GRAVITATIONAL N-BODY ALGORITHMS:
A COMPARISON BETWEEN
SUPERCOMPUTERS AND A HIGHLY PARALLEL COMPUTER

Junichiro MAKINO

Department of Earth Science and Astronomy, College of Arts and Sciences, University of Tokyo, 3-8-1 Komaba,
Meguro-ku, Tokyo 153, Japan

and

Piet HUT
Institute for Advanced Study, Princeton, NJ 08540, USA

F e e cam e, o

1989

NORTH-HOLLAND-AMSTERDAM

ER

200

J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer

Contents
1 IntrodUCHOn e e e 202
2. ATCHItECIUTES . . o v v vt ettt e et e e ettt 203
2.1. Hardware and basic performance characteristics 203
2.1.1. Vector processors: traditional supercomputers 203
2.1.2. A highly parallel computer: the Connection Machine ., 206
2.2. More complex Operationso 209
2.2.1. VeCtOr PrOCESSOIS | . . o uv v v nan e inemmnm s e s s 210
2.2.2. The Connection Machine , ., iuiienn.. 210
2.3. Non-contiguous accessing of thememory 210
2.3.1. VeCtOr PrOCESSOTS v v v v e e aae s vamm e s e 210
2732, The Connection Machine , e on.s 211
PIT BRITE) t1o:t:1 o S 212
3. Algorithms, implementations and performanceo 213
3.1. The gravitational N-bodyproblemoonnnn 213
3.2. Direct summation: a regular communication pattern 214
3.2.1. VECIOT PIOCESSOTS . . o oot vmmeaaiesm e an s me s 214
372.2. The Connection Machine , _ ciiieeennn..n 216
3.2.3. Performance COMPAriSON | i varmrvmmnmne s 219

3.3. Hierarchical tree algorithm: an irregular communication pattern 223

33.0. Thetreecodeo e s 223

3.3.2. VeCtOT PTOCESSOIS . . . o vt v vt veiaee o m v e misamas e 226

3.3.3. The Connection Machine« .. s 228

3.3.4. Performance COMPATISON | i v v n v e cnmnnr s 230

A SOLEWATE . . o et e e e e 232
A1, LanQUAEES . . . ot ieeeeeeaaeeeeae 233
4.1.1. Standard Fortran vttt ee e 233

4.1.2. Vector extensions for Fortran 77 234

4.1.3. The C* language for the Connection Machine 236

4.1.4. Comparison of thelanguages oo 237

4.2, Software enVIrONMENtSottt e e e ae e n e 238
4.2.1. VECIOT PIOCESSOIS o v v s mvan e ce s mmm s m e 238

4.2.2. The Connection Machine . |, s 238

4.2.3. Comparison of software environments, 239

5. DHSCUSSION . o o oot e ettt et e 239
5.0 ReSUIS . o 239
5.2, Applications 240
5.3, CONCIUSIONS . . L o ottt st 241
Appendix A. Speeding up the squareroot 242
Appendix B. Example of C*o 243
References 245

Computer Physics Reports 9 {1989) 199-.246 o1
Nerth-Holland, Amsterdam

GRAVITATIONAL N-BODY ALGORITHMS: A COMPARISON BETWEEN
SUPERCOMPUTERS AND A HIGHLY PARALLEL COMPUTER

Junichiro MAKINO

Department of Earth Science and Astronomy, College of Arts and Sciences, University of Tokyo,
3-8-1 Komaba, Meguro-ku, Tokyo 153, Japan

and

Piet HUT
Institute for Advanced Study, Princeton, NJ 083540, USA

Received 30 July 1988

We evaluate the performance of the Connection Machine, a highly parallel computer with 65,536 processors

and a peak speed of 10 Gflops, on several types of gravitational N-body sirnulations. We compare the results
with similar tests on a variety of more traditional supercomputers. For either type of computer, the most
efficient algorithm for simulating an arbitrary, very large system of self-gravitating particles, such as star clusters
or galaxies, has a force calculation pattern based on a tree structure. This tree structure is highly irregular and
rapidly changing in time. This algorithm therefore presents an extreme challenge for hardware as well as
i software of fast computers. We present benchmarks for this algorithm and also for a much simpler algorithm,
; together with a detailed analysis of the factors which determine the efficiency.
On vector supercomputers we have measured typical tree-code performances to have an efficiency (fraction of
peak speed) of ~1% without handcoding, using vectorizing compilers; a typical efficiency of a few percent when
making special modifications in the basic algorithm and modifications in the code to improve vectorization; and
a maximum efficiency obtained on any supercomputer of <15%. On the Connection Machine CM-2 we found
the efficiency of a straightforward implementation to be ~0.01%; for an handcoded version we reached
i ~ 0.7%; while we predict the present hardware limitations to provide a ceiling of 2 ~ 3% efficiency even with
future software and firmware improvements.

From a hardware point of view, vector pipeling supercomputers and fine-grained parallel computers such as
the Connection Machine are very different. Nevertheless, the structure of optimal algorithms and the efficiency
of their performance is rather similar. The similarity in the structure of the algorithms is a reflection of the fact
that both types of computer have SIMD (Single Instruction Multiple Data) architectures. The rather low
efficiency is the result of the fact that these machines are designed for optimal performance on rather simple
algorithms, e.g. finite difference method using a regular grid.

TR i -

e e S

0167-7977/89/$16.80 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)

S

[N R

202 J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer
1. Introduction

During the last decade, supercomputers with pipeline architectures have formed the most
powerful tool for large scale scientific computations. Their computational power derives from
advances made in two different technologies. One is the increase in switching speed of
elementary components, which increases the speed of any type of operation. The other is the
development of vector pipelines, which makes it possible to execute vector operations very fast.
A vector operation is a single operation which is applied to many elements of an array, by
interleaving parts of the operation, thereby excluding interdependency of the operations on
different elements. This implies that these operations can be viewed equally well as taking place
in parallel. Pipelined supercomputers thus have a SIMD (Single Instruction Multiple Data)
architecture.

Recently, a third technological improvement has appeared, in the form of multiple pipelines
and/or multiple processors. This development is driven by the fact that the speed of a single
processor /pipeline is getting close to the theoretical limit, set by the finite speed of light. For
example, both the Cray X-MP and Cray-2 have four scalar processors and four vector pipelines
which can execute simultaneously, and the ETA-10 has 8 scalar processors each with its own set
of vector pipelines. At present, no Japanese supercomputer has more than one scalar processor,
but all have multiple pipelines which can work in parallel to some extent. Unfortunately, the
introduction of pipelines and multiple processors to speed up the hardware carnies with it a
software penalty: it requires the development of different and more complicated algorithms.

There is yet another way to obtain a large computing power. If we can use a large number of
processors in parallel, the computational speed will exceed that of existing supercomputers, even
for a relatively low speed per processor. This idea is realized in the Connection Machine [1],
which contains 65,536 processors. The Connection Machine system consists of two components,
a processor array and a host machine. Each processor has its own local memory for data storage.
All processors simultaneously execute a single instruction issued by the host machine. Thus, the
Corinection Machine, too, has a SIMD architecture.

From a hardware point of view, pipeline machines and the Connection Machine are very
different. Nevertheless, the characteristics of the algorithmic adaptations and their efficiency are
largely similar for both types of machines. The reason is that both types of machine belong to the
SIMD class, and both show serious bottlenecks for arbitrary patterns of memory access (because
the basic design is always geared towards optimal performance for regular patterns of memory
access). This similarity makes it possible to make a meaningful comparison between the
performance of supercomputers and the Connection Machine.

In our study we have concentrated on the gravitational N-body problem, which plays a central
role in many large scale simulations in astrophysics. In two ways this problem is intrinsically
more complicated than the more familiar hydrodynamics computations. First, individual stars in
a galaxy can move freely around on individual orbits without colliding, i.e. their mean free path
is much longer than the size of the system. Secondly, the gravitational force holding a galaxy
together is a long-range force, which makes it impossible to divide the whole system into subsets
which interact only along the interfaces. Thus both the particle configurations and the
particle—particle interactions are globally interrelated and highly time-dependent.

Notwithstanding these complications, the N-body problem is in principle well structured for

e et e,

s e

J. Makino and P. Hut / Comparison between supercomputers and a highly parallef computer 203

vector /parallel decomposition. The most time consuming part is the evaluation of the gravita-
tional force. The force on any one particle is evaluated independently of the force on all other
particles. Thus, the degree of parallelism at least equals the number of particles itself (at least in
those algorithms in which all particles are propagated in lockstep). On vector processors, this
means that we can use very long vectors. On the Connection Machine, this implies that we can
use a large number of processors.

A very simple algorithm and a fairly complex but potentially more efficient algorithm are
discussed separately. In terms of hardware speed, both supercomputers and the Connection
Machine show a very efficient performance for the simple algorithm, while for the sophisticated
algorithm both show a significant degradation of the performance. This loss of efficiency is more
pronounced for the Connection Machine, because of limitations imposed by the current
software.

In section 2 we give a quick overview of the main characteristics of vector processors and the
Connection Machine. In section 3 we discuss how we can apply these machines to realistic
problems. We discuss the gravitational N-body problem as our main example, and compare the
performance of different algorithms, with a detailed discussion of specific modifications which
can speed up the calculations. In section 4 we augment our comparisons of different computers
by taking into account the programming environment as well. Section 5 contains a discussion of
our results.

2. Architectures

In this section, we give a brief description of the characteristics of vector processors and highly
parallel computers. In section 2.1 we discuss hardware and performance characteristics for basic
arithmetic operations. In section 2.2 we discuss the performance for more complex operations
such as conditional statements and mathematical functions. In section 2.3 we discuss how the
performance is affected by irregular memory access. This last issue is crucial both for pipeline
and for parallel machines. For vector pipelines, to access the memory consecutively is much
faster than to access it randomly. For a parallel machine with processors having their own local
memory, it is much faster for a processor to access its own memory than to access the memory of
other processors. Therefore, random access operations can éasily dominate the total computing
time for complex algorithms.

2.1. Hardware and basic performance characteristics

2.1.1. Vector processors: traditional supercomputers

Vector processors contain three main components: a central scalar processor; a linearly
addressable memory; and vector pipelines. The first two parts work in the same way as in
conventional sequential computers. A vector pipeline is a specialized piece of hardware which
executes vector operations much faster than the scalar processor. For example, consider a DO
loop of the following form:

doi=1N
a(i) = b(i) + c(i)
enddo

%

L5 -'h:""%}%f-&d i

" 2 %&:;'f

204 J. Makino and P. Hut / Comparison between supercomputers and a highly paraliel computer

This is the most basic form of a vectorizable DO loop; one which a vector pipeline can execute.
Each iteration of the loop operates on different elements of the arrays. Therefore the calculation
of the ith iteration does not depend on the result of previous iterations. This implies that all
iterations can be executed in parallel.

With a scalar processor, the time required to execute a DO loop is proportional to the number
of iterations,

T,

scalar

aN, (2.1)

while the number of iterations per unit time, i.e. the rate at which iterations are performed, is
given by

1
Rsca!ar = E . (22)

In a vector pipeline, the time required for the execution of the above loop has the following
form:

Tyoee = b+ eN. (2.3)

veclor

The first term is the start-up time for the pipeline. In addition, the pipeline requires a time
proportional to N to finish the DO loop. The number of the iterations of the DO loop per unit
time for a vector processor is given by

1
Ruwor= 5o =2, (N>1), (24)
In general ¢ < a (the peak performance of a pipeline far exceeds that of the scalar processor),
but b ¢ (this peak performance is not reached for short vectors). Table 1 shows the values for
a, b and ¢ for the above DO loop measured on several vector processors. Note that these values
are obtained for the specific array addition operation described above.

Figure 1 shows R ..., as a function of vector length N for values of b and c in table 1. If N is
small, the pipeline can be slower than the scalar processor due to the start-up time. With larger N
the relative speed of the pipeline increases but saturates for very large N.

From fig. 1 we can see how the values of both b and ¢ determine the actual performance.
However, in many large scale simulations the length of the vectors which appear in the core of
the program is very long. Thus, the value of ¢ is more likely to dominate the performance.

Table 1
Performance characteristic of the vector processors. Unit is microsecond

Machine a b c a/c b/c
Cray X-MP /18 (CFT1.15) 0.39 1.18 0.015 26 80
Cyber 205 (FTN200) 0.35 2.19 .010 35 21%
Hitac S-820 (FORT77/HAP VI1-0A) 0.13 0.40 0.0025 53 161

Facom VP-400 (FORT77/VP V10L20) 0.36 1.55 0.0055 65 280

J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer 205

500 =y L I B B B M A B LS
400 -

R Hitac 5-820

300 |~ —

o 200 |— —
N Facom VP—400

100 - _Cyber 2057

’ Cray X-MP -

1] AU RN NN SN TN NN SN TN NS U0 TN SN N NN T 7

i 0 200 400 600 800 1000

N
Fig. 1. Performance characteristics of several vector processors. The calculation speed for a(i) = b(i) +c(i) is plotted as
a function of the loop length ¥, in unit of Mflops.

Table 2 shows the peak speed of vector processors for various kind of operations. The values
i for simple arithmetic operations indicate the maximum performance possible on a machine. The
peak speed of the division is significantly smaller than addition, subtraction and multiplication,
on all of the listed machines.

