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We argue that the supercooling of a first-order phase transition proceeds only to T~ 10'! GeV (calcuiated for a
Coleman—Weinberg potential). Then the barrier width between real and false vacuum as calculated in flat space—time be-
comes comparable to the scale set by the event hozizon, and mode mixing might induce the transition.

We consider phase transitions at grand unification
energies, which might have taken place in the early
history of the universe. First we discuss the local
physics and its implications on the expansion of the
universe and secondly we turn to possible effects of
the global space—time structure.

Gauge theories for the unification of the strong,
electromagnetic and weak interactions have at least
two transitions towards a larger symmetry at high
energies:

G

=105 Gov SU(3) X SU(2) X U(1)

Hygm167Gev~ ST X L),

where the group G describes the unified interaction
with a single coupling constant g and with quarks and
leptons in common representations (for reviews see
refs. [1,2]). In order to apply these ideas to the early
universe [3], finite-temperature field theory is used
and one finds symmetry restoration for high enough
temperatures, resembling phase transitions {4]. Spon-
taneous breaking of symmetries is due to non-zero
expectation values ¥1 of the Higgs sealars ¢ introduced

*1 For 7= 0 vacuum expectation values, for T # ( relative
to 2 Gibbs ensemble of temperature T.

in the theory. This mechanism preserves renormalisa-
tion while providing masses to some gauge bosons and

_fermions {5]. In a first-order phase transition (1 PT)

the shift towards non-zero {y) is discontinuous, in
contrast to the smooth change for 2 second-order
phase transition. Which type of transition occurs de-
pends on the parameters in the effective potential of
the scalars ¥(¢,, T) [6]. To have breaking at very
different energies some very special fine-tuning in V'
is required [7], which may hint [2] to symmetry
breaking by radiative terms only [6]. This in turn
might explain the hierarchy of hierarchies My,g/My
<€ My /Mpy <€ 1, if the quartic coupling constants (&)
are of order g2 at the Planck energy Mp; = G —1/2
=1.2X 1019 GeV (1 =¢ = k = 1) [8]. Pethaps super-
unification [9] leads to radiatively broken G = SU(5).
The important point here is that Coleman—Weinberg
(CW) breaking leads to strongly first-order phase
transitions [10,11]. In the following we will use this
potential for numerical estimates.

We now consider the scenario for a 1 PT in the
cooling universe. Initially the vacuum is symmetric
because of a positive temperature-dependent mass?
term in the effective potential ¥ [12]. For tempera-
tures T < T, [where for-the two minima ¥ (yp,
=0,T) = V(p.#0,T)] the transition to the ener-
getically favourable broken state is blocked and the
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universe cools far below the eritical temperature T
t0 Teng When the transition takes place and the {a-
tent heat reheats the universe to f 75 where = 0(1)
follows from entropy conservation and depends on
the available particle states before and after reheating
[13]. For CW breaking of SU(5) the potential is
(p<€T<0)

V=32 T2 L+ Bol(Ingdo® ~ ) +ipot, (1)

with o a classical scalar field, (dp=g = 0 and numeri-
cal constant 8 =8 X 104 [11,14]. The zero level

is such that ¥ (o, T=0)=0, as required by the pre-
sently observed zero cosmological constant [15]. The
part of the universe still in the symmetric state has a
constant vacuum energy density p, ~ Tg which for
T<T.=0.3 0 [11] leads to exponential expansion

a = exp(t/r) as follows from the Friedmann equation

(&',ra)2 = @a/3ME)Np, + 5 AN TY), (2)

where a(7} is the scale factor and IV the effective num-
ber of degrees of freedom of relativistic particles. The
transition to the broken vacuum takes place through
nucleation with a minimal bubble radius; either
through thermal excitation or through tunneling {16].
How precisely the transition to the broken state
for the whole universe takes place is of crucial impor-
tance and in general we can distinguish three cases:
(1) Thermal nucleation rates have a maximum just
below T, and either the bubble density gets high
enough and they quickly fill the universe or else the
bubbies cannot catch up with the continuously accel-
erated expansion of the rest of the unijverse [17,18].
(2) Nucleation through tunneling has a constant
rate per space volume, This leads to a large supercool-
ing, which originally was the motivation to consider
1 PT’sin order to prevent high monopole densities [19]
*2, The nucleation rate for the CW SU(5) model
equals the expansion rate only at 7= 0(1GeV) and
the transition is directly to SU(3) X SU(2) X U(1),
not through an intermediate SU(4) X U(1) [11]. We
note that the barrier vanishes here at T = 0, which
need not be general (e.g. if A <€ g4 in the abelian
Higgs model [4]).

