The affine Hecke category is a monoidal colimit

James Tao

jamestao@mit.edu

February 24, 2021

1/26

Overview

Main Idea

A monoidal category \mathcal{C} with a stratification indexed by a Coxeter group W can often be expressed as the monoidal colimit of subcategories $\mathcal{C}_J \subset \mathcal{C}$ indexed by *finite type* standard subgroups $W_J \subset W$.

This talk will have two parts:

- 1. Colimit theorems for $\mathcal{C} = \mathcal{D}(\mathcal{L}G), \mathcal{D}(I \setminus \mathcal{L}G/I)$. The category of words and bistratified descent. (Joint with Roman Travkin.)
- **2.** An application-in-progress: constructing $\mathcal{H}_{aff} \to \mathcal{H}_{fin}$ in type A. Deformed affine Hecke categories. (Joint with Kostya Tolmachov.)

Two colimit theorems

G – algebraic group, semisimple and simply-connected.

 W_I – affine Weyl group of $\mathcal{L}G$.

set of affine simple reflections.

For $J \subset I$, let $\mathbf{P}_J \subset \mathcal{L}G$ be the standard parahoric of type J.

Theorem (monoidal colimits)

$$\mathcal{D}(\mathcal{L}G) \simeq \underset{\substack{J \subset I \\ J \text{ finite type}}}{\mathsf{colim}} \mathcal{D}(\mathbf{P}_J)$$

$$\begin{array}{ccc} \text{(ii)} & & \mathcal{D}(\mathbf{I} \backslash \mathcal{L}G/\mathbf{I}) & \simeq & \mathop{\mathsf{colim}}_{J \subset I} \mathcal{D}(\mathbf{I} \backslash \mathbf{P}_J/\mathbf{I}) \\ & & & J \text{ finite type} \end{array}$$

Remarks. To remove the 'semisimple and simply-connected' hypothesis, change the colimit indexing diagram to Varshavsky's 'category of parahorics.'

Analogues for monodromic Hecke categories, Kac-Moody groups, . . .

Motivation: generators and relations (part 1)

Monoidal object	Presentation	Colimit thm.	Cat. level
Weyl group Hecke algebra	Simple reflections 1-term relations 2-term relations	$A = \underset{\substack{J \subset I \\ J \le 2}}{colim} A_J$	sets
Weyl group (as discrete Picard grpd) Hecke category	Simple reflections 1-term relations 2-term relations 3-term relations	$A \simeq \operatorname{colim}_{\substack{J \subset I \\ J \leq 3}} A_J$	categories
Weyl group (as discrete top. group) Hecke ∞-category	??	$A \simeq \operatorname{colim}_{\substack{J \subset I \\ J \text{ f.t.}}} A_J$	∞ -categories

Presentation of Weyl group (as discrete Picard grpd): Thm. 1.17, Diagrammatics for Coxeter groups, Elias-Williamson (2017)

Presentation of Hecke category: Thm. 1.11, Tilting modules and the p-canonical basis, Riche-Williamson (2018)

Motivation: generators and relations (part 2)

Relation	Geometric origin	Name	
1-term relations	codimension 1 faces	quadratic relations	
	codifficition-1 faces	"wall crossing"	
2-term relations	codimension-2 faces	braid relations	
3-term relations	codimension-3 faces	Zamolodchikov relations	

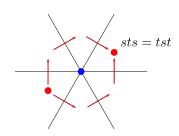


Image source: https://www.math.umd.edu/~jda/kac/A3.gif

Proof: The category of words (part 1)

Word is the following category:

- Objects are sequences (w_1, \ldots, w_n) in W_I . Each w_i is 'finite type.'
- A morphism $\varphi:(w_1,\ldots,w_{n_1}) o(w_1',\ldots,w_{n_2}')$ is an ordered map

$$\varphi_*:\{1,\ldots,n_1\}\to\{1,\ldots,n_2\}$$

satisfying that

$$w'_j \succeq_{\mathsf{Bruhat}} (\mathsf{Demazure} \ \mathsf{product} \ \mathsf{of} \ w_i \ \mathsf{for} \ i \in \varphi^{-1}_*(j)),$$

for all $j \in \{1, ..., n_2\}$.

Proof: The category of words (part 2)

Key Idea

Word governs 'convolution' products of Schubert varieties.

For $w \in W_I$, let $\mathbf{P}_w \subset \mathcal{L}G$ be the closure of the w Bruhat cell.