Table 2
Speed of vector processors. Unit is Mflops (millions of floating peint operations per second). The iteration count for
i the loop is 10%. All timings are for double precision (64 bits)
: Cray X-MP * Cyber 205 ** Hitac S-820 Facom VP-400
a(i) = b{i) +c(i) &7 100 410 179
a(i) = b(i) * o(i) 66 100 410 179
3 afi) = b+ c(@)*d() ' 133 200 790 358
; a(i) = b(i)/c(i) 25 16 185 61
ai*k)=blisk)+c(i)(k=2) 49 33 615 176
a(i*k) = b(i*k)+cfi} (k = 64) 13 11 24 38
é a(j(iy) = b(i) *** 47 30 140 49
; a(i) = b)) *** 38 30 270 76
s sum = sum ++ b{i) 109 50 626 395
a(i) = sqri(b(i)) 13 16 24 4
if(b(i).gt.0.00a() = b(i) **** 24 25 . 250 68
if(b(i).gt.0.0)a() = b(i) ***** 5 5 50 14

* Cray X-MP /216, 1 processor.
** With 2 pipes.
a(j(i)) etc. denote indirect addressing.
**** The ratio of positive b{i) is 50%.
% The ratio of positive b(i) is 10%.

* ok

it L S S

206 J. Makino and P. Hut / Comparison between supercomputers and a highly parallel compurer

Note that the speed for simple arithmetic operations is usually smaller than the peak
performance as advertised by the manufacturers. There are two main reasons for this decrease in
speed: (1) current vector processors have multiple pipelines; (2) the bandwidth between the main
memory and the vector registers is not wide enough to keep the arithmetic pipelines busy.

For example, a Hitac 5-820/80 has four pipes for addition, four pipes for multiplication, and
four more pipes for addition that are connected to the pipes for multiplication. Thus the total
number of the arithmetic pipelines is 12. The cycle time for the vector unit of a S-820 is 4 ns, and
each pipe can perform one arithmetic operation per clock period. Therefore the theoretical peak
speed of one pipe is 250 Mflops and the peak speed of a whole machine containing 12 pipelines
15 3 Gflops. On the other hand, a S-820 has four pipes for vector load from the main memory to
the vector registers and another four load/store pipes that can be used either as load pipes or
store pipes. These load pipes and load /store pipes also operate with the cycle time of 4 ns. In the
case of a vector addition, load /store pipes are used to store the results. Thus only four pipes are
available to load the vectors from the main memory. This means that the speed for loading the
vectors 1s 1 Gwords/s, because each of the 4 load pipes loads one vector element every 4 ns,
resulting in an effective speed of 1 word/ns. Therefore the speed of the vector addition cannot
exceed 3 Gflops = 500 Mflops, even if there is no extra overhead, because one addition requires
the loading of two vector elements. In general, an operation such as a(i) =b + c(i) * d(i) will be
performed at a speed in between that of single arithmetic operations and the advertised top
speed, as can be seen in table 2.

All manufacturers advertise the peak performance as the speed attained if all pipelines which
can work in parallel actually do work in parallel. In practice, this situation is hardly ever realized
and even for very long vectors the performance is generally significantly smaller than the
advertised peak speed.

2.1.2. A highly parallel computer: the Connection Machine

The Connection Machine contains two major components, the host machine and the processor
array. The host machine is a conventional scalar processor {a VAX or a Symbolics Lisp
Machine). The processor array is a cluster of 65,536 processors, each having 8 kbytes of local
memory for the largest configuration currently available.

There are other machines which fall under the category of “highly parallel” (e.g. the ICL DAP
and the Goodyear MPP). There are, however, two major features which make the Connection
Machine special among highly parallel machines. The first is the number of processors which is
the largest for the Connection Machine. This large number of processors gives it the largest peak
performance, of about 10 Gflops for the case of the CM-2, as advertised by the manufacturer.
The second and more important feature of the Connection Machine is the fact that it has a
general communication network. With the Connection Machine, every processors can commumni-
cate with every other processors via a general communication network.

Two high-level languages are currently available on the Connection Machine: C* and * Lisp.
C* 1s a parallel extension of the language C and *Lisp is a parallel extension of Common Lisp.
Thinking Machines Corporation has also announced that they will support Fortran 77 with array
extensions of Fortran 8X. That implies, however, that in the meantime they will not develop a
“paralellizing compiler” which will automatically generate machine code for the parallel execu-
tion of serial Fortran programs. Most vector processors support some type of vectorizing

J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer 207

compiler which generates vector instructions for serial Fortran programs. In principle this could
imply that the vector processors are easier to use than the Connection Machine. In practice,
however, it turns out that many programs written for scalar machines do not run efficiently on
vector processors. Moreover, it s not clear whether serial Fortran is an appropriate language for
parallel /vector machines. This point will be discussed in section 4.

Independently of the language we use, the Connection Machine operates in the following way.
The parallel variables are stored in each processor. When an instruction for the parallel operation
is issed from the front end, all processors operate simultaneously. However, each processor has
one bit flag called the context flag, which determines its current state of activity. For most
statements only processors with a non-null context flag are activated. Those processors with a
null context flag remain idle. Thus the amount of computation executed by the processor array is
proportional to the number of processors activated. A few statements are unconditional, i.e. they
are executed regardless to the value of the context flag. These unconditional statements are
required, for example, to reset the context flag itself.

The number of processors is currently limited to 64k. This would seem to imply that we should
change our algorithin whenever we would use the Connection Machine for a data set containing
more than 64k elements. However, the Connection Machine provides a complete solution for this
problem, in firmware. It supports a virtual processor system in which the physical memory of
each processor can be divided into n portions in such a way that each processor will simulate »
distinct processors. This virtual processor system is supported on the firmware level, just as
virtual memory is supported on conventional computers. Therefore, user programs need not care
about the number of processors physically available. The speed is, however, slower for a larger
number of virtual processors.

Let us again consider again the array-addition DO loop which we discussed in the previous
section:

doi=1,N"
a(i) = b(i) + c(i)
enddo

Although we use the same notation as before for convenience, please note that the language
used in the Connection Machine does not access the variables stored in the processor array via
such an index. In C*, the statement equivalent to the above DO loop is a = b + c. In Lisp, the
parallel addition is expressed as (+!! b ¢). In Fortran it will be something like a(1 N)=b(1:N)
+c(1:N). In this paper, however, we would like to use one abstract language to describe the
operations on both vector processors and the Connection Machine. Therefore, we use a simple
pseudo-Fortran throughout this paper. The translation from the Fortran-like syntax to the
languages actually used on the Connection Machine is generally straightforward. As an example,
programs in C* can be found in Appendix A. :

For the Connection Machine, the time required to execute the above DO loop is constant, as
long as the number of iterations does not exceed the number of physical processors. To deal with
arrays larger than the size of the physical machine, the Connection Machine stores several
elements of an array in one processor and locally operates on them sequentially. Therefore, the

208 J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer

3000 T T T T T T T T l T ¥ ¥ T ¥
i CM-2)
L _ L i
i : 2000 —
i

i B i
® B i
1000 |- _
L Hilac S-820]

0 7 1 1 1 1 l 1 i 1 1 I 1 1 1 1 I 1

0 10° 2x10° 3x10°

N
Fig. 2. Same as fig, 1 but for the Connection Machine. The curve for the Hitac S-820 is shown for comparison. Note
that the range of the loop length is much wider for this figure than for fig. 1.

time required to execute the above DO loop is given by
N 465,535
TCMMdl:W:I, (2.5)

where [x] denotes the maximum integer that does not exceed x. The number of iterations
executed per unit time can thus be expressed as:

R N
CM ™ d[I\H— 65,535} |
65,536

(2.7)

The value of 4 is considerably larger than the value of a in eq. (2.1) for the front end. In
addition, the value of a for the front end of the Connection Machine (e.g. a YAX 8800) is
significantly larger than that for a scalar processing unit of a supercomputer. The value of 4 is
about 2 ps, and 4= 50 ps. Fig. 2 shows the behaviour of the performance for the Connection
Machine. The main difference between fig. 1 and 2 is that in fig. 2 the performance saturates for
much larger N values. This means that we need to process a large number of data to use the
Connection Machine effectively.

Table 3 shows the speed of the Connection Machine CM-2 for several basic operations. The
numbers in the second column 1s the speed of one processor in kflops (kilo floating-point
operations per second). The third column shows the measured peak speed for 8k processors with
a 4 MHz clock speed, while the last shows the estimated peak for 64k processors for an 8§ MHz
clock speed. The projected speed for the simple arithmetic operations on the 64k-processor

J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer

Table 3

Speed of the Connection Machine. All timings are for single precision (32 bits). The number of data is the same as the

number of processors available

per processor
(kflops, 4 MHz)

8k processors
(Mflops, 4 MHz}

64k processors *
{Mflops, 8§ MHz)

a(i) = b(i) 30 246 3930
a(i) = a(i)+ b(i) 182 149 2390
a(i) = a(i) = b(i) 16.7 137 2190
a() = a(i)/b{) 5.0 41 655
a(j(i)) = b() (best) 2.6 21 340
a(j(i)) = b(i) (usual) 01 5.8 93
a(i) = b(() (best) 11 9 144
a(i) = b(j(i)) (usval) 0.33 2.7 43
a(f) = sqri(b(®)) 2.9 24 130
if(b(3).gt.0.00a() = b{i) ** 26 21 340
(b(i).£1.0.0)a(i) = b(i) *** 0.52 42 68

* All values in this column are estimated from results of timings on 8k processors.
** The ratio of positive b(i) is 50%.
**x* The ratio of positive b(i) is 10%.

machine is quite impressive. These numbers are much larger than that of current vector
PrOCEessors.

We should warn the reader here that the numbers in table 3 are not the actual times needed
for performing operations on the Connection Machine. These timings (and all timings on the
Connection Machine in this paper) are based on the elapsed time as measured on the host
machine. Therefore, they include a small amount of overhead caused by the operating system of
the host machine. Thus, it is possible that we underestimate the performance of the Connection
Machine to some extent. It is of course possible to measure the net time during which the
processor array is actually working. However, we are mainly interested in the practical perfor-
mance of the Connection Machine as a whole, rather than the theoretical speed of the bare
processor array. Therefore we prefer to include the overhead of the front end in the timings.

Also for the Connection Machine, the numbers for simple arithmetic operations are smaller
than the advertised peak speed of ~ 10 Gflops. The reason for this degrading is quite similar to
that discussed for vector processors: the speed of 10 Gflops is attained when all processors
calculate a vector dot-product within the processor. With the dot-product, the floating-point
accelerator operates in a pipelined fashion, and therefore the number of executed operations per
unit time is larger than in the case of a single operation per processor.

2.2. More complex operations

In section 2.1 we discussed performance characteristics of different types of computers for
simple arithmetic operations. Here we extend our discussion to somewhat more complex
operations, such as conditional operations and mathematical functions.

210 J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer

2.2.1. Vector processors

The basic mode of operation of a vector pipeline is to apply the same arithmetic operation tg
all elements of the vector. In practice, however, we need richer set of operations to perform real
work. Most vector processors nowadays provide some way to execute conditional statements and
arithmetic functions. Thus, they can vectorize statements like the following:

a(i) = sqrt{b(i)) (arithmetic functions)
if (b(i) .gt. 0) then
a(i) = b(i)

endif {conditional execution)

Nevertheless, these operations are relatively slow on most vector machines. Table 2 shows the
peak speed for these operations for different computers. Note the rather low performance for
these operations on some machines.

The figures for conditional execution require further explanation. The conditional execution is
slower than its unconditional equivalent for two reasons: (1) the evaluation of the condition itself
takes a considerable amount of time; (2) the conditional vector operations decrease the amount
of computations performed without decreasing the execution time. In the conditional assignment
statement of table 2, the number of the elements copied from array b to array a is smaller than
N, although the time required to execute the vectorized DO loop still obeys egs. (2.3).

2.2.2. The Connection Machine

The Ceonnection machine can also execute conditional statements and arithmetic functions in
parallel. The relative speed of these operations, as compared to simple arithimetic operations is
similar to that of vector processors, as can be seen from table 3.

2.3. Non-contiguous accessing of the memory

Vector processors are designed to operate on vectors. A vector is a set of contiguous addresses
in the memory. Therefore, the access speed of the pipeline for non-contiguous addresses is
significantly slower than the access speed for vectors. In the Connection Machine, each processor
has fast access only to its local memory. It requires a much longer time for a processor to access
memory of other processors. Thus both machines exhibit a similar type of performance
degradation for complex patterns of memory access.

2.3.1. Vector processors
Typical patterns of non-contiguous memory addressing are:
a(k#1) = b(k*1} + c(i) (constant stride}
a(j(i)) = b(1{i)) + (i) (indirect addressing)
sum = sum + b(i) (reduction by summation)

The last type of summation looks like a sequential operation, because the partial sum up to the
ith element cannot be obtained without knowing the partial sum for up to the (i — 1)th element.

J. Makine and P, Hut / Comparison between supercomputers and a highly parallel computer 211

However, most current types of vector hardware provide a relatively efficient summation, by
rearranging the partial summation in such a way that different parts of the array are added in an
interleaved manner. When discussing the speed of, for example, addition on vectors, we have to
discriminate between the time required for the vector addition of two different vectors to
produce a third vector, and that for the summation of all elements of a single vector (“reduction
of a vector under summation”). In both cases, for vectors of length N, the number of operations
equals N and N —1 for vector addition and reduction, respectively. In practice, however, the
amount of time required for reduction is not the same as that for addition. On a vector machine,
reduction of a vector is usually faster than vector addition. A vector addition for vectors of
length N requires access of 3N words. On the other hand, a reduction of a vector of length N
requires access of only N words. Thus, a vector reduction is faster than a vector addition. On a
fine-grained parallel machine, such as the Connection Machine, the situation is reversed. To
perform one parallel addition, each processor simply execute one addition. In order to perform
the reduction, first all processors are configured to a binary tree. A reduction operation is
performed by sending messages through the tree. First the processors in the lowest level send
messages to their parents. Then the processors in the second level add the data that they
received. Then they send data to their parent and this process continues until the processor at the
top of the tree receives the data. The depth of the tree is log, N. Thus reduction is slower than
vector addition by a factor log, N [1,2].

