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Extended supergravity theories predict the existence of vector and scalar bosons, besides the graviton, which in the static
limit couple to the mass. An example is the graviphoton, leading to antigravity. If these bosons have a small mass = 10-4
&V), an observable Yukawa term would be present in the gravitational potential in the newtonian limit. This can be param-
etrized by a distance dependent effective gravitational “constant™ G(). Defining Go = G(10em) and Gy = G (10% km),
the comparison between theory and observations of the white dwarf Sirius B results in G¢/Gg = 0.98 + 0.08.

The newtonian limit of gravity has only been tested
to a high accuracy at laboratory distances and in the
solar system at distances of 103—108 km. Deviations '
from the 1/r?-force law at intermediate distances are
not at all excluded, since gravity experiments or obser-
vations in this range are very poor [1]. A comparison be-
tween astrophysical theory and observations imposes
indirect restrictions on possible deviations, as will be
shown for the case of the white dwarf Sirius B. But
first, as a recent motivation for considering possible
non-newtonian terms in the static limit of gravity,
supergravity theories will be mentioned briefly.

General relativity is one of the simplest classical
relativistic field theories of gravity, and is in agreement
with all astronomical observations. Attempts at quan-
tization of general relativity, in the form of a gauge
theory with spin 2 gravitons as gauge bosons under
the group of general coordinate transformations, showed
the theory not to be renormalizable when coupled to
matter fields [2]. Introduction of supersymmetry,
between fermions and bosons, leads naturally to super-
gravity as a better candidate for a renormalizable quan-
tum field theory of gravity [3].

Extended supergravity theories exhibit a unique
mixing of internal and space—time symmetries, there-
by providing a framework for unification of gravity
with weak, electromagnetic and strong interactions
[3], However, supersymmetry does not seem to be
realized at energies available in present accelerators.

It seems likely that typical supergravity effects will be
clear only at energies of the order of the Planck energy,
Eyp =hM2G-112512 = 12 X 1017 GeV. At much
Jlower energies the only detectable gravitational forces

are those between matter in bulk. Therefore macrosco- ‘

pic gravity experiments might well form, at least at
present, the most direct way to test supergravity
theories.

The experimental success of general relativity shows
that gravitation can be described, at least at the three-
level, by an exchange of massless spin 2 particles, the
gravitons. In the static limit the gravitons couple to
matter with a strength proportional to the mass. If
there exist other bosons, coupling in the same way,
then they too contribute to the newtonian limit of
gravity. An example is the graviphoton [4], a vector

‘boson present in extended supergravity theories (at

least for N=2 and N = 8), mediating an interaction
which is repulsive between two particles, and attrac-
tive between a particle and an antiparticle. In the static
limit the graviphoton not only couples to matter with
a strength proportional to the mass, like the graviton,
but can even lead to antigravity, a cancellation between
attractive and repulsive gravitational forces [4].

No significant deviations from general relativity oc-
cur at long distances if such bosons are massive, adding
Yukawa terms to the static limit of gravity. For masses
m < 10—% eV the effective range is ##fmec > 1 cm, thus
in principle observable in the laboratory. Such contribu-
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tions can be parametrized by a distance dependent
gravitational “constant” G () [1]. For example, a gra-
vitational potential of the form

U(r)=—(G M/r)[1+aexp (—rfrg)] (D
results in a gravitational force in the newtonian form
F(r)=G{Fr)Mmfr?

with an effective gravitational constant

Gy =G [1+a(l+rlrg)exp (—riry)] . @

For a range 7, of the order of a few meters or kilo-
meters, experimental restrictions on « are very poor.
An indirect relation between Gy = G(10 cm) = 6.67
X 10-8 dyn cm? g2, the laboratory value, and G.=
G(103km}) follows from the comparison of astrophysi-
cal theories and observations. Mikkelson and Newman
[1] argued that G differs from Gy by not more than
~240%, using models of the earth and the sun, thus
still allowing a substantial deviation between G and
GO .

Improvement of the constraints. In the following,
arguments will be presented which improve these con-
straints.