*2 The suppression mechanism of ref. [20] requires large Higgs
masses my > my, which is not the case for CW breaking,
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(3) Nucleation will be immediate if at T} the meta-
stable symmetric vacuum becomes unstable (abelian
Higgs model: 3g4/1672 <A <g%;in SU(S) region d
of ref. [18]). The false vacuum shifts to the broken
state while releasing its latent heat, If there typically
Is one monopole in a horizon volume their densities
would be tolerable for 77 < 1012 GeV, although
correlations starting to form after 7| suggest the
creation of more monopoles, and require Ty <108
GeV [13,21].

In all cases it is important to reheat locally at least to
the Higgs mass so that a new baryon asymmetry can
be created, since previously developed asymmetries
are strongly diluted by the supercooling.

In first-order phase transitions the energy density
of the metastable vacuum drives the expansion of the
universe. However, we must also try to incorporate
effects of the global structure of this accelerated ex-
pansion. In particular we will point out where the
flat-space equilibrium theory used so far breaks down.
Without a consistent theory of quantum gravity and
one of non-equilibriumn corrections to finite-temper-
ature particle interactions, we can only attempt to
give a qualitative picture, as suggested by a semiclas-
sical approximation (see below) analogous to the
Hawking effect *3,

The major difference between cosmology and flat
space—time (laboratory) physics is the existence of
horizons: _

(1) A particle horizon limits the region of possible
causal contact with a given observer before a given
time, and thus includes all comoving particles which
have intersected the observers past lightcone,

(2} An event horizon limits the region which will
in future have the possibility for contact with a geo-
detic observer and thus is the boundary of the past
lightcone of the observer for ¢ - oo,

In the standard Big Bang model there are only particle
horizons. With relativistic particles, adiabatic expan-
sion T« a1, we have from (2) 2 « +/2 and hence
the maximum proper distance travelled by a light
signal up to time ¢ is [3]

t
dg=a(t) [ drfa(®y=2 (2w 2) (3a)
0

~ Teff‘r (a xa f/‘r), (3b)

3 We thank Eardly and Press for reminding us of the Hawking
radiation in de Sitter space.
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The exponential expansion during a 1 PT introduces
also event horizons: two observers initially separated
by a distance significantly greater than the exponen-
tial timescale 7~ Mp, ,o‘,“'1 2 will never be able to
communicate, because the intermediate region expands
with a constant acceleration so that light signals never
catch up. The distance to the event horizon is [22]

Dy = (3/A)M2 = (3/8m)M2 My p,” V2. @

Here lies the origin of all evil: the flat space—time
approximation is expected to be valid for distances
much smaller than that of the event horizon, for
which a locally inertial reference frame is a good ap-
proximatijon. But for length scales comparable to or
larger than the event horizon distance Dy, or, equiv-
dlently, for energies < Dpy Lihe flat space—time ap-
proximation clearly breaks down,

How does this affect our previous discussion of
the I PT? We expect changes to be small if we discuss
effects at values of the classical field p, (or {¢}) much
larger than Dy 1, But the description of the stability
or calculations of tunneling rates of the symmetric
vacuum will fail for small .. An (educated) guess of
the temperature T* below which the flat space—time
approximation breaks down is made by equating the
barrier width Ay, and Dy~ T2/ Tp,. For the CW po-
tential we find roughly

A2~ @2 T?/2B) In(go/T) ~ 10 2g* T2,
where we replaced the second term in the RHS of (1)

by —28 ¢* In(go/T) [14] and hence the flat space—
time treatment of the barrier will not be valid for

T<(T/TppPl0—1g=1T ~ 1011 GeV. (5)

Because confinement of the Higgs expectation value

in the metastable symmetric state requires local effects
on scales which are globally distorted by the back-
ground metric for T < T"*, we expect that the universe
cools to ~T* and then shifls to the broken state,
thereby ending the supercooling prematurely. Although
we cannot give a rigorous proof for our assertion, we
will now discuss several analogies in its favour.

Since T* < Tp| one may use a semi-classical ap-
proach where gravity is treated classically through gener-
al relativity (GR) and the particles as quantum fields,
Note the contrast between the local approach in GR
and the global treatment for the particle fields. In par-
ticular the definition of the Hilbert space of particle
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states requires a priori causality relations, whereas
only the solution of GR equations provides time- or
space-like separations between events (cf. ref. [22]).
Unambiguous particle states can only be defined for
space—time backgrounds somehow related to
Minkowski space [24], to which Robertson—Walker
and de Sitter spaces are linked by a conformal trans-
formation. The problem is to treat the backreaction
of the particles on the metric and as afirst guess one
uses a somehow regulated energy—momentum tensor
of the particle fields as a classical source term in the
Einstein equations.

A major resuit of the semi-classical approach is the
prediction of thermal radiation from an isolated black
hole with temperature {25]:

TH = (317)_1 Mlgl /MBH’ (6)

which can be derived in several ways:

(1) A mapping of a complete set of particle states
from the asymptotic past inta one of the asymptotic
future shows that an incoming vacuum state leads to
the emergence of a thermal particle spectrum [25].