Table 2 also shows the peak speed for these operations. Note that they are much lower than

that of simple arithmetic operations shown in the top of the table, except for the summation-

which is relatively fast. This implies that the actual cost of an algorithm on vector processors
cannot be estimated accurately without considering the cost of memory access. In section 3 we
discuss in detail how this problem affects the performance of different types of algorithms.

2.3.2. The Connection Machine

The most important characteristic of the Connection Machine is that each processor can
access the local memory of any other processor via the communication network.

There are two ways to access the memory of other processors. In one case, each processor
writes a value to the memory of other processors. This is called the SEND operation, because
each processor sends a value to other processors. In the other case, each processor reads the
memory of other processors. This is called the GET operation. Actually SEND is the only basic
operation and GET is implemented via SEND. With GET, first all processors send their
identification number (id) to those processors for which they want to read some of their local
memory. Then the processors which receive the id send the data to the processor corresponding
to that id. This implies that a GET takes twice as much time as a SEND operation.

Table 3 shows the speed for these operations. The indirect addressing with the form
a(j(i)) = b(i) stands for a SEND and a(i) = b(j(i)) stands for a GET. The speed depends on the
pattern of communication. It is high for a regular communication pattern, in which each
processor communicates with a processor which is physically near in the network. Otherwise, it
can take considerably more time.

The GET operation is more complicated to analyze. It is possible that many processors will
request data simultaneously from the same one processor. At the time of our benchmarking, one
processor could receive only one request at a time and would then reply to it individually.

H

212 J. Makino and P. Hut / Comparison berween supercomputers and a highly parailel computer

Therefore, if a hundred processors happen to request the data from a single processor, it takes a
hundred times as long as the time required if all processors would request data in different
processors. A later new version of the microcode, which will be able to deal with this situation
more efficiently, will be provided. With this new microcode, the communication network will
automatically construct a fan-out tree for simultaneous requests to the same processor, and
propagate the data via the tree.

Upon comparing tables 2 and 3, we find that the relative speed of the indirect addressing is
significantly slower for the Connection Machine, although the absolute speed is similar for vector
processors and the Connection Machine. This implies that for a communication-intensive
algorithm, the performance degradation for the Connection Machine is more serious than that
for vector processors. Since the absolute communication speed is similar for both types of
machines, we can reasonably expect that also the attained absolute performance is similar, for
communication-intensive algorithms.

We should mention here that this is a specific problem only for the CM-2. The CM-2 has
almost the same hardware as CM-1,-except for the attached floating-point accelerators (FPAs).
The FPAs increase the speed of arithmetic operations by more than an order of magnitude, while
the communication performance has not changed very much. Thus the performance of communi-
cation and calculation are not well balanced in the CM-2. The peak speed for arithmetic
operations of the CM-1 is around 100 Mflops, which is well balanced with its speed of
comumunication.

Except for the drawback of a relatively low speed, the communication network of the
Connection Machine is significantly more powerful than the indirect-addressing ability of vector
processors. For example, consider the following operation

doi=1,N
a(id(i)) = a(id(i)) + b(i)
enddo

If id(i) has the same value for different values of the index i, vector pipelines cannot guarantee a
correct result. However, the general communication network of the Connection Machine can
deal with this operation, at least for fixed-point numbers at the time at which we performed our
tests. Later implementations will also be able to deal with floating-point numbers.

2.4. Summary

In this section we have discussed in detail the performance characteristics of vector processors
and the Connection Machine. Each type of computer can execute in a non-scalar mode almost
everything that the other type of machine can execute. However, the performance can be very
different, depending on the type of calculation. The peak performance for simple arithmetic on
the Connection Machine is better than that on vector processors. The performance for indirect
addressing, however, is quite similar. The speed for short vector or scalar operations is by far
faster on vector processors.

In the next section, we will discuss how these characteristics influence the performance of
specific application programs.

J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer 213
3. Algorithms, implementations and performance
3.1. The gravitational N-body problem
The gravitational N-body problem is described by the following equations of motion:

d_zi _ E ij(’}‘_"i)

3
de* Jei |'}""i|

: (3.1)

where r, is the position of the ith particle, m; is the mass of the ith particle, and G is the
gravitational constant. Since gravity plays an important role in most astrophysical calculations,
the above equations are encountered whenever one wants to study the detailed behavior of a
gravitating system in a particle approximation. In some of these calculations, each particle
directly simulates a physical object, such as a planet, a star, a gas cloud or a whole galaxy. More
often, individual particles represent a sample of a larger body, such as a fraction of the mass
distribution of a whole galaxy. In addition to eq. (3.1), local interactions can be added, e.g. to
describe hydrodynamical effects. Although we will limit our discussion in the present paper to
purely gravitational forces, it is interesting to’ note an increased use of particle methods to
simulate gravitating fluids, by attaching thermodynamic variables such as pressure and entropy
to the particles as well (cf. [3]).

The most direct approach to solving eq. (3.1) requires N force calculations per particle (the
summation over j), resulting in N* inter-particle force calculations per time step. This is a
reflection of the long-range character of gravity. However, a full N 2 set of force calculations is
very expensive for simulations with high spatial resolution, which require a very large particle
number. For example, with N = 10°, one time step would involve a few times 10" floating-point
operations, or about an hour on a supercomputer with an effective speed of 100 Mfiop. This
number follows from eq. (3.1), in which a typical force calculation can be seen to involve 30 ~ 70

floating-point operations (the uncertainty arising from the machine dependence of the treatment

of the square root operation involved in computing the denominator).

Many solutions have been proposed and implemented to circumvent the prohibitive costs of
naive N-body calculations. These can be classified into two groups:

(a) One type of solutions reduces the frequency at which individual particles have to compute
the total force which other particles exert on them.
{b) Another class of solutions reduces the cost per particle to obtain this total force.

The first type includes the use of higher order integrators and of individual time steps
(particles in denser regions are given shorter time steps). We refer to the review by Aarseth [4] for
a discussion of these methods, and to Makino and Hut [5,6] for a detailed analysis of the
computational complexity of a number of different methods in class (a).

The second type includes a large spectrum of solutions, many of which have built-in
assumptions about geometrical symmetry or near-homogeneity, or become increasingly ineffi-
cient when deviations from homogeneity and simple geometry become large. General references
can be found in the book by Hockney and Eastwood [7], and in the proceedings of a workshop
[8], in which also issues such as vectorization and parallelization of N-body methods were

214 J. Makino and P, Hut / Comparison between supercomputers and a highly parallel computer

discussed. Recently, a new class of algorithms has been developed which does not use grids ang
is free from geometrical assumptions. These codes simplify the force calculation on an individug|
particle, by grouping together the force contribution of other particles in such a way that the -
number of particle-particle force calculations grows less rapidly, typically ~ N log N [9-12] or &
even ~ N [13,14]. These codes are often called tree codes, since they all use some form of 3
hierarchical tree structure for bookkeeping purposes. .

The basic idea of a tree code is to represent the force from distant particles by a multipole
expansion. In the present paper, we will limit our analysis to an O(N log N) algorithm which
only incorporates the monopole moments [12]. This type of tree algorithm will be discussed in
section 3.3, after the discussion of the simpler but less efficient N? algorithms in section 3.2.

3.2. Direct summation: a regular communication pattern

A direct summation code evaluates the right-hand side in eq. (3.1) directly, thereby calculating

the force from each particle onto each other particle. Therefore, the number of forceterms grows
as Q(N?2).

3.2.1. Vector processors
We start our discussion with the following efficient direct summation algorithm for a vector
machine:

"o

algorithm (a): direct method for vector processors

doj=1,N-1
doi=j+1, N in parallel
dok=13
dx{i,k) = x(1,X) — x(j,k)
enddo

S

r2(1) = dx(i,1)* *2 + dx(1,2) * *2 + dx(i,3) * *2

r3inv{i) = 1 /(r2(1) * sqrt(r2(i}))

dok=13
a(L.k) = a(1,k) — dx(i,k) * (m(j)} * r3inv(i))
a(},k) = a(j,k) + dx(i,k) * (m(i) * r3inv{i))

enddo

enddo
enddo

The key word “in parallel”, following the first line of a do loop, indicates that this loop can be
fully vectorized. As we discussed in section 2, a DO loop which is vectorizable on a supercom-
puter can also be executed in parallel with multiple processors. Here and below, initialization of
the form a(i,k) =0, etc, is implicitly understood to have taken place earlier in the program.
Furthermore, the innermost short loops over & are in practice written out explicitly for k=1,
k=2 and k=3 to indicate to the compiler that the i loop is effectively the innermost loop which

AT A R AN

J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer 215
should be vectorized. Note that this algorithm makes use of the fact that the gravitational force is
symmetric, 1.¢.

fii= k-

Figure 3a shows how this algorithm works. The region indicated by a thick line stands for the
) j

_ Fig. 3. Schematic description of direct summation algorithms. The box indicates the N? interactions. The dot—dash

line indicates the self-interaction which must be avoided. The thick line indicates the pair of particles of which

interactions are calculated in parallel. The thin line indicates the interactions which are obtained by using the

Symumetry. Arrows indicate the direction to which the calculation goes on. (2) is for algorithm (a); (b) is for algorithm
(b1); (c) is for algorithm (b2); (d) is for algorithm (b3).

oy e, b s

216 J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer

collection of pairs (i, j), for fixed j and all i values which are treated in parallel (i > j). For
each ({, j) pair, the corresponding force term is added to the partial forces on all particles i. The
thin line stands for the pairs (4, i), for which the force term is obtained by symmetry, without
additional computation; these contributions are all added to the force on the one particle j. The
calculation proceeds in the direction indicated by the arrows, when stepping through the outer
loop.

On a scalar computer, such as a workstation or mainframe, the above algorithm can be used
efficiently as well, with a slight modification: there is no need to use a 2-D array for dx and 1-D
array for 12 and r3inv. Such a scalar version of algorithm (a) can be run efficiently on many
vector machines, since most vectorizing compilers can vectorize the code writlen using scalar
temporary variables, by allocating either a vector register or temporary arrays. In this case, we
can use the scalar version of the code which looks more natural. Here we give algorithm (a) in
the above form in order to show how the pipeline execution of the algorithm takes place.

Algorithm (a) works effectively on all pipeline machines. The average length of the vector
passed to the pipeline is N /2, which is long enough to extract peak performance of most vector
processors for N > 10% The actual performance of this algorithm will be discussed in detail in
section 3.2.3.

Note that here we have shown the algorithm, which is somewhat different from the actual
piece of code. To optimize this algorithm for either scalar machines or vector machines, we
should be careful concerning a number of subtle points. For example, in Fortran an array is .
allocated in the column-major order, i.e. x(1,1) is followed by x(2,1). Therefore, for vector
processors the above example constitutes an efficient implementation, because all vector oper- |
ations are applied on elements in contiguous addresses. However, with a scalar machine which :
includes virtual memory and a small amount of fast memory, the order of the indices should be i
reversed to minimize the memory swapping. In addition, as mentioned above, most of the
vectorizing compilers consider only the innermost DO loop as the target of the vectorization.
With these types of compilers, the innermost loop of algorithm (a) should be unrolled. This
unrolling of the DO loop may also improve the performance of the scalar machine, because it
eliminates the overhead caused by the looping. Thus to extract the maximum performance is not ;
trivial even for a very simple algorithm like the one above. ‘

3.2.2. The Connection Machine
On the Connection Machine, algorithm (a) is not very efficient. The reason is that the line

a(j.k) = a(j,k) + dx(i,k) * (m{i) * r3inv(i))

requires reduction under summation (see section 2.3.1). This summation over the subsequent
elements in a vector does not pose a problem for vector processors, because most vector .
processors can perform reduction under summation at comparable speed as vector addition.
For the Connection Machine, however, the situation is quite different. The parallel additio
takes a constant amount of time (independent of N as long as N does not exceed the number of §
processors). Reduction over summation in a vector (i.e. the summation of N terms in one sum) ¢
takes O(log N) time. This means that for practical values of N, a summation takes at least an
order of magnitude longer than the time required for simple parallel addition. :

il i

J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer 217

We can adapt algorithm (a) by avoiding reduction operations altogether, i.e. by leaving out the
last statement a(j,k) = This implies a doubling of the number of particle—particle force
calculations, but this avoids the penalty of an order of magnitude involved in reductions. Indeed
the following version of the algerithm runs much faster than algorithm (a):

algorithm (bl): direct summation for the Connection Machine (1)

doj=1N
doi=1,N in parallel
if (i.ne) then
dok=13
dx(1,k) = x(i,k) — x(j,k)

: enddo
r2(0) = dx(1,1) * *2 + dx(1,2) * *2 + dx(i,3) * *2
r3inv(i) = 1,/(r2(i} * sqrt(z2(i}))
dok=13
: a(L,k) = a(i,k) — dx(i,k) * (m(j) * r3inv(i))
' enddo

endif
_ enddo
. enddo

- Here, the fact that the loop over / is executed in parallel means that processor i holds in its local
memory the values of x(i,1), x(i,2), etc, and operates on them. With this algorithm, in the jth
.. iteration all processors require data from processor j. This broadcasting is performed by the host
. machine. The host machine first reads the memory of the jth processor and then broadcasts its
. value to all processors. This broadcasting is very fast. Thus this algorithm can extract nearly the
full performance of the Connection Machine. Figure 3b shows how this algorithm works. The
.{ meaning of the lines are the same as in fig. 3a.