The strength of gravity at distances = 103 km can
be measured indirectly by observing stars, since hydro-
static equilibrium plays an essential role in determining
their structure. However, stellar models have other
uncertainties such as chemical composition and energy
generation. In the case of the sun, the helium abundance
is not well known, which is reflected in the quoted
uncertainty of ~40% in G =~ G [1]. Moreover, the
observed neutrino flux from the sun is far lower than
predicted by solar models [5].

These uncertainties can be circumvented to a large
extent by examining degenerated stars, such as white
dwarfs, Their structure can already be described fairly
accurately by assuming the electrons to be completely
degenerated and noninteracting [6]. Inclusion of the
effect of electrostatic interactions between the elec-
trons and ions, and a few other minor corrections, leads
to very accurate models for chemically homogeneous
white dwarfs [7,8]. Thus the theoretical understanding
of white dwarfs is in much better shape than that of
normal stars, where energy generation is of crucial im-
portance to provide the pressure required for support-
ing hydrostatic equilibrium; or neutron stars, where
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the equation of state for supernuclear densities is only
poorly known.

After completion of the present investigation, the
author was informed of several other attempts to use
white dwarfs to restrict G(r). Sugimoto [13] used the
observational data of Sirius B and 02 Eri B to argue
against G /G = 3/4, a value proposed by Fujii. Blinni-
kov [14] used the same white dwarfs to sharpen the
restrictions on G () to exclude more than =10%
variation. However, he took the radius of Sirius B to
be (0.0078 +0.0002)R,, an accuracy which seems to
be too optimistic [10]. The difference of the present
investigation with the two previous ones lies mainly in
the use of more recent observational material, together
with a detailed motivation and a discussion of the
errors involved in the similarity relations [4]. Another
very interesting approach is made by Wegner [16]**,
who has used his observations of the redshift of 02"

Eri B to put very direct limits on & /G, of an accuracy
comparable to those obtained in the present investiga-
tion.

In the following we will concentrate on one of the
best studied white dwarfs, Sirius B. There are several
reasons which make this star an ideal object. The mass
is well known from the orbital parameters of the binary
system Sirius A and B. During the last few years the
effective temperature was determined more accurately,
which substantially lowered the uncertainty in the
radjus. The star is hot enough to avoid surface convec-
tion, simplifying the theoretical treatment; and massive
enough to guarantee a very thin envelope.

Theoretical models provide us with a relation between
the mass M and the radius R of a white dwarf, once the
chemical composition is known, to an accuracy of
about 0.2% [7], as is confirmed by more recent calcu-
lations [8]. In fig. 1 R(M) is given, in solar units, for
a pure 12C star (full line) and a pure 24Mg star (dashed).
The dotted line indicates the Chandrasekhar approxima-
tion (for 12C) of a noninteracting electron gas. The

‘main effect of the correction for Coulomb interaction

between jons and electrons is to lower the electron
pressure by about 2% (in this mass range), resulting in
smaller M and R values for a given central density.

The most accurate observational mass determination
of Sirius B [9] is

*1 Wegner’s conclusions are based on observations of the pra-
vitational redshift for the white dwarf o2 Eri B [17].
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Fig. 1. Observed mass M and radius R of Sirius B, for the three
cases x = Go/Gg =0.9,1.0, 1.1, In each case different scales

are used along the axes, to keep the theoretical R{M) relations
invariant. 12C and 2*Mg indicate the compositions of the
Hamada—Salpeter models, while Ch indicates the Chandrasekhar

model (for 12C).

M/M,=1.053+0.028.

This high accuracy results from the fact that Sirius A
and B form a visual binary system, with a period of
50 years, which has been observed extensively over
the past century. The radius of Sirius B is estimated

l10] to be
R[R, =0.0074 £0.0006 ,

as inferred from its observed luminosity and effective
temperature. - .

Let x be defined by x = G/G, the relative strength
of gravity at cosmic distances, compared to laboratory
distances. We have to investigate the influence of x
= 1, on the theory as well as the observations, before-
these can be compared with each other.

