Parabolic version of 2 realizations

8 applications to modular representations

Part 1 (jt. w. Bezrukavnikov)

Part 2

Goal of the project:

Bezrukavnikov-Mirkovic proved Lusztig's conjecture identifying the basis of simple of-modules w. given p-character, p>>0

· & the canonical basis in K-theory of Springer fiber.

However, in general, the latter is too implicit to get

Kazhdan-Lusztig type character formulas for the simples.

It turns out, that modifying the category of of-modules "slightly" (look at modules that are equivariant w.r.t. a reductive subgroup $T_0 \subset G$ w. T_0 torus) we can still get KL type character formulas for the simples (in the equivariant category).

When the p-character is distinguished (to be recalled later) the character formula is a K-theoretic consequence of an equivalence that is deduced from a parabolic version of the two realizations theorem.

1) Parabolic version of 2 realizations 1.1) Reminder on 2 realizations. G connected reductive group ~ Langlands dual G^{V} $St := \widetilde{g} \times_{\sigma} \widetilde{N} \sim D^{6}(Coh^{C}St)$ $G' \rightarrow G'((t)) \supset I \supset I'$ (Iwahori & pro-unip't radical) $\rightarrow Fl = G'((t)) / I \rightarrow constructible category$ $\mathcal{D}_{\tau o}^{\prime}(\mathcal{F}\ell)$ Thm (Bezrukavnikov) Have equivalence of trianged cates $T: \mathcal{D}_{T^{o}}^{6}(\mathfrak{F}\mathcal{E}) \xrightarrow{\sim} \mathcal{D}^{6}(\mathcal{C}oh^{G}St).$ Important: this is a simodule equivalence wirt "Completed" version of affine Hecke category, $D^{6}(Coh^{G}St^{\Lambda})$ in the coherent version acting on the left &

"Specialized" version $\mathcal{D}_{I}^{6}(\mathcal{F}_{I}) \xrightarrow{\sim} \mathcal{D}^{6}(Coh^{G}\widetilde{N} \times^{R}\widetilde{N})$ acting on the right.

Also important: T is nicely compatible w. t-structures:

• for perverse t-structure on $\mathcal{D}_{T_0}^6(\mathcal{F}\ell)$

· & perverse bimodule (over NC Springer) t-structure on D⁶(Coh^GSt).

-will elaborate on this later.

1.2) Statement of parabolic version

Notation: P = G parabolic ~ Np = T*(G/P) ~ Stp = g x Np ~ D' (Coh G Stp).

PCG~PCG~parahoric JCG ((t))~ $\mathcal{F}\ell_p = \mathcal{G}'((t))/\mathcal{I} \rightarrow \mathcal{D}_{\tau_0}^6(\mathcal{F}\ell_p)$

Thm (R.B.-I.L.) \exists equivalence of triangulated categories: $T_p: \mathcal{D}_{\tau^o}^6(\mathcal{Fl}_p) \xrightarrow{\sim} \mathcal{D}^6(\mathsf{Coh}^\mathsf{G} \mathsf{St}_p)$ that has properties 1-4 below.

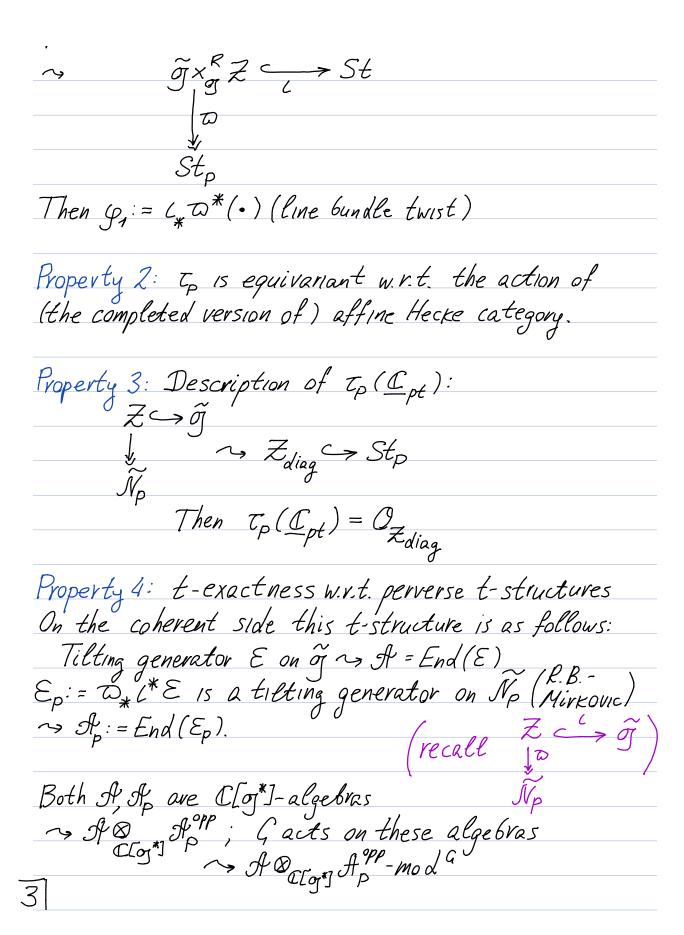
Property 1: Tp is compatible with t: the following diagram is commutative:

