- 1. Draw the graph K(5,2).
- 2. Give a direct proof that $\chi(K(n,2)) = n-2$.
- 3. What is the girth (the length of a shortest cycle) of K(n,r)? What is its odd girth (the length of a shortest odd cycle)?
- 4. The n-ball B^n is $\{x \in \mathbb{R}^n : ||x|| \le 1\}$. The Brouwer fixed-point theorem states that if $f: B^n \to B^n$ is a continuous map then f has a fixed point. Deduce Brouwer from Borsuk-Ulam, by showing that if f has no fixed point then we may obtain a continuous antipodal map from S^n to S^{n-1} .
- 5. Two boys wish to share a ham sandwich, consisting of bread, ham and mustard. By applying Borsuk-Ulam for S^3 , show that it is possible to achieve this with one straight cut, in other words to find a plane that bisects each of the ingredients.
- +6. An *involution* is a function that squares to the identity. Prove that every continuous involution $f: \mathbb{R}^n \to \mathbb{R}^n$ has a fixed point.