on the set HomRing(OK, F2) such that
R = {x ∈ OK : f ∼ g⇒ f(x) = g(x)}.

3) The group I(R) is torsion free.
Give an example of a non-maximal order such that I(R) is torsion free.

6.2. Inverting subgroups with two generators We will now give an explicit way
to compute Bl(I) for subgroups I of number fields K of the form I = αZ+βZ for
α,β ∈ K∗.

Exercise 6.33. Let f ∈ Z[X] be a primitive polynomial, i.e. a polynomial for which
the only integer divisors are ±1. Show that (fQ[X]) ∩ Z[X] = fZ[X]. Hint: Gauss’
lemma states that for f,g ∈ Z[X] the product fg is primitive if and only if f and g
are primitive.

Theorem 6.34. Let K = Q(γ) be a number field of degree n ⩾ 2 and let f = anX
n +

· · ·+ a0X
0 ∈ Z[X] be irreducible with f(γ) = 0. Consider for 0 ⩽ j ⩽ n the elements

pj = anγ
j−0 + an−1γ

j−1 + · · ·+ an−j and qj = a0γ
0−j + a1γ

1−j + · · ·+ aj

and the groups

D = Zp0 + Zp1 + · · ·+ Zpn−1 and N = Zq0 + Zq1 + · · ·+ Zqn−1.

Then (i) A = Z +D = Z +N is a ring; (ii) N and D are coprime invertible ideals of
A such that γA = N : D and such that we have ring isomorphisms A/N ∼= Z/a0Z

and A/D ∼= Z/anZ; (iii) A = M : M = Z[γ] ∩ Z[γ−1] = Bl(Z + γZ) for M =

Z + Zγ+ · · ·+ Zγn−1.

Proof. Observe that there is an involution −∗ on set of inputs to this theorem that
sends γ 7→ γ−1 and anXn+ · · ·+a0X

0 7→ a0X
n+ · · ·+anX0. From this we obtain

p∗j = a
∗
n(γ
∗)j−0 + · · ·+ a∗n−j = a0γ

0−j + · · ·+ aj = qj

46 Polynomial-time algorithms in algebraic number theory

and N∗ = D.
(i) Note that pn = f(γ) = 0. We additionally define pj = 0 for j > n and

aj = 0 for j < 0. Then note that pj+1 = γpj + an−j−1 for all j ⩾ 0. We will show
by induction on i ⩾ 0 that for all j ⩾ 0 we have pipj ∈ D. For i = 0 we have
pipj = anpj ∈ Zpj ⊆ D for all j. For arbitrary i we have

pi+1pj − pipj+1 = an−i−1pj − an−j−1pi ∈ D.

As pipj+1 ∈ D by the induction hypothesis we obtain pi+1pj ∈ D, as was to be
shown. It now follows that D ·D ⊆ D, so Z +D is a ring.

Now note that for 0 ⩽ j ⩽ n we have

pj + qn−j = γ
j−n(anγ

n + · · ·+ an−jγn−j) + γj−n(a0 + a1γ+ · · ·+ an−jγn−j)

= γj−nf(γ) + an−j = an−j.

In particular qn−j ∈ Z +D for all j ⩾ 0 and thus Z +N ⊆ Z +D. By involution
Z +N = Z +D.

(ii) From D ·D ⊆ D it follows that D is an ideal of Z +D = A. By involution
N is an ideal of Z +N = A. From the identity pj + qn−j = an−j for all j ⩾ 0 it
follows that a0, . . . ,an ∈ N+D. As f is irreducible we have Za0 + · · ·+Zan = Z,
so 1 ∈ N+D and N and D are coprime. It follows from γpj = pj+1 − an−j−1 =

qn−j−1 for all 0 ⩽ j < n that γD = N. Hence D · (A+Aγ) = D+N = A, so D is
invertible and so is N by symmetry. It then follows that γA = N ·D−1 = N : D.
The map Z → A/D is surjective and has kernel Z ∩D. It follows from the
definition of the pj that Z ∩D = Zp0 = anZ, proving Z/anZ ∼= A/D. By
symmetry Z/a0Z ∼= A/N.