~1: We can also make use of the symmetry in the gravitational force through the following
i algorithm:

algorithm (b2): direct summation for the Connection Machine (2)

idol=0N/2-1
> do =1,N in parallel
Jj=modi+1, N)+1

dok=1,3
dx(ik) = x(1,k) — x(j,k)
enddo
12(1) = dx(1,1) * #2 -+ dx(i,2) * *2 + dx(i,3)* *2
13inv(i) = 1/(r2(i) » sqrt(r2(i))
dok=13

a(i,k) = a(i,k) + dx(i,k)* (m() * r3inv(i))
enddo

i
!

218 J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer

if(2 *Lne.N — 2) then
dok=1,3
a(j.k) = a(j,k) — dx(i,k) * (m(j) * r3inv(1))
enddo
endif
enddo
enddo

Figure 3c¢ illustrates this algorithm. In each step of the iteration, each processor requests data
from one other processor (in such a way that no two processors request data from the same other
processor). Then each processor calculates the displacement vector and distance, accumulates the
force, and sends back the distance and the displacement vector to the processor from which it got
the position and mass. Then each processor again accumulates the force (which is symmetric
with respect to the previous force accumulation), using the data it just received. The amount of
calculation is reduced from algorithm (bl) by a factor of nearly two. However, the time to
execute this algorithm on the Connection Machine is actually longer than that of algorithm (b1).
The reason is that this algorithm requires interprocessor communication, which is considerably
slower than broadcasting via the host machine.

We now introduce another algorithm which also requires interprocessor communication, bu
with a simple fixed pattern. With this algorithm, the pattern of communication is a one-dimen-
sional ring. The positions and masses are passed around the ring.

algorithm (b3): ring algorithm for direct summation

do i =1,N in parallel
work _mass(i) = mass(i}
next_in_ ring(i) = mod(i, N} + 1
do =13
work _pos(i,k) = x(1,k)
enddo
enddo
dol=0N-1
do i=1,N in parallel
work _mass{next_in_ring(i)) = work _mass(i)
dok=13
work _pos(next _in _ring(i},k) = work _pos(i,k)
enddo
dok=13
dx(i,%) = x(i,k) — work _pos(i,k)
enddo
r2(i) = dx(i,1) * *2 + dx(3,2) * *2 + dx(i,3) » *2
r3inv(i) = 1 /(x2(1) * sqri(r(1)))
dok=13
a(i,k) = a(i,k) — dx(i,k) * (work _mass(i) * r3inv(i))
enddo
enddo
enddo

J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer 219

Table 4

Comparison of direct summation algorithms on CM

Algorithms Total time Caleulation Communication
broadcast (b1} 159s 12.6 5 (79%) 3.3s5(21%)
N{(N —1)/2 algorithm (b2) 299s 8.65(29%) 21.35(71%)
ring algorithm {b3) 19.9s 12.8 5 {64%) 7.15(36%)

Note: The time is the elapsed time per one timestep. The time for communication is measured by commenting out all
statements involving the calculation.

Fig. 3d illustrates this algorithm. The pattern of the calculations is similar to that of algorithm
(b2), except that the present algorithm does not make use of the symmetry of the force. Here, the
amount of communication required is exactly the same as with algorithm (b2). Nevertheless, with
the actual Connection Machine, the time consumed for communication is significantly smaller.
The reason is that with the ring pattern, most processors communicate with physically near
processors within the network.

Table 4 gives the time required for communication and calculation for each algorithm
described above for the CM-2 with a 4 MHz clock speed (the speed of the machine when we did
our benchmarking), with 8k processors with floating-point accelerators. The number of particles
used is also 8k, to obtain the peak performance of the machine.

From table 4 we can see that algorithm (b1) is the best and (b2) is the worst. Algorithm (b1) is
fastest since the communication time needed is smallest. However, the difference is relatively
small, less than a factor of two. This means that we should consider other factors to determine
which algorithm we should use. With algorithm (b2} and (b3), all communication is performed
by the processor array itself. The host machine simply issue the commands. On the other hand,
the host fetches and broadcasts data with algorithm (b1). Thus, with algorithms (b2) and (b3) we

"7 can run several simulations simultaneously, if the number of patticles N is smaller than the size
~ of the machine. Moreover, we can make several copies of one N-body system. Then, each copy of

the system can calculate a small part of the interaction. After each copy is finished calculating its
own contribution, all results are added to the original N-body system. If the number of copies is- -
much smaller than N, the overhead of making copies and summing the force is negligible.

3.2.3. Performance comparison

Fig. 4 gives the performance of the Connection Machine and several other supercomputers for
the direct summation algorithm. For each machine we express the speed in units of Mfocs, where
1 Mfocs stands for one million force calculations per second. Here one force calculation is
defined as the computation of one interparticle acceleration, without making use of the
symmetry in the acceleration felt by each particle separately. Thus one time step for a N-body
system involves N(N —1) force calculations in our definition. For those algorithms which

1 actually use the intrinsic symmetry, and calculate only half as many accelerations, we simply
* double the measured rate of force calculations to arrive at a Mfocs number. This procedure is
- fair from the point of view of a user, who is not interested in implementation details of the
- algorithm, but instead wants to know the number of time steps which can be performed per
- second. In our benchmarks, we prefer to give a Mfocs number, rather than the direct number of

220 J. Making and P, Hut / Comparison between supercomputers and a highly parallel computer

8o
[t}
i " ‘g -
' ry
60 e]
[
- P, A .
" 1
L [P | .
r %)
S L - ’,: N
A
2 40 1— Vo -
=z PRV
L ISR | N,
Vo S
- 't, ot P,
o
VoA
L v]
T i
20 p— [(_, -l —
VAT Ve
L S e S N
-, 4 L4 4
| 20 R e
Soa [P . . -
s .-"/-’1 !'lfl I/‘ r /’
P -’ Ls I" I’ ” . ’I -
0 .‘”’ -’ // ’ ,/ ’ ,’
O o o o o
E-S- - ‘-\? '-? = P ;’
| 1] s o o o § 0 o
I R T T - T TR - T -
e w 3 B
5 2 2 &£ L BB 1 = <
2 £ £ E 2 &5 & o O
o oL FT N h
N N e 2 n -
= hal ==
= o ==
g g5
@ o
w %)
Zon

Fig. 4. Performance of the direct summation algorithm on various computers, Unit is Mfocs (million force calculations
per second). Solid bars are obtained by measurement. Dashed bars are estimated.

timesteps, since the latter strongly depends on the total particle number N, while the former is
only weakly dependent on particle number.

In fig. 4 we show the speed as measured from a 8192-body system. Algorithm (a) was used for
all supercomputers. The speed is in million force calculations per second (Mfocs). It is defined
as:

where T, is the CPU time in seconds per time step. For the Connection Machine we show the
measured speed for the optimized version of Algorithm (b3) and the estimated time for a system
with 64k processors (which is the maximum configuration currently available). We can see that
even one-quarter of the full Connection Machine offers a performance comparable to that of
present-day supercomputers.

In table 5 we list the results of several experiments which show the performance for each
machine. The number of particles used here is 8k. The first column shows the number of forces
calculated per second m unit of Mfocs (million force calculations per second). The extrapolated
performance for the full configuration of 64k processors is impressive, It outperforms all vector
processors in this table.

The second column gives the effective floating point speed F,,, in real Mflops. To obtain the
numbers in this column, we have counted the number of floating-point operations. The number

J. Makino and P. Hut / Comparison between supercomputers and a highly parailel computer 221

Table 5

Comparison of the performance for direct summation

Machine R force Frcnl ‘F::or £ max Fsup Corav €prac

CM (8k, 4 MHz) 42 118 139 625 0.19 3.6x1072 6.7x1073
. CM (64k, 8 MHz) 67 1883 2228 10000 0.19 3.6X1072 6.7%1073
Cray X-MP/13 58 106 121 210 0.50 5.5%x107?2 2.8x107?2
’ Cyber 205 (2 pipes) 4.5 88 94 200 0.44 51x1072 23x1072

Hitac $-820,/80 28 889 618 3000 0.32 3.3x1072 9.7x1073

Facom YP-400 22 633 375 1160 0.35 3.5%1072 1.9%1072

of division and square root operations is multiplied by weighting factors which reflect the
performance of each machine for these particular operations. The values used are listed in table
6. In the third column we present the corrected Mflops F,,, in which the weights for division
and square toot are scaled to be the same for all machines. The assumed values are 5 for the
division and 10 for the square root. This gives a more reasonable basis for comparison than real
Mflops, though it depends on the assumed values for the factors. In the next column we also give
the peak speed in Mflops F_ ., as advertised by the manufacturers.

One measure of the efficiency of a code on a machine is given by the ratio between the actual
Mflops obtained by the code and the peak Mflops rating of the machine. Denoting this
superficial efficiency measure by e,,,, we have

i _ ‘F;'ea.l
i esup - F ?

max

which is tabulated in table 5. This value, however, does not reflect the actual speed at which the
specified problem can be solved. One reason is that the algorithm used on the Connection
Machine is somewhat different: it requires more computation to obtain the same result.
Therefore a mere comparison of measurements in terms of Mflops is not sufficient. Another
reason is that the ratio of the speed of the elemental operations differs from machine to machine,
as we can see from the difference in F,, and F,,. The net effect of these factors can be
expressed by introducing a gravitational efficiency measure as the inverse of the number of

N
ia

Table §
Factors used to calculate F.,

Machine Divide Square root
CM 3.6 6.3

Cyber 6.25 6.25

Cray 2.73 5.32

Hitac 3.95 295

Facom 293 40.9

222 J. Makino and P, Hut / Comparison between supercomputers and a highly parallel computer

floating-point calculations needed to compute one particle-particle force:

Finally, the practical efficiency of a computer, expressed as the number of practical results
obtained per unit of peak speed, is given by

_ Rforce
sup F 2

THLX

€ 4 €

prac — Egrav

and tabulated in table 5. Note that the Connection Machine yields a practical efficiency
comparable to other supercomputers.

We conclude that the performance of the Connection Machine CM-2 exceeds that of current
vector supercomputers for a direct summation approach to N-body calculations, for N large
enough. As mentioned in section 3.2.2, even for values of N smaller than the number of available
processors, careful coding can reach a comparably high performance. For large N, the most
appropriate algorithm for the Connection Machine is actually simpler than that for vector or
scalar processors.

For completeness, a few technical remarks are in order: (1) On some vector processors, the
cost of the square root operation is rather high, and forms a bottleneck in the force calculations.
In appendix A we discuss a way of speeding up the square root operation, using a
Newton-Raphson approach. When we implemented this method on a Hitachi and a Fujitsu, we
found a speed up of the force calculation of 30 ~ 40%. (2) Our benchmarks on the Connection
Machine stemn from a carefully optimized code, written mostly in low-level language (the
assembly langnage PARIS, rather than C*), since the C* compiler did not yet produce well
optimized code. The difference in speed between the hand-optimized PARIS-C* version and the
pure-C* version is about a factor of two.

What is the implication of our benchmarks for astrophysical applications? We have found a
reasonably high efficiency of the relatively simple algorithms incorporating direct summation,
both on supercomputers and on the Connection Machine. This is encouraging when tackling
problems with a relatively small number of particles, N =~ 10° or even up to N =10* on the
fastest machines. However, for many astrophysical problems a larger number of particles is
needed. For example, we need 10° ~ 10°® particles to model a collision of two galaxies in detail.
Even with the full 64k configuration of the Connection Machine, one time step for such a
simulation would take 0.1 ~ 10 hours. A typical simulation would require at least 10* time steps.
This implies a total run time of 0.1 ~ 10 years. To make matters even worse, a detailed modeling
of this kind requires a large number of experiments, say a hundred or so, to study the
dependence of the results on the various input parameters. This leaves us with an estimate of 10
to 1000 years, a clearly unpractical situation. Fortunately, a tree code can achieve much better
performance here, even with a much lower nominal efficiency in terms of Mflops, simply because
the nzlber of force calculations required can be reduced by orders of magnitude, since the
computational complexity is O(N log N) instead of O(N?) for direct summation codes.

J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer 223
3.3 Hierarchical tree algorithm: an irregular communication pattern

3.3.1. The tree code
The discription of the tree algorithm can be found in ref. [12]. The basic idea is to surround an
individual particle with groups of distant particles, and to compute only one force term which
approximates the force from whole group acting on that individual particle. The bookkeeping for
allocating groups is performed by dividing space into an oct-tree. The whole system is placed
within a master cube, which is divided into eight subcubes. This dividing process is continued
locally and recursively until at most one particle resides in each (Jocally) smallest subcube. These
subcubes containing individual particles form the leaves of the tree. For each individual particle,
groups are chosen as nodes in the tree structure, such that the ratio of their size and distance
does not exceed a prescribed criterion, in a way which can be analyzed regorously. The force
from such a group of particles is then determined by putting the total mass of the group in the
center of mass of that group, thereby neglecting quadrupole and higher multipole contributions
. of the force from that group. The magnitude of these multiple errors is bounded by the
. prescribed criterion. Details are discussed by Barnes and Hut [12,15] and Hernquist [16]. Below
we will indicate a group which obeys this separation criterion with respect to a particle as being
. well separated from that particle. The force calculation part of the tree algorithm then reads:

algorithm (c1): recursive tree-force calculation for particle i

¢ subroutine treeforce(i)
node = root_node
if (the node and particle i are well separated)
force = force from the total mass in the center of mass of the node
else
force = sum of forces from the children of the node
endif
return

We use the following condition to determine if a node is well separated from a particle:

where / is the size of the cube corresponding to the node, d is the distance between the cube and
the particle, and § is the parameter which determines the accuracy and thereby the amount of
computation needed. Fig. 5a shows how this algorithm works. To obtain the gravitational force
on the particle indicated by X, we start from the root of the tree. The root is usually not well
separated from the particle. Therefore, we descend the tree and try to evaluate the total force asa
sum over the forces from the children of the root. If a child-node is well separated, its
contribution to the force is evaluated. If not, we further descend the tree recursively until we
-4 reach nodes which are well separated or leaves which contain single particles (which are by

“t definition well separated).
+ Although the above algorithm is simple and straightforward, it is not easy to implement on
s vector processors or on the Connection Machine. One of the problems with vector processors is

224 J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer

AN

VYAV,
| I

a i b

&b

Fig. 5. Force calculation using the tree. Small circles indicate particles. X indicate the particle on which the force is
calculated. Arrows indicate how the calculation proceeds. (a} is for the recursive algorithm (¢1) and (b) is for the
iterative algorithm (c2).

that the only language which runs efficiently is Fortran, which does not allow recursive
functions. Another problem is that other languages which allow recursion (including some
existing Fortran dialects, as well as the expected new standard Fortran 8X) are not likely to
produce efficient code for algorithm (cl), because recursive function calls are difficult to
vectorize. Thus we have to modify (cl) significantly, in order to use it on vector machines.