(2) Thermodynamic considerations suggest (6), up
to a factor of order unity, because information on the
quantum states is lost by the existence of an event
horizon. The entropy of the black hole can be esti-
mated, from which T3y = (35/0M) ! follows [26].

(3) Path integrals on a complexified Schwarzschild
metric give a propagator of the form of a thermal
Green’s function with temperature Ty [27].

These derivations are consistent, because the asymp-
totic region of space—time is flat, where particle
states can be defined unambiguously. All distant ob-
servers agree on the Hawking radiation (6), but an in-
falling observer near the horizon will hardly see any
radiation [28]. This observer dependency always oc-
curs locally in globally curved space—times for wave-
lengths of the order of the curvature radius (cf.
Schwarzschild radius 2GM ~ Ty 1). Evenina
Minkowski vacuum a constantly accelerated observer
will detect thermal radiation, because his detector
measures positive frequencies with respect to his own
proper time [29]. For the accelerated observer there
also is an event horizon. Both the inertial and accele-
rated observer agree that the detector will be excited,
but they differ on the interpretation, namely brems-
strahlung and absorption, respectively.

Also in our cosmotlogical context similar phenomena
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occur. In a Friedmann universe the particles determine
a preferred restframe. If the vacuum energy density,
which is locally Lorentz invariant, dominates over

that of the particles, accelerated expansion takes

place (2), and the universe asymptotically approaches
de Sitter space, where geodetic observers are equiva-
lent. Gibbons and Hawking [22] showed with the
same path-integral technique as for the black-hole case
that every geodetic detector will see radiation with a
temperature .

Tou = (12 V2 IAY2 ~ L pl2~ 27y (7)

Two differences with the black hole case are in order:
(1) absorption of the thermal particles does not de-
stabilize the event horizon [22], in contrast to the
increasing rate of black-hole evaporation; (2) no ob-
server independent definition of this radiation is pos-
sible *4; indeed if this could be done, local Lorentz
invariance would give an infinite total energy density

. from the superposition of the finite contributions (7)

of all equivalent observers.

To make the link with our assertion that the false
vacuum indeed decays at a temperature T (5), we
now give a general physical picture for the above re-
sults. Parker [28] notes that whenever a physical
system is externally disturbed on a time-scale 7, nodes
with frequencies w < w,, ~ 7~ 1 are excited. Both
in the black-hole and the de Sitter case, the particle
production results from a mixing of positive and neg-
ative frequencies of the particle fields, caused by the
time dependence or curvature of the background
metric. Modes are excited with energies

WS Gg we~(GM)™!  (Schwarzschild), (82)
~ A2 (de Sitter), (8b)

which agrees with the exponential drop in a Planck
spectrum for «w > T, with T given by (6) or (7).
Parker also shows that relations (8) imply particle
creation near enough to the event horizons so that
the Heisenberg uncertainty for detection would be
large encugh to compensate for the negative energy
of one of the particles, thus providing an energy re-

*4 gyt perhaps two geodetic observers, passing each other,
might agree, because added to the expected Doppler shift
is an Unruh-type radiation from their relative acceleration
[23].
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servoir for detection of Hawking radiation. As men-
tioned above, the backreaction on the event horizon
is different in the black-hole and the de Sitier case.

Similarly, mode mixing wiil oceur for energies giv-
en by (8b) during the exponential expansion in a 1 PT
in the early universe. As soon as the potential barrier
around the false vacuum becomes narrower than this
range, decay is no longer prohibited rigorously and
we expect the transition to occur.

Finally we compare our discussion with a recent
article by Shore {30], who considers CW-breaking
with a given strong curvature in de Sitter space ¥,
He finds symmetry restoration for a curvature R with
a Hawking temperature (7) larger than the Higgs or-
gauge boson mass for conformally (;R¢?) or mini-
mally (no Re¢?) coupled scalars, respectively. But in
a 1 PT the curvature due to the false vacuum is less
than this critical value by a factor ~ T4/T3,. Hence
this curvature will not affect the existence of an asym-
metric true vacuum. In our view, the important effect
of space—time curvature is not a qualitative change
in the effective potential, such as the disappearance
of a minimum, but the irrelevance of a stabilizing
narrow barrier around the false vacuum when mode
mixing occurs with respect to a flat space—time ap-
proximation. :

Some implications of our suggestion of a globally
induced transition to the broken vacuum at T* ~ 011
GeV: (1) perhaps low enough monopole densities
[13] even if there are no other suppression mecha-
nisms [31]; (2) no unnatural (< My, ~ 102 GeV)
supercooling; (3) a smooth transition and reheating,
thereby saving baryon number and helium synthesis.
All’s well that ends well.

*5 Abbot [14] considers barrier peneteation for an ad hoc
Ry? term in the flat-space CW potential. But for the nu-
merical value of the curvature R determined by py his
temperature-independent barrier is of the order of our

uncertainty range Dﬁ.
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