(iii) It follows from γpj = pj+1 + an−j−1 ∈ D that γD ⊆ D and thus MD ⊆ D.
As pj ∈M for all j we have D ⊆M. Hence AM =M+DM ⊆M and A ⊆M :M.
We have M :M ⊆M ⊆ Z[γ] since 1 ∈M. As M :M = (γ1−nM) : (γ1−nM) and
γ1−nM = Z + Zγ−1 + · · ·+ Z(γ−1)n−1 we get M : M ⊆ Z[γ−1] by symmetry.
We conclude A ⊆M :M ⊆ Z[γ]∩ Z[γ−1].

Now suppose there exists some x ∈ Z[γ] ∩ Z[γ−1] such that x ̸∈ A, and let
x =

∑B
i=0 biγ

i =
∑C
i=0 ciγ

−i be such an element for which B is minimal. Then
g = XC(

∑B
i=0 biX

i −
∑C
i=0 ciX

−i) ∈ Z[X]. As g(γ) = γC(x− x) = 0 we conclude
g ∈ fQ[X] since f is irreducible. Hence g = fh for some h ∈ Z[X] by Exercise 6.33.
It follows that an | bB, so we may subtract (bB/an)pB ∈ A ⊆ Z[γ]∩Z[γ−1] from
x, violating minimality of B. From the contradiction, we obtain A = M : M =

Z[γ] ∩ Z[γ−1]. Note that (Z + γZ)n−1 = M, so Bl(Z + γZ) = (Z + γZ)n−1 :

(Z + γZ)n−1 =M :M by Theorem 6.26 □

Example 6.35. Let K be a number field of degree n, R a subring of K, and α,β ∈ K∗.
We will give an explicit expression for Bl(Rα+Rβ). This is particularly interesting
given the fact that if QR = K, every invertible R-ideal can be generated by two
elements (Exercise 6.37). With γ = α/β we may write

Bl(αR+βR) = Bl(R+ γR) = R · Bl(Z + γZ) = R+ p1R+ · · ·+ pn−1R,

Daniël M. H. van Gent 47

where the pi are as in Theorem 6.34.

Exercise 6.36. Let K be a number field and α1, . . . ,αn ∈ K∗. Consider I = α1Z +

· · ·+αnZ ⊆ K and Ri = Z[α1/αi,α2/αi, . . . ,αn/αi]. Show that Bl(I) =
⋂
i Ri.

Exercise 6.37. Let R be a number ring.
a. Show that every invertible ideal is generated by two elements.
b. It follows from (a) that, if R is a Dedekind domain, then every ideal is

generated by two elements. Show that the converse fails for R = Z[
√

3].
c. Show that if every ideal of R generated by two elements is invertible, then

every ideal is invertible.
d. (*) Can you give a global proof of (c)?

6.3. Multiplicative inversion

Definition 6.38. Let R be a number ring in a number field K and let X be a set
of fractional ideals of R. We write C(X), the closure of X, for the set of ideals
of the form I : J, where I and J are sums of products of ideals of X. Write
B(X) = max{a ∈ C(X) : a ⊊ R} for the maximal elements with respect to inclusion.

Lemma 6.39. Let R be a number ring and X a set of fractional ideals such that C(X) ⊆
I(R). Then C(X) is closed under addition, multiplication and division. If X ⊆ Y is some
set of ideals closed under addition, multiplication and division, then C(X) ⊆ Y.

Proof. For (I : J), (I ′ : J ′) ∈ C(X) all of (I : J) + (I ′ : J ′) = (IJ ′ + I ′J) : (JJ ′) and
(I : J) · (I ′ : J ′) = (II ′) : (JJ ′) and (I : J) : (I ′ : J ′) = (IJ ′ : I ′J) are in C(X). The
second statement follows trivially from the definition of C(X). □

Exercise 6.40. Let R be a number ring and X ⊆ I(R) be a subset that is closed
under addition, multiplication and division. Show that X is closed under inter-
section.

Exercise 6.41. Let R be a number ring and let X be a set of fractional ideals of
R. Show that the elements of B(X) are pairwise coprime and that the multipli-
cation map Z(B(X)) → C(X) is injective. Give an example where the map is not
surjective.

Proposition 6.42. Let R be a number ring and let X be a set of integral ideals of R. If
C(X) ⊆ I(R), then C(X) is a free group under multiplication with basis B(X).