On the Connection Machine, a language such as C* does allow recursion. However, a
straightforward implementation of algorithm (c1) would show a very low efficiency. Note that on
the Connection Machine, each particle is assigned to an individual (virtual) processor. In this
way, the forces on all particles will be calculated in parallel, since each processor executes
algorithm (cl) simultaneously. At first, starting at the root, all processors will be active.
However, at each level of descent in the tree, when a certain cell is further subdivided, some
processors will become idle. This happéns to those processors which are associated with particles
for whom that particular cell does not need to be subdivided further. By the time we reach the
smallest cells, the large majority of the processors are idle, and only a few processors,
representing some of the near neighbors to that cell, are still active. But when we realize that the
large majority of the cells actually are small and only contain a few particles, then we see
immediately how terribly inefficient a straightforward implementation of algorithm (c1) is. To be
specific, mosts cells have one or more neighbor particles that require subdivision of that cell. The
number of cells is O(N). Thus the computation time would also be O(N), which would
completely nullify the advantage of the O(log V) algorithm, by degrading it down to a parallel
N? algorithm. Therefore, we are forced to modify the simple algorithm (c1) considerably for the
Connection Machine as well.

The alternative for the recursive implementation of the tree walk is to switch to some form of
iterative procedure. The most obvious choice is the explicit construction of a stack, which
simulates the recursive calls implied in the above algorithm. Another possibility, which avoids

J. Makine and P. Hut / Comparison between supercomputers and a highly parailel computer 225

the use of a stack altogether, is the algorithm described by Makino {17). These two different
approaches to an iterative tree walk can be characterized by the different ways of finding one’s
way out of a maze. The first approach corresponds to keeping a record of each previous choice at
each intersection, and to work one’s way through all choices (keeping an explicit stack). The
second approach would be to follow systematically the wall at the right-hand side, say, which
would lead to a complete traversing of the maze as well (without the need for explicit
bookkeeping). Of course, a tree walk only visits O(log N) nodes, instead of all O(N) nodes; but
otherwise the analogy holds. Fig. 5b illustrates the second approach in the case of a tree walk.
The structure of the stack-less iterative force calculation is as follows (see ref. [17]):

algorithm (c2): force calculation through a stack-less iterative tree walk

subroutine treeforce(i}
node = root_node
while (node .ne. nuli)
: if (the node and the particle are well separated)
: force = force -+ (force from the center of mass of the node)
node = next(node)
else
node = first _ child(node)
endif
endwhile
return

Here we assume that the children of a node form an ordered set. first_child returns the first
element of the set of children of a node. The function next is a bit more complicated: it can
return a brother-node, or an uncle-node, or a borther-of-grandfather-node, etc., depending on
where the linear mapping of the tree continues. To be precise, next is defined as follows:

function next(node)
if (the node is not the last member of the children list of its parent)
next = the next member of the parent’s children list
else
next = next(the parent of node)
endif
return

Before discussing the implementation of the stack-less algorithm on vector processors and on
the Connection machine, let us make a short digression to explain our preference of a stack-less
algorithm over the more natural stack-based iterative scheme. The reasons are twofold: a greater
simplicity of the program, and a significant reduction of the communication overhead resulting
in a speed-up of a few tens of percent on vector machines, and of a factor two on the Connection
Machine.

The simplicity of the stack-less code is easily seen. The only bookkeeping is done through a
. mapping of the tree, immediately after its construction, in the form of a uniquely determined

226 J. Makino and P, Hut / Comparison between supercomputers and a highly parallel computer

linear unfolding. This is much simpler than the bookkeeping which has to be performed in the
case where an active stack has to be kept which changes dynamically throughout the tree walk.
This dynamic bookkeeping involves pushing and popping the stack, operations which require
indirect addressing and a very careful coding to achieve efficiency under vectorization.

The speedup gained from a stack-less code, compared to a stack-based iteration, is a subtle
effect which hinges on the use of a SIMD machine to simulate a MIMD computer. In the
stack-based code, whenever we inspect our new node for each particle in parallel, some particles
will want to open that node to descend to the children, while other particles will want to skip the
children. On a parallel SIMD machine, however, all processors must obey the same instruction,
or else be idle. In either case, each particle incurs a penalty in computing time equivalent to
requesting the information needed to evaluate both the if and the else side of a conditional
statement. Therefore, the effective amount of computer time needed corresponds to a situation
where each processor requests the addresses of all eight children of the node it is currently
looking at, irrespective of whether it will want to use that information. Let us now compare this
situation with that of the stack-less code. Upon inspecting a new node for each particle in
parallel, again each node receives the full information associated with the next links in the chain,
The important difference with the stack-based code is the number of links: instead of eight
children, we now receive the information of only two links: the first child and the next node.
Thus we gain a factor of four in speed for this part of the communication. On the Connection
Machine, it turns out that for the stack-based version roughly half the time required for
communication is actually spent in requesting the addresses of new links to be searched;
therefore, switching to a stack-less code gained us a factor of about two in speed (since the speed
of the Connection Machine CM-2 in the case of tree codes is heavily communication-bound; see
below).

3.3.2. Vector processors

On would expect no difficulty in principle in vectorizing the algorithm (c2), because the force
calculations are executed completely independently for each particle. However, in practice it is
necessary to modify the algorithm significantly to obtain good performance. The main difficulty
stems from the lack of descriptive power of Fortran 77 and from the inability of vectorizing
compilers to recognize when complex code for scalar machines is vectorizable. Another compila-
tion lies in the fact that individual machine characteristics require special modifications to the
bastc algorithm to extract optimal speed. Let us discuss these points in some detail.

The force calculation part of a tree code for scalar processor has the following form:

algorithm (dl): the basic form for a hierarchical force calculation
doi=1n

call treeforce(i)
enddo

Here the subroutine treeforce stands for the algorithm (c2). Most vectorizing compilers cannot
deal with a DO loop containing subroutine calls. Thus, we are forced to expand the subroutine
inline:

algorithm (d2): subroutine call expanded

a2

S
TR

~E o
EE A A

ficeiants

J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer 227

do i=1,n in parallel
while (some condition)
do somerhing
endwhile

enddo
Due to syntax limitations in standard Fortran 77, the while ... endwhile structure needs to be

implemented as a combination of an IF statement and a GOTO statement. The next stumbling
block is the fact that vectorizing compilers cannot vectorize DO Joops containing a backward
GOTO. Nevertheless, we can vectorize this by using yet another trick:

algorithm (d3): while moved out of the loop

while (some condition is true for any of index i)
do i=1,n in parallel
if (the condition)
do something
endif

enddo
endwhile
Note that the first line can be implemented by a vector-if statement and an or-reduction over the
vector. This type of structure is vectorizable by all Japanese compilers, but not by most
American compilers. We should remark here that the efficiency of this algorithm has degraded
for use on sequential machine, because of the extra operations added in order to make the
algorithm vectorizable. Thus, we cannot use the same program on scalar and vector machines, for
this algorithm.

Moreover, there still remains room for improvement. The treatment for the IF statement
varies for different compilers. For the simplest case, all statements under control of the IF
statement are compiled using masking. Only the vector elements with a true flag are subse-
quently processed. This form of execution is similar to conditional execution on the Connection
Machine. In this simplest case, the masked operation requires an amount of time proportional to
the vector length, independent of the amount of calculation actually performed. Thus, if the
fraction of all vector elements which need to be processed is small, the performance degrades
significantly, as was discussed in section 2.2. If the compiler is smart enough, it can separate the
decision process from the state at which actual calculations are performed:
algorithm (d4): vectorization of IF using a list vector
nlist = 0
do i=1,n in parallel

if (some condition)

nlist = nlist + 1
list(nlist) =1
endif
enddo
do 1 = 1,nlist in parallel

do something for list(i)

enddo

228 J. Malkino and P. Hut / Comparison between supercomputers and a highly parallel computer

The first loop produces a list of indices which indicates where further work is needed. The
second loop execute the actual work. With this structure, the O(N) part of the DO loop is
limited to the first loop. In the second loop, the number of iterations is smaller than the length of
the original vector. For those compilers which do not automatically translate (d3) to (d4), we can
improve the efficiency by explicitly rewriting the DO loop containing an IF statement in the
form of algorithm (d4). Of course, this will result in a further degrading of the performance of
that code on a sequential machine.

Finally, some compilers cannot vectorize any DO loop which contains an IF statment. For
these machines, one should rewrite one’s program completely by using the “ vector extensions”
provided by the manufacturer. Unfortunately, at present, no standard exists for the syntax of
“vector extensions”. This implies that code written for a specific machine will run on neither
scalar machines nor other vector machines.

3.3.3. The Connection Machine
Parallelization of the algorithm (c2) on the Connection Machine is quite straightforward:

do i=1,n in parallel
call treeforce(i)
enddo

With these instructions, the compiler automatically produces codes corresponding to algorithm
{d2). In this straightforward implementation, each particle is mapped to one processor. Each
node of the tree is also mapped to one processor. Therefore, the requirement for the number of
processors is larger than the number of particles N. In the force-calculation routine, only
processors mapped to the particles are active, while processors mapped to the nodes of the tree
remain idle. Thus, the efficiency of this algorithm is limited by the ratio between the number of
processors attached to the particles and the total number of processors available. This ratio is
typically about 50%.

Unfortunately, a straightforward implementation of the above algorithm turned out to be
extremely inefficient due to software limitations on the Connection Machine at the time of our
benchmarking. The difficulty appears whenever many processors simultancously request the data
in the same processor. In each iteration of the body of the while loop in algorithm (c2), every
active processor tries to read the memory of some other processor. In the initial step, all
processors assigned to particles request the data of the root node, thereby trying to access the
same procsssor. In general, nodes in the higher levels of the tree are accessed by larger number of
particles than the nodes in the lower levels. Therefore, it is inevitable that the nodes in the higher
levels are accessed by many particles simultaneously. With the current software implementation
for the interprocessor communication on the Connection Machine, all requests for a single
processor are processed one at a time. Thus it takes an amount of time which scales as O(N) in
the worst case in which all processors request the data in one processor. Software improvements
are under development which should reduce this amount of time to O(log N). The maximum
speed possible, however, will not exceed the speed of communication without collision, i.e. the
speed of communication when .each processor request the data from a different processor.

Faced with these current softwares, we first give a theoretical estimate of the performance
which may be obtained with new communication software. Then we discuss the speed obtained

J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer 229

in our actual implementation which contained stopgaps to work around the current software
limitations.

The number of words which one particle requires for one iteration in algorithm (c2) is seven. It
needs the position (3 words), the mass, the size of the cell, and the pointers to the next node and
the first child. The length of the message which can be send in one operation is currently limited
to 6 single precision words (192 bits). With a little bit of hand-coding we can pack these seven
pieces of data into six words. Therefore we need only one GET operation for one iteration in
algorithm (c2). The time required to execute one GET operation is 6 ms for a machine running
on a 4 MHz clock. Note that this implies a communication speed of 1000 words /s, which is
considerably larger than the 300 words/s implied from table 3 for the equivalent operation
a(i) = b(j(i)). The reason is that the time needed to execute one GET operation for a message

~with a length of 192 bits is significantly shorter than that required to execute six GET operations
. each for a message with a length of 32 bits,

The number of the floating-point operation is around 30 per iteration in algorithm (c2). In
other words, the amount of time needed for actual computation is 1.5 ms per iteration in

; algorithm (c2) for a 4 MHz clock. Therefore, the maximum number of force calculations which

e ot

can be cvaluated by a 6dk-processor Connection Machine with a2 8 MHz clock is 8/4 X
65,536,/(0.006 + 0.0015) = 1.7 X 107 or 540 Mflops. This is the maximum peak performance
possible with present hardware. To be more precise, we should take into account two factors: (a)
not all processors are attached to particles, (b) some processors finish their work before others.
Typically both cause a loss of efficiency of about 50%. Thus, we predict a optimal performance
of the tree code on the Connection Machine of about 140 Mflops, when the current software
bottlenecks are removed.

One possibility for working around current software limitations on the Connection Machine is
to maintain many copies of those nodes which are accessed frequently. For example, if each
processor keeps the information of the root node, we can avoid collisions at the initial step

; altogether, because each processor can find the information needed within its local memory, We

: have implemented this idea as follows. After constructing the tree, we count the number of nodes
3 . -

; for each level of the tree. The number of copes N, ; desired of each node at level / in the tree
¢ was simply taken to be

N
]V;:opies,! = [Nnodcs ;]:

-3 where N is the total number of particles, and N,odes,s 15 the number of nodes for level / of the
i tree.