The observed mass of Sirius B is derived from a
measurement of G M, inferred from the-binary param-
eters through Kepler’s law. Therefore, the true mass
M(x) of Sirius B, as derived from the observations,

s proportional to x—1. The ratio M(x)/M(x), however,
remains constant, since the solar mass is derived from
observations of G M, as well. In the following M (1)
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=1.989 X 1033 g will be denoted by Mo, for short, as
an x-independent reference value. The mass to be
inferred from the observations of Sirius B is then

M (x) = (1.053 £0.028)x 1M, . 3)

Observations of the radius of Sirius B (and of the
sun) are not significantly influenced by the value of
x, since the radius is determined geometrically from
the luminosity and effective temperature (or astro-
metrically in case of the sun). The only change lies in
model atmosphere calculations, where the gravitational
acceleration at the surface comes in. However, this
x dependence is completely negligible: a change in x
of 10% changes R by less than 0.02% [10].

To investigate the effect of x # 1 on white dwarf
models, we will first concentrate on the simpler
Chandrasekhar models. They form a one-parameter
family of solutions of a differential equation for the
degeneracy parameter z, as a function of the distance
from the center of the star, where the central degene-
racy z is the only free parameter. A choice for z, fixes
the entire model, including M and R (6,11].

Since Chandrasekhar’s differential equation is
written in dimensionless quantities, a value x # 1 will
associate different values of M and R to a particular
solution for fixed z_. Fortunately, the x dependence
is very simple, and it turns out that

Mlzg;x) =x~32M (e 1), REgx)=x"2R(z:1),
)

. as can be derived from the way the dimensionless quan-

tities scale with G. For a particular value of x, the
M(R; x) relation can be obtained from the Chandrasek-
har M(R; 1) relation, by the use of eq. (4). This is in-
dicated in fig. 1 for the valuesx =0.9 and x =1.1 by
scale-transformations along the axes, in order to leave
the dotted line of solutions invariant.

The next step is to evaluate the scaling behaviour
of M(R; x) for the more accurate models of Hamada
and Salpeter [7]. In principle the x dependence is ex-
pected to be more complicated here, but fortunately
deviations from eq. (4) turn out to be negligible. By
far the most important correction over the
Chandrasekhar models results from Coulomb interac-
tion effects, lowering the electron pressure as a func-
tion of the density. A variation of 10% in the mass
corresponds to a variation in central density of a fac-
tor two, changing the Coulomb correction ratio for
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the pressure by about 0.05% [7,12]. The correction
relative to the Chandrasekhar models will then be
changed by at most 4%. Therefore the R{M, x) relations
for 12C and 24Mg, as given in fig. 1, can be scaled ac-
cording to eq. (4) to an accuracy of about 0.2%in
R(M, x).

For simplicity, three cases are considered, namely
x=09,1.0and 1.1.In fig. 1 the x dependence of the
white dwarf models is absorbed into a change of scale
along the axes, to keep the model relations invariant.
The observations are plotted with respect to the appro-
priate axis scales, with the mass values corrected ac-
cording to eq. (3). :

In order to use fig. 1 to put limits on x, the chemical
composition of Sirius B must be estimated. For white
dwarfs with M > 0.75 M, only 12C or heavier elements
will be present, as indicated by evolutionary arguments
[7.8]. It seems likely that in the mass range appropriate
for Sirius B 12C will be the dominating element. The
pure 12C models, according to fig. 1, restrict x to

x =098 £0.07.

The sensitivity of this result for variations in chemical
composition is not high. Even the extreme case of pure
24Mg (see fig. 1) would lead to x = 0.96 = 0.07. How--
ever, such a heavy composition is far less likely.