Proof. The map f : Z(B(X)) → C(X) is injective by Exercise 6.41. By Lemma 6.39
the set C(X) is closed under addition and inversion. Hence it suffices to shown
using Noetherian induction for each integral a ∈ C(X) that a ∈ im(f), from which
the proposition follows. For a = R this is clear. For a ⊊ R, consider b ∈ B(X)
such that a ⊆ b, which exists by Zorn’s lemma. Then a : b ∈ C(X) is integral and
strictly contains a. Hence a : b ∈ im(f) by assumption and thus a ∈ im(f). It
follows that f is surjective. □

48 Polynomial-time algorithms in algebraic number theory

Definition 6.43. Let R be a subring of a number field K and let X be a set of
fractional ideals of R. A coprime base for X is a set of integral ideals B of R such
that for all b, c ∈ B the ideal b is invertible and b + c = R, and for all a ∈ X there
exist (kb)b ∈ Z(B) such that a =

∏
b∈B bkb .

Exercise 6.44. Let R be a number ring and X, Y be sets of fractional R ideals. Show
that if X ⊆ C(Y) ⊆ I(R), then C(X) ⊆ C(Y). Conclude that if X consists of only
integral ideals and has a coprime base, then B(X) is a coprime base.

Theorem 6.45. There exists a polynomial-time algorithm that, given an order R and
ideals a1, . . . , am ⊆ R, computes the smallest order R ⊆ S for which there exists a
coprime base of Sa1, . . . ,Sam and computes B(Sa1, . . . ,Sam). Equivalently, this S is the
smallest ring for which C(Sa1, . . . ,Sam) ⊆ I(S).

Algorithm 6.46. Construct a complete simple graph G with m vertices and label
the vertices a1, . . . , am. Set S equal to R. Then, for each i replace S by BlS(ai).
While there are edges in G, repeat the following 5 steps:

(1) Choose an edge {a,b} of G and let a and b be the labels of a and b.
(2) Compute c = a + b, replace S by BlS(c) and compute c−1 = S : c.
(3) Add a vertex c labeled c to G and connect it to a, b and those vertices

which are neighbors of both a and b.
(4) Update the labels of a and b to ac−1 and bc−1 respectively.
(5) For each s ∈ {a,b, c}, if the label of s is S, then delete s and its incident

edges from G.
Writing V = {c1, . . . , cn}, the required coprime base is Sc1, . . . ,Scn. The remaining
output can now be computed in polynomial time.

Proof of Theorem 6.45. Most of the proof is analogous to the proof of Theorem 2.7.
Write Sal for S produced by the algorithm, Scl for the minimal R ⊆ S such that
C(Sa1, . . . ,Sam) ⊆ I(S) and Scb for the minimal R ⊆ S such that Sa1, . . . ,Sam has
a coprime base. It remains to show that Sal = Scl = Scb.

From the correctness of the algorithm it follows that Scb ⊆ Sal. Inductively,
one can show that every ideal in the graph of the algorithm at any step is
in C(Ta1, . . . , Tam) for some R ⊆ T ⊆ Scl. Hence Sal ⊆ Scl. Every ideal of
C(Scba1, . . . ,Scbam) is invertible: Since each Scbai can be written as a power-
product of the coprime base, so can every sum, product and quotient of such
ideals, and thus all such ideals are invertible. Hence Scl ⊆ Scb. We conclude that
Sal = Scl = Scb. □

Theorem 6.47. There exists a polynomial-time algorithm that, given an order R in a
number field K and a finitely generated subgroup X = ⟨x1, . . . , xn⟩ ⊆ K∗, computes an
order R ⊆ S, minimal with respect to inclusion, such that for all finite subsets Y ⊆ X the
ideal SY is invertible.

Proof. First compute using Theorem 6.26 the smallest ring S0 for which all ideals
of the form S0 + xiS0 and S0 + x

−1
i S0 are invertible. One can then show locally

Daniël M. H. van Gent 49

that Di = (S0 + xiS0)
−1 and Ni = (S0 + x

−1
i S0)

−1 are integral ideals such that
xiS0 = Ni : Di. Now apply Theorem 6.45 to find the minimal ring S0 ⊆ S for
which C({SNi,SDi : i}) ⊆ I(S). Note that Sxi for all i, hence Sx for all x ∈ X,
and hence SY for all finite subsets Y ⊆ X, is in C({SNi,SDi : i}) and therefore is
invertible. It remains to show this S is minimal.