With 8k particles, the worst case of processor access conflict for a typical iteration of

i algorithm (c2) occurs with about ten processors requesting data from a single processor. With
¢ this multiple-copy method, we reached a speed of about 25 iterations of algorithm (c2) per
1 second, for a Plummer model, with a clockspeed of 4 MHz. This implies an effective speed which

is slower than the theoretical limit by a factor of 6. However, with our multiple-copy method, all
“ processors can be attached to particles. Thus we have obtained an relative improvement of

- efficiency of a factor two. Therefore, our modified code is slower than the theoretical limit by

. only a factor of 3, which is quite satisfactory for a temporary fix. The number of iterations of

230 J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer

algorithm (¢2) per force calculation is about 500 for 8k particles. Thus, a force calculation takes
about 20 seconds.

The well optimized direct summation code which we discussed in section 3.2.2 takes only 16
seconds per time step and is still somewhat faster than the tree calculation. For the larger N, the
tree algorithm becomes more efficient, because on the Connection Machine the scaling of the
computation time is O(log M) for a tree method and O(N) for the direct summation method, as
long as the number of particles remains less than the number of processors. The cross-over point
between the tree method and direct summation thus occurred around N = 10% at the time we
used the Connection Machine.

3.3.4. Performance comparison

'The tree algorithm offers a severe test of the flexibility of both hardware and software of fast
computers, because it mvolves a very complex type of memory access. Since the pattern of tree
interconnections exhibits a complex structure which is rapidly changing, no fixed patterns of
contiguous memory storage can be assigned to the variables used in the force calculations. To
make things worse, the higher levels of the tree form bottlenecks for MEemory access.

Given these intrinsic problems, it is not surprising that all fast computers suffer a significant
loss of speed, when we switch from the simple direct summation algorithm to the tree algorithm.
Just how serious this performance degradation is, can be seen from fig. 6, where the highest
Mfocs rate attained for a tree code is lower than that attained for direct summation codes by a

5
4 b ; —
- = .
- I .
- oo -
3 1 ,'!
I VL 1
b 1 “t .
3 VLT
3 {. I N
= L [-
= 1,9 a
- [1
- i —
2 A
L . Vo . _l
- [L t -
14 e LT /1
i~ [oA Lo ’ =
.. MR A Voo [i
” 4 P -
[P LA .
11— P a . -
. P .
- ro. . ’ - - -
- -’ - r
- ', P , L L ’ -
] A ’ P -
- R e L’ i -
L CR L s 'l/ e,
O ~ - kd .
222929 ¢g =7y
T T T & B 7 o 5 ° o
Do = B e & & o = (]
—~ %M w 3 3
= £ 2 L L 2B T £ =
-
= B 5 E & 5 g 3 3
L 2 o []
NN s~ = n Y
—_ N a b o o
o o ©
o g
@ @
woon
= 4

Fig. 6. Performance of the tree algorithm on varions computers. Unit is Mfocs (million force calculations per second).
Solid bars are obtained by measurement. Dashed bars are estimated.

J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer 231

H R i
B 1 “
.
iz - [| -
i3 e
: | i o .
- . -
15 RN oy
3 — 114 s -
B - . 7]
b 8 1 - L4
b 4 - s - -3
o ! -]
' [| v L -
3] g
) =) ' 4 -
1 — = -
o 4 - -
1 = - [I - adhalt 2t -
~ ‘. A
e | - P —
i3 H 1 . P
5 W v, - [4
:] I 1. L -~ L
4 o L e A -
Wl et ™ [. 4
.
W = i, . R4 e .
1 g .
5% Vst ’ - -
I ' P 7 -
-
05 |— [- s]
- . r ’
. . -
b 1. L . ,
[.
L —
.
-

o
T T
(A91) 2-KWO S
. :
s
A Y
A .
N ‘\
<
SN
~ N
~ “_
11 1

(H¥9) 2-KD
(A+9) T-HD
1/dN-X £e1)
¥/dN~X £ea)
{sadtd 2) gpg 1994)
{sedid ¥) goZ 18adD [+
¢ze-S 2%NH
00Z~dA WooRg
0Gt—dA woouy

Fig. 7. Relative speed of the tree algorithm compared to that of the direct summation algorithm on various computers.
Solid bars are obtained by measurement. Dashed bars are estimated.

1 factor of more than 15. Interestingly, in each category of algorithms, the highest speed is attained
”5 by a completely different type of machine. When we inspect individual machines, we see a highly
-~ machine-dependent performance degradation, as indicated in fig. 7.

@‘ We can see that the performance of the Connection Machine with 8k processors is signifi-
ﬁ cantly lower than that of vector processors. The estimated speed for a full 64k configuration is
% comparable to that of vector processors. Table 7 gives more detailed information about the
E%%performance The entries are of the same type as those given in table 5. We can see that both F,,
% and F,, for the tree algorithm are much smaller than those for the direct summation algorithm,

Most vector machines, as well as the 64k Connection Machine, show a similar speed.

L Table 7
t;Comparison of the performance for treecode

R force Eeal Fcor Fmax esup egrav eprac

0.12 38 4.4 625 0.006 3.1 %1072 1.8 x1074

1.84 60 70 10000 0.006 3.1 %1072 1.8 x10™*

0.9 26 31 210 0.12 3.5 %1072 43 x107?

0.8 25 30 200 0.12 32 x1072 40 %1073
Hitac S-820 /80 43 225 146 3000 0.075 1.9 %1072 1.43%10°3

Facom VP-400 17 112 60 1160 0.09% 152x107% 15 x107°

232 J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer

In terms of efficiency, the Connection Machine comes out worst. This is partly because of
current software limitations, as discussed in section 3.3.3. The new software for the inter-
processor communication may speed up the tree algorithm on the Connection Machine by factor
of about 3. Even with that speed, however, the efficiency of the Connection Machine is still
significantly lower than that of the vector machines.

Thus the difference in architecture is responsible for the difference in efficiency. For most
vector machines discussed here, the bottleneck is the indirect addressing. On the Connection
Machine, too, the same part of the algorithm leads to a bottleneck, namely in the interprocessor
communication. As discussed in section 2, the force calculation itself is much faster on the
Connection Machine than on the vector processors. Nevertheless, the indirect addressing in the
vector processors and the mterprocessor communication in the Connection Machine show a
similar speed. This explains why the Connection Machine exhibits a rather low efficiency
compared with vector processors.

Note that even if communication would require no time at all, the efficiency of the Connection
Machine could still not be 100%, unlike vector processors. The reason for the inefficiency of the
Connection Machine lies in the fact that it is very difficult to keep all processors active, as
discussed in section 3.3.3. With vector processors, we can reduce the loss in efficiency caused by
an IF statement by using a list vector (see section 3.3.2). On the Connection Machine, an IF
statement causes a fraction of the processor to remain idle, and there is no general way to make
up for this loss in efficiency. This does not imply that the Connection Machine is less suitable for
a complex algorithm than the vector processors. The most relevant characteristic of a machine 1s
the actual speed at which calculations are carried out, and not the efficiency relative to the peak
performance of that machine. Any specific limitation in the efficiency of the architecture remains
unimportant, as long as the actual performance is high enough. In this sense, the performance of
the Connection Machine is perfectly acceptable, since it is already faster than presently available
supercomputers.

The next generation of supercomputers, such as the Cray-3 and the ETA-10 may or may not
outperform the CM-2. However, the Connection Machine will also evolve. Moreover, there seems
to be more room for improvement for the Connection Machine because it is a completely new
type of computer. Most importantly, increasing the number of processors in the Connection
Machine will not require any change in existing codes, whereas further parallelization of
supercomputers introduces new complications which are still largely unexplored.

4. Software

In section 3 we investigated the performance of different computers in terms of speed of
execution of two different types of N-body algorithms. Although such a performance comparison
forms an important part of the evaluation of different machines, there are other factors which
play an important role in establishing the overall usefulness of a computer. On the hardware
level, the reliability is an important issue. On the software level, there is a vast range in flexibility
and expressiveness of the different languages and dialects offered on current supercomputers anc
parallel computers. Good debugging tools, which are essential for writing and maintaining
complex codes, form another important ingredient in the efficiency with which a computer car

T S R

J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer 233

be used. Also, the frequency and character of bugs in the operating system and in the compilers
contributes significantly to the overall usefullness of a computer. Finally, stability of the
language definition of a vector/parallel extension of an existing language is crucial to guarantee
future use of complex codes.

A comprehensive discussion of quality and reliability issues of both hardware and software lies
beyond the scope of the present paper. Concentrating solely on speed of execution of user
programs, however, would be too limited from the point of view of a scientist trying to select the
most useful computer on which to carry out his calculations. Therefore, we have decided to
report here some personal reflections concerning the programming environments on vector
processors and on the Connection Machine.

4.1. Languages

The two most important considerations in choosing a computer language are flexibility and
historical continuity. Flexibility in adapting an algorithm in an optimal fashion to the hardware
of a machine requires a language with special vector /parallel syntax constructions. Flexibility in
allowing the programmer to express an algorithm in a natural, abstract and modular fashion
requires a modern language based on data abstraction, such as C and Pascal. Historical
continuity, however, is equally important and is often diametrically opposed to the two
requirements of flexibility mentioned before.

There is basically no good solution to the opposing requirements of continuity and flexibility,
and different problems require a different emphasis. For example, it is of crucial importance to
be able to run on a new machine an existing fluid dynamics package written in standard Fortran
with an investment of several person-years. As an altogether different example, consider a
researcher who is starting to implement from scratch a novel algorithm on a new machine. In the
latter case, concern will shift to flexibility requirements, and a parallel C version may be the
language of preference,

Currently, three types of languages are used on vector processors and on the Connection
Machine: (1) standard Fortran 77 with automatic vectorization; (2) Fortran 77 with special
vector extensions; (3) language other than Fortran with vector /parallel extensions. Compilers in
the first category have been supported from the beginning on all Japanese supercomputers, but
only recently on some American vector machines as well. Compilers for Cray and CDC
supercomputers fall mainly in the second category. Compilers for the Connection machine
currently fall in the third category, providing vector extensions for Lisp and C. In addition, C
compilers are beginning to become available on several supercomputers as well. In the following
subsections, we discuss each language category separately.

4.1.1. Standard Fortran

Using standard Fortran on a supercomputer poses a severe task for a compiler, which should
be able to find the potential parallelism in a sequential Fortran program in order to apply vector
Operations wherever possible. The most profitable targets for vectorization are those pieces of
code where a single block of instructions is repeatedly executed. In Fortran such looping
constructs are usually expressed through DO loops. Therefore, standard Fortran compilers
generally take as their targets for vectorization only DO loops. As a consequence, this process of
automatic vectorization is usually called DO loop vectorization.

234 J. Makino and P. Hut / Comparison between supercomputers and a highly paralflel computer

BB o it

Automatic vectorization is a very useful tool since it guarantees continued use of previously
written Fortran programs. In principle, automatic vectorization could further improve pro-
grammer productivity also when writing new codes, since it attempts to make hardware
efficiency considerations transparent o the user. One of the most important advantages of such
transparancy is the possibility to develop and debug codes on a scalar computer, such as a
workstation, before running it on a supercomputer.

In practice, however, automatic vectorization often causes a severe loss of efficiency for any
but the simplest codes. For complex codes, such as the tree codes tested in section 3.3, automatic
vectorization reduced the speed of any supercomputer which we tested down to the lowest
possible speed, namely the scalar speed of the processor. But even for relatively simple and
straightforward algorithms, such as are used in the direct summation codes, special care has to be
taken to guide the compilers into recognizing vectorizable DO loops. In section 3.2 we mentioned
that a simple direct summation algorithm, written for a workstation or a mainframe, would give
terrible performance on any vector machine with automatic vectorization, unless a number of
changes in the algorithm were put in by hand, leading to algorithm (a).

For complex algorithms, the modifications to a scalar code are more extensive, in some cases
Jeading to a complete revisions of the control structure, as discussed in section 3.3. For both
types of algorithms, we saw how the requirement that DO loop vectorization should be
recognizable by the compiler led to unnatural coding. In particular, the fact that subroutines are
not allowed in DO loops which are targets for automatic vectorization makes it very difficult to
write a clean code.

Our conclusion is that current vectorizing compilers have not yet reached their goal of being
able to vectorize relatively complicated algorithms written in a natural way, with clarity for the
human reader taking first priority. Although vectorizing compilers minimize the extent to which .
a scalar code has to be rewritten, the necessary modifications are substantial enough to make the .
resulting vectorizable code unusable on the original scalar machines. The advantages of vectoriz- -
ing compilers are still substantial for typical cases in which we have a large code in which most .
of the computations are done in a relatively small part of the program, so that we only have to
modify the compute-intensive part. '

~.,

4.1.2. Vector extensions for Fortran 77 :

When we want to exert more direct control over the vectorization process, it is possible on .
most vector machines to use a version of extended Fortran which includes special vector;-j
instructions. These language extensions have two main advantages and two main drawbacks. The
major advantage is the possibility to express an algorithm in a way which comes closest to the ;
structure of the underlying hardware of the machine, thereby making it possible to reach higher §
efficiency in the execution of a program. In contrast, when using a vectorizing compiler it i :
! often difficult to understand why the compiler decides not to vectorize certain loops, which
makes it hard to guess how to modify the code to trick the compiler into accepting those 100p5f;§

b

for vectorization. ;
A second advantage is the introduction of a more natural notation for vector operations. For}

example, vector addition can be written in many vector extensions of Fortran as :

real a(N), b(N), c(N)

a=b+c

S

J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer 235

If only part of the arrays should be added, say from the /th to the jth element, the second line
has to be replaced by

m=j—i+1
a(i:m) = b{i:m) + c(:m)

This notation is used for many compilers, and will also be used in Fortran 8X (on a Cyber,
colons are replaced by semicolons).