$$\begin{array}{ccc}
\mathcal{D}_{I}^{6}(\mathcal{F}\ell_{p}) & \longrightarrow \mathcal{D}^{6}(\mathcal{G}h^{G}\mathcal{S}\ell_{p}) \\
\downarrow \varphi_{2} & & & & & & & & & & & \\
\mathcal{D}_{I}^{6}(\mathcal{F}\ell) & & & & & & & & & & & \\
\mathcal{D}_{I}^{6}(\mathcal{F}\ell) & & & & & & & & & & & \\
\end{array}$$

where φ_1, φ_2 are as follows:

· (g: p: Fl ->> Flp (w. fiber P/B"), (q:=)*[dim P'/B"]

· q: Set Z:=GxBpl~, C:Z~N, TO:Z~Np



 $R\Gamma(\mathcal{E}\otimes\mathcal{E}_{p}^{*}\otimes\bullet): \mathcal{D}^{6}(Coh^{G}St_{p}) \xrightarrow{\sim} \mathcal{D}^{6}(\mathcal{H}\otimes\mathcal{F}_{p}^{opp}-mod^{G}).$

Have perverse t-structure on r.h.s. (see Roman's talk).

Remark: the reason we care about 2&3 is that they allow to get into on images of (co) standards under Tp.

1.3) Steps of proof

Step 1: φ_i are faithful but not full. We show that $\tau: \mathcal{D}_{I^o}^6(\mathcal{F}\ell) \xrightarrow{\sim} \mathcal{D}^6(\mathcal{G}h^G\mathcal{S}t)$ intertwines the

"full images" of $\varphi_2: \mathcal{D}_{\mathcal{I}}^6. (\mathcal{Fl}_p) \longrightarrow \mathcal{D}_{\mathcal{I}}^6. (\mathcal{Fl}) \& \varphi_1: \mathcal{D}^6(Coh^GSt_p) \longrightarrow \mathcal{D}^6(Coh^GSt).$

This is based on three observations up to Karoubian

i) The full image of φ_2 is $\{\mathcal{F}*\mathcal{L}_{P'/B'}\}$ completion

ii) The full image of φ_i is $\{G * O_{Z \times Z} (line bundle twist)\}$

iii) The equivalence $\tau: \mathcal{D}_{\mathcal{I}}^{6}(\mathcal{F}\ell) \xrightarrow{\sim} \mathcal{D}^{6}(Coh^{G}\widetilde{\mathcal{N}} \times {}^{R}\widetilde{\mathcal{N}})$ sends $\mathcal{L}_{PV/BV}$ to $\mathcal{O}_{Z \times_{\widetilde{N}_{P}} Z}$ (twist)[shift].

Step 2: While φ_1, φ_2 are not full, they, are t-exact and restrict to full embeddings between the hearts.

The triangulated categories \mathcal{D}_{I}^{6} (Flp), \mathcal{D}^{6} (Coh GStp)

are derived categories of their hearts. This, together
w. Step 1, allows to define t-exact
$T_p: \mathcal{D}_{\tau_0}^6(\mathcal{F}_p) \xrightarrow{\sim} \mathcal{D}^6(Coh {}^{\varsigma}St_p)$
satisfying property 1 (& 4). Then one checks 183.
1.4) Quotient category: this is what we need for applicins
to modular representation theory. Categories D. (Flp) and D. (Coh C Stp) come
Categories D. (Flp) and D (Coh Stp) come
w. filtrations by 2-sided cells ~> nilp. orbits
Let's look at the top quotient of $D^{6}(Coh^{6}St_{p})$ $O_{p}^{:=}$ open G-orbit in N_{p} , $O_{p}^{:=}$ image of O_{p}° in O_{p}^{*} , Richardson orbit for P : generic $e \in \beta^{+}$ lies in O_{p}°
Op: = open G-orbit in Np, Op: = (mage of Op in of)
Richardson orbit for P: generic eep+ lies in Op
$\mathcal{L} \mathcal{O}_{p} - \mathcal{G}/\mathcal{Z}_{p}(e) \mathcal{L}$
$\widetilde{g} \times_{g}^{R} O_{p}'/G \simeq \mathcal{B}_{e}/\mathcal{Z}_{p}(e), \mathcal{B}_{e} := \widetilde{g} \times_{g}^{R} \{e\}$ - Spinger fiber.
- Spinger fiber. So the top quotient of $D^6(Coh^G St_p)$ is $D^6(Coh^{\frac{2}{2}}p^{(e)}B_e)$. It inherits the t-structure whose
So the top quotient of D (Coh Stp) is
(Coh Be). It Inherits the t-structure whose
heart is identified with Se-mod Zp(e), Se:=fiber of
\mathcal{A} over $e \in g^*$
Conclusion: Have exact functor Duy (Se)
$Perv_{I^{\circ}}(\mathcal{Fl}_{p}) \longrightarrow \mathcal{Fl}_{e^{-mod}}^{Z_{p}(e)}$
top cell quotient
<u> </u>

Remark: still have control over the images of (co) standards in \mathcal{A}_e -mod $\mathcal{I}_{p}^{(e)}$ – thx to properties 183 above.