Suppose R ⊆ T is minimal such that TY is invertible for all finite Y ⊆ X. Equiva-
lently T is minimal such that C({xiT : i}) ⊆ I(T). Clearly S0 ⊆ T since T + xiT and
T + x−1

i T have to be invertible. We have TNi, TDi ∈ C({Txi : i}) for all i by defini-
tion of Ni and Di. Thus C({TNi, TDi : i}) ⊆ C({Txi : i}) ⊆ I(T) by Exercise 6.44.
Hence S ⊆ T . □

6.4. Unit products The coprime base algorithm for ideals gives us algorithms
for the following decision problems.

Theorem 6.48. There exists a polynomial time algorithm that, given an order R in a num-
ber field K, fractional ideals a1, . . . , am and integers k1, . . . ,km ∈ Z, decides whether
there exists an order R ⊆ S ⊆ K such that S

∏
i a
ki
i = S.

Proof. Write ai as a quotient of integral ideals Ni : Di for all i. Compute an
order R ⊆ S and a coprime base c1, . . . , cn for SN1, . . . ,SNm,SD1, . . . ,SDm, as
well as constants such that Ni =

∏
j c
nij
j and Di =

∏
j c
dij
j . Then return whether∑

i ki
∑
j(nij − dij) = 0. □

Corollary 6.49. There exists a polynomial time algorithm that, given elements α1, . . . ,αm
in a number field K and integers k1, . . . ,km ∈ Z, decides whether

∏
i α
ki
i ∈ O∗K.

Proof. Pick any order R of K and apply Theorem 6.48 to α1R, . . . ,αmR. □

We can consider Corollary 6.49 as a weak generalization of Theorem 2.1 to
number fields. The main deficiency of this corollary is that does not decide
whether the product equals 1 but whether it equals a unit. Even when applied to
Q the corollary is weaker.

7. Tame orders

In this section we will define a class of orders which has nice algorithmic
properties.

Definition 7.1. For an order R of degree n write δ ′(R) for the maximal divisor of
δ(R) coprime to all primes p ⩽ n.

Observe that we can compute δ(R) and hence δ ′(R) in polynomial time.

Definition 7.2. An order R in a number field K of degree n is tame if the following
holds:

(1) For all primes p ⩽ n it holds that p ∤ #(OK/R);
(2) The R-ideal R† is invertible;
(3) The Z/δ ′(R)Z-module (R†/R)/δ ′(R)(R†/R) is projective.

50 Polynomial-time algorithms in algebraic number theory

Lemma 7.3. For any number field K the order OK is tame.

Proof. Conditions 1 and 2 are trivially satisfied. For condition 3 it is sufficient to
show that δ(OK), and hence q, is square-free. This follows from Exercise 5.24. □

Lemma 7.4. Let R be a tame order in a number field K and p a prime. Then p | #(OK/R)
if and only if p2 | δ ′(R). Moreover, R = OK if and only if δ ′(R) is square-free.

Proof. This follows from condition 1 combined with Theorem 5.23. □

Lemma 7.5. There exists a polynomial-time algorithm that, given an order R and a
square-free integer d > 0, computes an order R ⊆ R ′ such that all prime ideals p ⊆ R ′

with d ∈ p are invertible.

Proof. We have rad(R/dR) =
∏

p∈spec(R/dR) p, and its inverse image in R is a =∏
p∈specR,d∈p p. Then a is invertible in Bl(a), and so is each prime factor. We may

compute rad(R/dR) using Theorem 5.16, from which we easily compute a. Using
Corollary 6.27 we compute R ′ = Bl(a). □

Lemma 7.6. There exists a polynomial-time algorithm that, given a finite commutative
ring R and an R-module M, computes an isomorphism Rn → M for some n ⩾ 0 if it
exists, or computes an ideal 0 ⊊ I ⊊ R.