The major drawback of current versions of vector-extended Fortran is the lack of compatibil-

ity among the different versions currently available on different machines. The introduction of

. Fortran8X hopefully will alleviate this problem. In addition, programs written with the vector

- notation of Fortran8X should run without modifications on scalar machines as well.

A second drawback of current vector dialects is their low-level character, bearing resemblence

more to an assembly language than anything else. For example, the following piece of code
which on a scalar machine reads as

1doi=1k
i a(l@i)) = a(1() + b@)
) enddo

¢ is expressed in Cyber vector Fortran as

ac(1;k) = q8vgathr(a(l;x),1(1,k);ac(l;k))
-1 ac(1;k) = ac(1;k) + b(1;k)
1 a(1;x) = q8vscatr(ac(1;k),1(1,k);a(1,x))

 Instead, a higher-level way of expressing the same idea would be
a(1(1:k)) = a(1(1:k)) + b(1:k)

A realistic example of a more complicated piece of code, which occurs in the quadrupole
version of the treecode discussed in section 3.3, reads on a scalar machine as:

4 phig=(—.5*((dx*»dx — dz*dz)*

4 & quad(i,l) + (dy+dy — dz*dz) »

% & quad(i,4)) — (dx*dy * quad(i,2) +
= & dx=*dz=+quad(3,3) + dy+dz*

| & quad(i,5))) *r5inv

On the Cyber, we had to replace this line by

phiq(1;n) = (—.5*((dx(1;n) *dx(1;n) — dz(1;n) * dz(1;n)) *
& quad(1,1;n) + (dy(1;n)*dy(1;n) — dz(1;n) * dz(1;n)) *

& quad(1,4;n)) — (dx(1;n) *dy(1;n) * quad(1,2;m) +

& dx(1;n) *dz(1;n) * quad(1,3;n) + dy(1;n) * dz(1;n)*

:_v& quad(1,5;n))) * rinv(1;n)

T e

g
i

,”}f{

There is obviously room for improvement in the notation. For example, it is clear that in one
ector statement the length of all vectors involved should be the same. Thus a vector language
hould not require the user to specify the length for each vector separately. In addition, the

A LB R At VR A v s T e AT 0

236 J. Malkino and P. Hut / Comparison between supercomputers and a highly parallel computer

notation would be less cumbersome if there would be a default interpretation for the starting
address of a vector in the form of its first element. These two improvements would take away
much of the assembly language flavor of the above expression, and instead would lead to
something along the lines of

phig(1;n) = (—.5*((dx*dx — dz*dz) *
& quad(,1;) + (dy*dy — dz*dz) *
& quad(,4;)) — (dx*dy=*quad(,2;) +
& dx*dzxquad(,3;) + dyxdz*
& quad(,5;))) *151nv

4.1.3. The C* language of the Connection Machine

The C* language [18] is developed by Thinking Machines Corporation, the company that
manufactures the Connection Machine. Although C* is currently only implemented on the
Connection Machine, it is a completely general parallel extension to C, and could equally well be
implemented on vector machines as well as on other parallel architectures.

C* is a superset of C, and the data storage and computation on the frontend of the
Connection Machine are controlled by the same syntax as in C. To store variables in parallel, in
the local memory of the processor array, C* introduces the concept of a “domain”, which has
the identical syntax for declaration and referencing as the usual C “struct” construction for data
structure. For example, the following code declares the basic data structure for an N-body
system, and allocates N processors for that system:

domain particle{

double position[3}];

double velocity[3];

double mass;
}point[N};
Here is an example of a simple piece of parallel code, which updates the positions of all particles
in an N-body system, simply by multiplying each velocity by a common constant small time
step, and adding these values to the corresponding positions:

void particle::forward _euler . position{dt)
monao double dt;

(

mono int k;
for(k == 0;k < 3;k + +)}
position[k] + = velocity[k]*dt;
void main()

double dt;

[domain particle].{

J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer 237

forward _euler _position(dt);

The domain is actually implemented as a class in the C + + language [19] which itself is an
extension of C which has been available on scalar machines for several years. C + + is a superset
of C which is designed to facilitate a more object-oriented style of programming. The declaration
form for parallel functions in C* is the same as that for the member functions in C+ +. The
calling sequence is also similar. However, the reader does not need to be familiar with C+ + to
understand the C* language, although some knowledge about the former might make it
somewhat easier to understand the latter. ,

In the first part of the code shown above, we declare that we use the structure particle as the
target for parallel execution, and that we allocate N processors for that parallel target. In the

- parallel code, the parallel operations are expressed as operations on members of the domain,

R g)

M B

which are in this case position, velocity, and mass. All allocated processors have their own
position etc. When the parallel code is executed, all processors operate on their own variables.

The keyword mono is used to indicate that a variable is not a parallel variable, but instead
should be allocated in the main memory of the front end computer. By default, the variables
declared in the body of the parallel functions are stored in the array processor and are therefore
processed in parallel.

In the example above, the for loop is controlled by a mono (i.e. scalar) variable. This
construction is not the only one allowed: a poly (i.e. parallel) variable can be used as well as
contrel variable. This means that the number of iterations does not need to be equal for different
processors. Actually we can write any control statement that is provided in standard C within the

i parallel code (even the goto statement will be supported!). This has the enormous advantage that
; we can write parallel pieces of code in the same style in which we are used to write our sequential
7 programs. The only thing we need to add in order to execute such a piece of code in parallel is to
4 add a declaration to that, effect at the point where the functions are defined.

i 4.1.4. Comparison of the languages

When we use automatic DO loop vectorization of standard Fortran 77, we are forced to write

1 every statement in such a way as to make sure that the compiler can recognize them as
3 vectorizable. When instead using vector extensions of Fortran 77, we can write vector statements
1 in a somewhat more natural way. The main drawback is the limited set of control structures in
¢ most vector-extended Fortran dialects. In addition, as discussed in the previous section, the

notation used in the vector extensions is not very easy to read or to use.
In our opinion, the C* language is clearly superior in terms of flexibility and clarity. The main

i drawback is the lack of historical continuity, given the fact that most computer codes in physics
¢ have been written in Fortran. This problem is not relevant, though, when developing new codes
i for parallel computers. In fact, the transformation of codes from more traditional supercom-
1 puters to fine-grained parallel computers gives the physicist an ideal opportunity to step out of
 his nineteen-fifties based software straightjacket.

238 I. Makino and P. Hut / Comparison benween supercomputers and a highly paraflel computer

Let us summarize the main difference. (1) Supercomputers offer historical continuity by
providing Fortran compilers. While useful in itself, this also introduces serious problems in
writing an essentially parallel algorithm in standard Fortran in an automatically “ vectorizable”
form (cf. section 3), so that it can be executed effectively on supercomputers. (2) The Connection
Machine currently lacks a Fortran compiler, although one will be provided in the future,
However, it turned out to be fairly straightforward to write down our algorithms in C*, since C*
is both a natural language in which to express parallelism as well as a strict superset of existing
C. The only (temporary) drawback 1s that we were forced to modify our algorithms to work
around current software and firmware limitations.

4.2. Software environmentis

4.2.1. Vector processors

In general, a supercomputer user has no direct access to the vector processors. Instead, she can
communicate only with a front end computer, which is connected with the vector machine
through a communication channel, and sometimes via shared secondary storage such as magnetic
disks. Thus the interactive front end and the number-crunching back end form a loosely coupled
network with the front end processor which takes charge of everything other than the execution
of user programs.

In such an archaic, non-interactive setup the user cannot communicate directly with the vector
processors. Instead, she first has to prepare her jobs on the front end computer, then submit it to
a batch job on the back end computer, and finally wait for the vector processor to return some
result, Only after inspection of the resulting data on the front end she would know whether the
run has been succesful. To make matters worse, there are still a fair number of sites where the
front end computer itself has an outdated type of mainframe operating system which is much
less flexible than current workstation software.

The usual reason given for such an old-fashioned approach to computing has been the
argument that supercomputers are mostly used for long-running number-crunching calculations,
which take hours to finish. And indeed, a fully debugged and streamlined code may not require
interactive access to a supercomputer in order to be applied efficiently. However, in developing
such a code, interactive debugging sessions would be extremely helpful.

In addition, supercomputers could equally well be used to speed up calculations which can be
done perfectly well on workstations overnight, but would take only a few minutes on a
supercomputer. Being able to explore interactively a wide range of parameter space, for problems
which would take many days of tedious bookkeeping of batch jobs on workstations, would be a
second great advantage of interactive use.

Indeed, the first steps are now being taken to provide supercomputers with direct interactive
access. For example, Cray is developing a version of UNIX, called UNICOS, which is already
available on both their Cray-XMP and Cray-2 families. In addition, E.'T.A, Fujitsu and N.E.C.
have announced that they are developing versions of UNIX.

4.2.2. The Connection Machine
The Connection Machine, tco, offers the user a front end through which to access the
computer (either a Symbolics Lisp Machine or Vax 8800,/8600 running Ultrix). However, the

R

R R

J. Makino and P. Hut / Comparison between supercomputers and a highly parallel compurer 239

similarity with most supercomputers ends here. For the Connection Machine, the front end itself
executes the program, and the parallel processor part of the machine mainly functions as “smart,
active memory” for the front end. This has several advantages from the user point of view. First
of all, the Connection Machine is fully interactive, because the user can directly log in on the
front end. Secondly, a program running on the Connection Machine is actually executed on the
front end, in the same way as a traditional program. Thirdly, it implies that any Programming
tool that is available on the front end can directly be used to develop programs for the
Connection Machine system.

4.2.3. Comparison of software environments

The Connection Machine currently offers a much more interactive software environment than
traditional supercomputers. Recently, however, some supercomputer vendors have begun to
support some version of the UNIX operating system on their supercomputers. Even so, the
software environments on supercomputers are likely to remain less flexible than the Connection
Machine environment, mainly because of the last point mentioned in section 4.2.2: within the
Connection Machine system all workstation tools are fully available. It is unlikely, for example,
that a full implementation of Berkeley UNIX features will be available on any vector supercoms-
puter in the foreseeable future.

5. Discussion
3.1, Results

We have evaluated the performance of the Connection Machine on two types of gravitational
N-body algorithms, followed by an evaluation of the same algorithms on a variety of supercom-
puters. Our measurements reflect the state-of-the-art software of the Connection Machine during
the fall of 1987, while the supercomputer benchmarks were performed during the spring and
summer of 1988. Of the algorithms tested, the simpler type is based on a direct N2 form of
computing all gravitational interparticle interactions between N particles. The second, and
considerably more complex type of algorithm is based on a hierarchical tree approach, in which
the number of interactions calculated grows only in proportion to N log N [12].

We have found that tree algorithms are more efficient than direct N? type algorithms for
particle numbers N > 10% ~ 10, both on the Connection Machine and on supercomputers. In
contrast, on scalar machines such as workstations or mainframe, the turn-over point between the
two types of algorithm is reached for particle numbers N = 102-10°, This already forms an
indication that the computing speed obtained for the tree algorithm is much lower than the peak
;&ecd, by an order of magnitude or more, for vector processors as well as for the Connection

achine,

Specific measurements of efficiency, defined as that fraction of the advertised top speed which

;COUJd actually be obtained, gave the following results. On vector machines, the efficiency of the

tree algorithm was in the range 5~ 15%. This speed was attained only after we modified the

4 Dasic algorithm to a vectorizable form. The initial efficiency, without any modification of the
2 scalar code, was typically ~ 1%.

240 J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer

On the Connection Machine CM-2, we obtained an efficiency of ~ 0.7%. This speed was
again attained only after extensive modifications of the basic algorithm in order to work around
the software Jimitations which were present at the time of our benchmarking. At the time this
article appears in print, these limitations are expected to be largely remedied, and the predicted
efficiency will then be 2 ~ 3%, or a factor 2 ~ 5 lower than that of vector computers.

For both types of computers the reason for the low efficiency is the same, and can be traced
back directly to the complicated pattern of communication in the tree algorithm. As a result,
communication bottlenecks cannot be aveided, both on the Connection Machine and on
supercompuiers.

The absolute speed of the tree algorithm is, however, largely similar on the Connection
Machine and on supercomputers, simply because of the larger raw speed of the Connection
Machine which tends to cancel the lower efficiency (see fig. 6). Moreover, the price of the
Connection Machine compares favorably with that of top-of-the-line vector computers. For
small particle numbers, for which the simpler N? algorithm can be used, the Connection |
machine performs even better, reaching higher speeds than any of the vector computers which we ;g
have benchmarked (fig. 4).

3.2, Applications

Large-scale model calculations in astrophysics are among the most demanding types of
computation in physics. The main reason is that gravity plays a dominant role on nearly any
scale of interest for astrophysicists. As mentioned in the introduction, gravity introduces two i
extra complications which are not present in the more familiar hydrodynamics computations: ;
mean free paths are longer than the size of the system, and gravity is a long-range force. In other
words, if we would start with a simulation of a gas on the level of molecular dynamics, a
transformation to the astrophysical N-body problem would eliminate the direct physical colii-
sions and extend the range of interactions throughout the whole system. The first effect would
imply that a particle could traverse the whole system on a dynamical time scale, while still
retaining 2 good memory of its initial conditions, while the second effect implies that the
particle—particle interactions are globally interrelated and highly time-dependent.

Another reason why astrophysical simulations are so demanding in terms of computer speed
requirements is the essentially three-dimensional nature of many calculations. For example, a
realistic simulation of colliding galaxies requires a fully 3-D approach, unless one would choose
to study only the very special case of an exactly head-on encounter between galaxies with
cylinder symmetry, oriented along the encounter axis.