2) Applications to modular representations. 2.1) Setting

F algebraically closed field of char p>>0. Lan assume e from above is defined over $7/\sim$ reduce mod $p \sim U_{e,F}^0 := principal block of the <math>p$ -central reduction of $U(g_F)$ at $e \in g_F^{(n),*}$

Fact (Bezrukavnikov-Mirkovic) \mathcal{H} =End(\mathcal{E}) is defined over finite localization of \mathcal{H} , and its fiber $\mathcal{H}_{e,F}$ is Morita equivalent to $\mathcal{U}_{e,F}$.

For this talk we'll be interested in the case when e is distinguished \Longrightarrow not contained in a proper Levi. Equivalently, the maximal reductive subgroup of $Z_{\varsigma}(e)$ is finite. Denote it by Γ , it coincides with $Z_{\varsigma}(e)/Z_{\varsigma}(e)$.

Example: oj = Sp_{2n}. Nilpotent orbits are classified by their Jordan type. Distinguished (>> no repeated parts ((2,4,6) distinguished, (2,5,5) isn't). Have

$\Gamma \simeq (\mathbb{Z}/2\mathbb{Z})^{\# parts}$ (for distinguished element).

Classical fact: \exists parabolic P s.t. e is Richardson for β (Pe is open in β^{\perp}) & $\mathbb{Z}_{p}(e) = \mathbb{Z}_{\zeta}(e)$.

This gives us a description of \mathcal{A}_{e} -mod $\mathbb{Z}_{\zeta}^{(e)}$ as the quotient of Pen_{Io} (\mathcal{F}_{Lp}).

Observations:

1) $K_o(\mathcal{A}_e^{-mod}^{\mathcal{Z}_G(e)}) \simeq K_o(\mathcal{A}_e^{-mod}^{\Gamma}) \simeq K_o(\mathcal{A}_{e,F}^{-mod}^{\Gamma}),$ isomorphisms of <u>based</u> abelian groups, 6/c $\mathcal{Z}_G(e) = \Gamma \times \text{unip't}.$ 2) $\mathcal{A}_{e,F}^{-mod} \stackrel{\sim}{\longrightarrow} \mathcal{U}_{e,F}^{-mod}^{\Gamma}.$

2.2) K-classes of simples.

So as a based module, $K_o(U_{eF}^--mod^{\Gamma})$ is the top cell quotient of $K_o(Perv_T, (Fl_p)) = \mathbb{Z}W^2 \otimes sgn$, where $W^a = W \times \mathcal{X}(T)$ is the affine Weyl group & $W_p \subset W^a$ finite parabolic corresponding to P.

To describe the classes of simples we need to describe the images (in $K_0(U_{e,F}^0-mod^{\Gamma})$) of the standards (in $K_0(Perv_T, (Fl_p))$). These classes go to classes of certain induced modules.

Set $W^{g!} = \{x \in W^{g!} | x \text{ is longest in } x \text{ Wp} \}$. This is the labeling set for standards in $Perv_{To}(FC_p)$. We have action $W^a \cap \mathcal{F}(T)$: w. $\mu = w \cdot \mu$, $\theta \cdot \mu = \mu + p\theta$, $w \in W$, $\theta \in \mathcal{F}(T) \subset W^a$, $\mu \in \mathcal{F}(T)$.

Let L⊂P be Levi subgroup; Mx:= x-!(-2p).
Let $L \subset P$ be Levi subgroup; $M_x := x^{-1}(-2p)$. $x \in W^{q,p} \iff M_x$ is dominant for $L \hookrightarrow$
Weyl module $W_{l,F}(y_x)$. Can assume $\Gamma \subset L$, then we can view $W_{l,F}(y_x)$ as an object of $U_{0,F}(L)$ -mod! Further, $U_{0,F}(\beta) \hookrightarrow U_{e,F}(\sigma)$ b/c $e \in \beta^+ \& U_{e,F}$ is a free rank $\rho^{\dim \mathfrak{g}/\beta}$ -module over $U_{0,F}(\beta)$.
can view W, F (Mx) as an object of Wo, F (L)-mod:
11 - is a free rour oding/B-module over 11 (K)
ore, if is a free rain p module out or, if ip.
Proposition: (R.BI.L.) The class of standard labelled by x
Proposition: (R.BI.L.) The class of standard labelled by x goes to that of $U_{e,F}(g) \otimes_{U_{e,F}(p)} W_{e,F}(y_x)$.
8