Finite temperature effects, which are neglected in
the treatment by Hamada and Salpeter [7], were in-
vestigated by Lamb and Van Horn {8], For the observed
luminosity of Sirius B, the correction to the radius is
an increase of about 0.1%, fully neglegible for the pre-
. sent discussion, Finally, the expected radius R(M, x)
will always be slightly higher than calculated in models
of pure chemical composition, since the envelope will
have admixtures of He and H. This effect is, however,
not very important for massive white dwarfs, like
Sirius B. Combining all arguments results in

x=0.98 £0.08 ,

where the error is a reasonable estimate of a standard
deviation,

In conclusion, theory and observations of Sirius B
restrict the value G, the gravitational constant at dis-
tances 103—108 km, to agree with the laboratory value
Gy within about 10%. The improvement over previous
constraints [1] is due to two factors: the theory of
stellar structure is relatively uncomplicated in the case
of white dwarfs, and the accuracy of the observations
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~ of Sirius B has been improved recently, especially re-
_ sulting in a more precise value for the radius [10].

These constraints on a possible distance dependence
of the gravitational constant, together with moze direct
observational constraints in the solar system [1] and
the most recent direct measurements in the laboratory
[15], are summarized in fig. 2. It is clear that every
viable (super)gravity theory, in which the static limit
of gravity arises from the exchange of other bosons
besides the graviton, has to respect these constraints,
From fig. 2 it is clear that a coupling strength compar-
able to that to gravitons, |e| == 1, is allowed only for
a range ry < 2 mm (corresponding to a rest mass of
more than 10—3 eV). A relative coupling strength of
10% s just barely possible for 1 m <ry < 10km.

All these limits apply to the simplest case, where
gravity is modified at short distances but in the same
ratio for different materials. Much tighter constraints
can be set on specific theories which viclate the equi-
valence principle, which is tested to an accuracy of
10—12 [18]. An interesting example is the phenome-
non of antigravity [4], arising in N =2 and V=8 ex-
tended supergravity theories. Here a vector particle,
the graviphoton, couples to matter with the same
strength as the graviton, at least in the static limit.

But the interaction mediated by the graviphoton is
repulsive only between particles and particles, or anti-
particles and antiparticles, and attractive between par-
ticles and antiparticles (in analogy to the coupling of

1
07
T 10‘2_
toed
10°%
' U{r) = -G (1 oveV"e)
4 I 1 " 1 1 ), 1 1
1mm im tkm 103km

To —™

Fig. 2. Limits on the distance dependence of the effective
gravitational constant, G(r), parameterized with rp, the range,
and e, the relative coupling strength of an additional compo-
nent to gravity. The shaded regions are excluded at a 2o confi+
dence level. The constraints arise from laboratory null measure-
ments [15], surface gravity. measurements on the moon [1]
and the observations of Sirius B.
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photons to charged particles). Scherk [4] assumed the
graviphoton to couple to quarks and leptons, which in
normal matter are much lighter than the nucleons.
Taking the rest mass of the u and d quarks to be roughly
10 MeV he arrived at an upper limit on the range of
antigravity of about 2 m (implying a mass of the gravi-
photon of at least 106 eV).

Further constraints on this type of antigravity theory
follow from fig. 2, since the repulsion between two
pieces of matter in bulk has a relative strength

_ {3x10MeV\2_ 3
“"‘—( 1GevV )“10 :

It is clear that a range of roughly 110 cm is excluded
for & = 10—3, but a slightly lower value for the quark
masses can easily lower the relative repuision strength
to & ~ 10—4, which is not excluded by the laboratory
experiments. To improve the restrictions on the range
of antigravity, either the null experiments [1 5] in the
laboratory have to be improved, or the equivalence
principie [18] has to be tested to even higher accuracy.

In conclusion, every viable (super)gravity theory
has to respect the constraints which are summarized in
fig. 2. In addition, extra constraints can arise, e.g., from
deviations from the equivalence principle, which are
dependent on the specific theory. For the antigravity
version where the graviphoton couples to quarks and
leptons only [4], the allowed range is 10 cm <rgs2
mand ry < 1 cm, the intermediate range being margi-
nally excluded. There are of course many alternative
possibilities; e.g., the graviphoton might couple only
to subconstituents of quarks and leptons. Although
this would change completely the restrictions men-
tioned above, the effective coupling strength and range
would still be subject to the restrictions summarized in
fig. 2.
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