Yet another complication which arises in almost any type of astrophysical modeling is the
simultaneous occurrence of vastly different densities in different parts of the simulation. Whether
one studies individual stars, gas clouds, or whole galaxies or clusters of galaxies, any self-gravitat-
ing system tends to develop strong density gradients. This is a significant difference with most
laboratory experiments in physics, where a small portion of material is studied, often under
near-homogeneous conditions. One example is convection, for which almost all results, theoreti-
cal as well as experimental, are obtained in the homogeneous approximation, a limitation which
is most flagrantly contradicted in the interior of any star, and which has lead to a serious
bottleneck in our understanding of stellar structure and evolution.

J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer 241

Similarly, in N-body experiments, self-gravitating ageregates of stars tend to spontaneously
develop core—halo structures, which puts severe demands on the number of particles used in the
gimulation in order to simultaneously resolve all parts of the system, and on the range of
individual time steps needed to resolve the different parts of the system in time as well as in
space. For example, the encounter of two realistic disk-galaxies requires a minimum of several
times 10* particles in order to provide sufficient resolution to follow the detailed evolution of the
different components in each galaxy: their bulge, disk and halo [20].

The number of floating-point operations for such realistic encounters for disk galaxies can be
estimated for a tree code as follows. (1) A single particle-node force calculation carries a

" computational cost of 30 ~ 70 floating-point operations. These numbers follow from eq. (3.1),

where a single acceleration contribution can be seen to involve fourteen floating-point oper-
ations, and three more operations to accumulate the total force (apart from a square root
operation, the cost of which is highly machine-dependent; cf. table 2 and appendix A); a typical
particle receives of order ~ 10° force terms arising from other particles and cells; (3) the number
of particles in the system is 10* ~ 10%; (4) the number of total force calculations per particle per

- crossing time, which equals the number of time steps in integration schemes of the leap-frog and

multi-step types, is a few times larger than the ratio of the .size of the system and a typical

* interparticle distance, resulting in a number ~ 10%%; (5) the number of crossing times needed to
- describe a galactic encounter from beginning to end is of order 10! ~ 102, depending on the
¢ desired degree of detail in the description of the encounter products. Multiplying all these
- numbers, we find a total cost of ~ 10" floating point operations per galactic encounter.

We conclude that a detailed study of galaxy encounters requires sustained access to a

- computer with a speed of about 100 Mflops, or alternatively periodic access to a computer in the

Gigaflop range, in order to perform one scattering experiment per day. This requirement is
dictated by the need to perform detailed parameter studies in which some of the many properties

- of the initial galaxies are changed in order to study their effect on the outcome of the collision. It

A s Wy

[

is immediately clear that such types of investigation can only be carried out on supercomputers
or high-performance parallel computers such as the Connection Machine. From the performance
characteristics given in table 7, we can see that even the fastest supercomputers, as well as the
Connection Machine, are currently barely able to provide the sustained 100 Mflops speed for our
tree codes. Therefore, in a time-sharing environment, comprehensive parameter studies of
realistic galaxy ‘encounters will have to await the availability of computers faster than those

¢ benchmarked in the present paper.

In addition, many other problems in astrophysics are still well beyond present-day computa-
tional capabilities. To mention just one other example, the computation of a single evolutionary
history of a globular cluster on a star-by-star basis requires a number of floating-point
calculations of order 10 [5,6,21]. Even if we have the patience to wait several months, and if
other users do not revolt, we still need a machine of Teraflop speed. Although this exceeds the
advertised speed of current computers by two orders of magnitude, such speeds are already
within range of current hardware and software technology, as discussed below.

: 3.3. Conclusions

Our main conclusion is that the Connection Machine offers superior performance over vector
supercomputers, on the level of net computational speed-per-doliar obtained for N-body codes

242 J. Makino and P. Hut 7 Compurison between supercomputers and a highly paralilel computer

of different types. In addition, the software environment on the Connection Machine system has
the flexibility and interactivity of modern workstations, in contrast to most supercomputer
systems. The main drawback of the Connection Machine at the time of writing of this paper
(spring 1988), from the point of view of most physicists, is the current lack of a Fortran compiler,
This implies that the Connection Machine offers significant advantages for those who want to
develop new codes from scratch, as well as for those who have developed their codes in C or
Lisp.

Older physics codes, which are generally available only in Fortran, may be more conveniently
run on supercomputers, depending on the amount of labor involved in translating the codes from
Fortran to C*, As soon as a parallel Fortran compiler will be available on the Connection
Machine, however, the labor involved in a transition from a workstation to a Connection
Machine is expected to be comparable to that of the transition from a workstation to a
supercomputer.

An extrapolation of our results to the near future would suggest a very fruitful combination of
the two types of technologies currently used in the Connection Machine and in vector supercom-
puters. When processors of supercomputer power would be connected in a fine-grained grid,
using the type of software which already exists on the Connection Machine, Teraflop speeds are
clearly within reach — without any novel development being required on either the hardware or
the software side. Although the bottleneck would shift from the technological to the economical
aspects of computer building, mass production of powerful computers would certainly make the
price/performance of such “fine-grained supercomputers” far superior than that of either the
current Connection Machine, or existing supercomputers.

Acknowledgements

We thank Joshua Barnes for useful discussions and critically reading the manuscript. We also
thank Danny Hills, Brewster Kahle, Jacob Katzenelson, Gerald Sussman, and Feng Zhao for
stimulating discussions concerning the Connection Machine.

We acknowledge the following institutions for providing us with computer time: the Computer
Center of the University of Tokyo (Hitachi S-820); the Institute for Supercomputing Research
(Cray X-MP; Facom VP-400); the John von Neumann National Supercomputer Center (Cyber
205); Thinking Machines Corporation (Connection Machine). We appreciate the hospitality of
the above organizations, as well as the Institute for Advanced Study, the Massachusetts Institute
for Technology, and the University of Tokyo, where parts of this research have been carried out.

Appendix A. Speeding up the square root
On some vector processors a square root calculation is surprisingly slow. Here we present a
reasonably fast algorithm to replace the standard square root operation provided by the vendor.

The following iterative formula converges to r~' quadratically:

=34, ~ Yalrt (A1)

J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer 243

Table A1

Machine Gain in speed (%)
Hitac $-820/80 3

Facom VP-400 28

For this formula to converge, the initial guess a, should satisfy the condition 0 < a, <37}
This scheme is faster than the usual Newton-Raphson formula to obtain » from r2, because it
does not require a division. Moreover, because what we need is r~!. we can eliminate the division
from the whole calculation. The main problem remaining is to obtain a reasonable initial guess.
For the Newton—Raphson iteration the following expression gives a good starting value:

_ Ixl+iylt+|z|

o™ ﬁ (A.Z)
The initial guess for »~' is obtained by the following:
2r
= A3
o r02 +r? ()

Table A.1 gives the speed-up by the above scheme over the standard square root, for the direct
. summation algorithm we discussed in section 3.2.1. The speed-up is about 30% for both
.machines.

During the numerical integration of the gravitational N-body problem, we have a very good
‘initial guess, namely the value of the distance at the previous time step. The one drawback of
.using the interparticle distances from the previous time step as initial guess is that this requires
'O(N?) memory storage. The current vector processors provide a very large amount of memory of
.more than 10 Mwords. This is large enough to store all distances for a few thousands particles.
‘By using this trick, we can eliminate the cost of the computation of the initial guess completely.
‘The estimated speed-up by this technique is roughly an additional 30%. Unfortunately, we could
‘not apply this technique to galaxy—galaxy scattering experiments. In that case, the time step is
-large. For particles that are very close to each other at one time step, the distance at that step is
[not a safe initial guess for the next step.

1

EAppendix B. Example of C*

Here we present a non-trivial example of a C* program. We give two functions both of which
;;form an implementation of the direct summation algorithm (bl) in section 3.2.2. The first one is
-written entirely in C*. The second one extensively utilizes PARIS (the assembly language for the

Connection Machine) to obtain maximum speed.

244 J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer

Example of C* code — without using PARIS:

B void node_domain::cale. accel _broadcast_all_c_star()
{

; int myindex;
: mono it Lk;
REAL dx{NDIM];
acc[0] = acc[1] == acc[2] = 0.0; / * clear acceleration * /
potential = 0.0; / * clear potential * /
'myindex = (int) this - (int) &node[0];
/ * obtain index of the processor itself * /
/ * ’this’ is the pre-defined variable * /
/ * that has the processor’s address* /
if(myindex > = 0 && myindex < nbody){ /+* deactivate unused processors * /

for (i=0; i <nbody; 1 + +){ / * loop over all particle * /
REAL rsq;
REAL pot, rsqinv, rinv;
if(myindex ! = i){ /* avoid self interaction * /
IS¢ = eps2;

for (k=0; k < NDIM; k + +){
dx[k] = node[i].position[k} — position[k]; /* displacement % /
rsq + = dx[k]*dx[k]; / * r-squared * /

}

rsqinv = 1.0, /1sq;

rinv = sqrt(rsqinv);

pot = node[i].mass * rinv;

potential + = pot; / * accumulate potential * /

pot#* == rsginv;

for (k=0; k < NDIM; k+ +) { /* accumulate acceleration * /
acclk] + = pot*dx[k];

Example of C* code - using PARIS:

void node_domain::calc_accel _broadcast()
{
int myindex;
mono int ik, mes_len;
REAL dx[NDIM], dxdum{NDIM], host_work[NDIM + 1];
REAL rsq, r_work[NDIM + 1];
REAL pot, rsqinv, rinv;

J. Makino and P. Hut / Comparison between supercomputers and a highly parallel computer

REAL r_work2[NDIM + 1];

mes_len = (NDIM + 1)* REAL _LEN;
"acc[0] = acc[1] = acc[2] = 0.0;

potential = 0.0;

myindex(int} this — (int) &node[0];

for (k =0; k < NDIM; k+ +){
r..work[k] = position[k];

r_work[NDIM] = mass;
if(myindex > = 0 && myindex < nbody}{
for(i=0; i < nbody; i+ +){
if(myindex ! = i}{
CM _read_string_from _processor(host _work, &nodeli],
r_work,mes_len);
CM _move_string_constant(r_work2, host_work, mes_len);
rsq = eps2;
CM _move(dx, r_work2, REAL _LEN * NDIM);
for (k =0; k < NDIM; k + +)}{
CM _f_subtract(&dx{k], &position[k], SIG_LEN, EXP_LEN);
CM _move(&dxduml[k], &dx[k], REAL..LEN);
CM _f_multiply(&dxdum[k], &dx[k], SIG_LEN, EXP_LEN);
CM_f_add(&rsq, &dxdum[k], SIG_LEN, EXP_LEN);

)
CM _f_move_constant(&rsqginv, 1.0, SIG_LEN, EXP_LEN);
CM _f_divide(&rsqinv, &rsq, SIG_LEN, EXP_LEN);
CM _f_sqrt(&rinv, &rsqinv, SIG_LEN, EXP_LEN);
CM _move(&pot, &r_work2[NDIM]}, REAL_LEN);
CM _f_multiply(&pot, &rinv, SIG_LEN, EXP_LEN),
CM_f_add(&potential, &pot, SIG_LEN, EXP_LEN);
CM _f_multiply(&pot, ~."rsqinv, SIG_LEN, EXP_LEN};
for (k=0; k< NDIM; k+ +) {
CM _f_multiply(&dx[k], &pot, SIG _LEN, EXP_LEN);
CM _f_add(&acc[k], &dx[k], SIG_LEN, EXP_LENY};

1} W.D. Hillis, The Connection Machine (MIT Press, Cambridge, 1985).
2] W.D. Hillis and G.L. Steele, Commun. ACM 29 (1986) 1170.

245

246 J. Makino and P. Hut / Comparison between supercomputers and a hi ghly parallel computer

[3] 1.J. Monaghan, Computer Phys. Rep. 3 (1985) 71.
{4] S.J. Aarseth, in: Multiple Time Scales, eds. Brackhill and Cohen (Academic Press, New York, 1985), p. 377.
(5] J. Makino and P. Hut, Astrophys. J. Suppl. Ser. 68 (1988) 833,
[6] J. Makino and P. Hut (1989), in preparation.
{71 R.W. Hockney and J.W. Eastwood, Computer Simulation using Particles (McGraw--Hill, New York, 1981).
(8] P. Hut and S. McMillan, The Use of Supercomputers in Steilar Dynamics, {(Springer, Berlin, 1986).
[9] A. Appel, SIAM J. Sci. Stat. Comput. § (1985) 85.
(107 J.G. Jernigan, in Diynamics of Star Clusters, LA U. Symp. 113, eds. J. Goodman and P. Hut (Reidel, Dordrecht
1985) p. 275.
{11] D. Porter, Ph.D. thesis, University of California, Berkeley (1985).
f12] J. Barnes and P. Hut, Nature 324 (1986) 446.
(13} L. Greengard and V. Rokhlin, . Comput. Phys. 73 (1987) 325.
(14] F. Zhao, Master’s thesis, MIT, Cambridge (1987).
(153 J. Barnes and P. Hut, Astrophys. J. Suppl. Ser. (1989), to appear.
[16} L. Hernquist, Astrophys. J. Suppl. Ser. 76 (1987) 64.
{17] J. Makino, J. Comput. Phys. (1989), to appear.
(18] J. Rose and G.L. Steele, preprint (1987),
(19] B. Stroustrup, The C+ + Programming Language (Addison—Wesley, Reading, 1986).
[20] J. Barnes, in: The Use of Supercomputers in Stellar Dynamics, eds. P. Hut and S. McMillan (Springer, Berlin,
1986), p. 175.
f21] P. Hut, J. Makino and S. McMillan, Nature 336 (1988) 31.