Proof. If M = 0, then R0 →M gives an isomorphism. Suppose M ̸= 0. Compute
some non-zero m ∈ M and the homomorphism λ : R → M given by r 7→ rm. If
ker(λ) ̸= 0 we may return I = ker(λ) and we are done. Thus suppose λ is injective.
Then we apply this algorithm to M ′ = M/ im(λ) recursively, which has strictly
smaller cardinality. Hence we either obtain some non-trivial ideal I of R, in which
case we are done, or some isomorphism Rn →M ′. It lifts to some map Rn →M,
and the sum with λ induces a map Rn+1 → M. This gives two exact sequences
and compatible maps down of which the outer ones are isomorphisms:

0 R Rn+1 Rn 0

0 im(λ) M M ′ 0

Hence Rn+1 → M is an isomorphism. Note that the algorithm requires at most
#M/#R recursive steps, and therefore runs in polynomial time. □

Note that the algorithm of Lemma 7.6 is not functorial. If R =M = Z/6Z and
m ∈ M is chosen to be equal to 1, then the isomorphism R → M is found, but if
m = 2 we return the ideal 3Z/6Z instead.

Lemma 7.7. There exists a functorial polynomial-time algorithm that, given an integer
q > 0 and a Z/qZ-module M, decides whether M is projective and if not computes an
integer 0 < d < q such that rad(q) | d | q.

Daniël M. H. van Gent 51

Proof. Compute d = rex(M) as defined in Exercise 3.43. Write M ∼=
∏
i(Z/diZ).

It holds that d = q⇔ for all primes p we have gcd(ordp d1, . . . , ordp dk) = ordp q
⇔ for all i and primes p we have ordp di ∈ {0, ordp q} ⇔M is locally free. Hence
if d = q, then M is projective, and otherwise it is not projective and rad(q) | d | q

with 0 < d < q. □

Algorithm 7.8. Let R be an order in a number field K.

(1) Let q = δ ′(R) and S = R.
(2) Compute a = (1

qS) ∩ S
†. If a is not invertible, update S to Bl(a) and q to

rex(q, δ ′(S)), and repeat step 2.
(3) Using Lemma 7.7 test if a/S is projective over Z/qZ. If not, obtain some

integer 0 < d < q such that rad(q) | d | q, update q to d and go to step 2.
(4) Do as in step 3 with S/a−1 in the place of a/S.

Proposition 7.9. There exists a functorial polynomial-time algorithm that, given an
order R in a number field K, computes an order R ⊆ R ′ such that R ′ is tame.

References
[1] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann. of Math. 160 (2004), no. 2, 781–793.
←31

[2] D. J. Bernstein, Factoring into coprimes in essentially linear time, Journal of Algorithms 54 (2005),
no. 1, 1–30.←9

[3] I. Ciocanea Teodorescu, Algorithms for finite rings, Ph.D. Thesis, 2016.←12
[4] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to automata theory, languages and compu-

tations, 3rd ed., Pearson, 2006.←2
[5] H. W. Lenstra Jr., Computing jacobi symbols in algebraic number fields, Nieuw Archief voor Wiskunde

14 (1995), no. 3, 421–426.←24
[6] H. W. Lenstra Jr., Lattices, Algorithmic Number Theory 44 (2008), 127–181.←17
[7] H. W. Lenstra Jr. and C. Pomerance, Primality testing with gaussian periods, J. Eur. Math. Soc. 21

(2019), no. 4, 1229–1269.←31
[8] P. Q. Nguyen and B. Vallée (eds.), The lll algorithm, survey and applications, Springer, 2010.←17

Leiden University, Niels Bohrweg 1, 2333 CA Leiden
Email address: d.m.h.van.gent@math.leidenuniv.nl

	Introduction
	Algorithms
	Basic computations
	Commutative algebra and number theory
	Exercises

	Coprime base factorization
	Coprime base factorization in number fields

	Finitely generated abelian groups
	Lattices and short bases
	The LLL-algorithm
	The kernel-image algorithm
	Applications of the kernel-image algorithm
	Homomorphism groups of finitely generated abelian groups
	Structure theorem for finitely generated abelian groups

	Computing symbols
	Jacobi symbols in number rings
	Signs of permutations
	Computing signs of group automorphisms
	Computing Jacobi symbols in number rings

	Finite commutative rings
	Polynomial-time reductions
	Trace radicals
	Discriminants
	Proof of the main theorems
	Exercises

	Inverting ideals
	Blowing up
	Inverting subgroups with two generators
	Multiplicative inversion
	Unit products

	Tame orders