• A word $\mathbf{w} = (w_1, \dots, w_n)$ encodes the variety

$$\widetilde{\mathfrak{F}}\ell_{\mathbf{w}} := \mathbf{P}_{w_1} \overset{\mathbf{I}}{\times} \cdots \overset{\mathbf{I}}{\times} \mathbf{P}_{w_n}/\mathbf{I}$$

- ullet A morphism $arphi: oldsymbol{w} o oldsymbol{w}'$ encodes the conv. map $\widetilde{\widetilde{\mathcal{H}}}_{oldsymbol{w}} o \widetilde{\widetilde{\mathcal{H}}}_{oldsymbol{w}'}$
- Example for A_2 , with simple reflections s, t, u:

$$(s, t, s) \qquad \mathbf{P}_{s} \overset{\mathbf{I}}{\times} \mathbf{P}_{t} \overset{\mathbf{I}}{\times} \mathbf{P}_{s} / \mathbf{I} \qquad (g_{1}, g_{2}, g_{3})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(s, 1, sts) \qquad \mathbf{P}_{s} \overset{\mathbf{I}}{\times} \mathbf{I} \overset{\mathbf{I}}{\times} \mathbf{P}_{sts} / \mathbf{I} \qquad (g_{1}, 1, g_{2}g_{3})$$

Proof: Monoidal colimits are amalgamated products

$$\begin{array}{ccc} \underset{J\subset I}{\operatorname{colim}} & \mathcal{D}(\mathbf{P}_{J}) & \simeq & \underset{(J_{1},\ldots,J_{n})}{\operatorname{colim}} & \mathcal{D}(\mathbf{P}_{J_{1}}) \underset{\mathcal{D}(\mathbf{I})}{\otimes} \cdots \underset{\mathcal{D}(\mathbf{I})}{\otimes} \mathcal{D}(\mathbf{P}_{J_{n}}) \\ \\ & \simeq & \underset{(w_{1},\ldots,w_{n})\in \mathbf{Word}}{\operatorname{colim}} & \mathcal{D}(\mathbf{P}_{w_{1}}) \underset{\mathcal{D}(\mathbf{I})}{\otimes} \cdots \underset{\mathcal{D}(\mathbf{I})}{\otimes} \mathcal{D}(\mathbf{P}_{w_{n}}) \\ \\ & \simeq & \underset{(w_{1},\ldots,w_{n})\in \mathbf{Word}}{\operatorname{colim}} & \mathcal{D}\left(\mathbf{P}_{w_{1}} \overset{\mathbf{I}}{\times} \cdots \overset{\mathbf{I}}{\times} \mathbf{P}_{w_{n}}\right) \\ \\ & \vdots & \vdots & \vdots \\ \end{array}$$

$$\begin{array}{ccc}
\operatorname{colim} & \mathcal{D}(\mathbf{I} \backslash \mathbf{P}_J / \mathbf{I}) & \simeq & \operatorname{colim} & \mathcal{D}' \Big(\mathbf{I} \backslash \mathbf{P}_{w_1} \overset{\mathbf{I}}{\times} \cdots \overset{\mathbf{I}}{\times} \mathbf{P}_{w_n} / \mathbf{I} \Big) \\
J \text{ finite type}
\end{array}$$

 $\mathcal{D}'(-) := \mathcal{D}$ -modules constant on each (twisted) product of cells.

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥♀○

Proof: The category of words (part 3)

Let $\varphi: \mathbf{w} \to \mathbf{w}'$ be a map.

- φ is a *strict embedding* if φ_* is a bijection and $\varphi \neq$ (identity).
- ullet φ is birational if and only if $\widetilde{\mathcal{F}}\ell_{\mathbf{w}} o \widetilde{\mathcal{F}}\ell_{\mathbf{w}'}$ is birational.

Let $y \in W_I$. We define full subcategories **Word** $_{\preceq y}$, **Word** $_{\prec y}$.

• $w \in Word_{\prec_{y}}$ if and only if

$$\widetilde{\mathfrak{F}}\ell_{\mathbf{W}} \to \mathfrak{F}\ell := \mathcal{L}G/\mathbf{I}$$

factors through $\mathcal{F}\ell_y$ (the y Schubert variety).

- w is y-relevant if this map is birational onto $\mathcal{F}\ell_{y}$.
- $\mathbf{w} \in \mathbf{Word}_{\prec y}$ if and only if this map factors through $\partial \mathfrak{F} \ell_y$.

(∂ means 'boundary,' i.e. complement of open cell.)

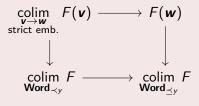
Proof: Bistratified descent

Let $F : \mathbf{Word} \to \mathcal{E}$ be any functor. How to compute colim F?

Theorem (bistratified descent)

Assume that, for every birational map $\mathbf{w} \to \mathbf{w}'$, the following diagram is cocartesian:

Then, for any *y-relevant* $w \in \mathbf{Word}_{\leq y}$, the following diagram is cocartesian:



The conclusion is: $\operatorname{colim} F$ can be computed via a sequence of pushouts.

Proof: Applying bistratified descent

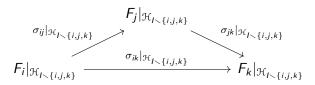
The previous diagrams correspond to blow-up squares:

Upshot. Bistratified descent can be applied when the sheaf theory satisfies descent w.r.t. blow-up squares. (E.g. \mathcal{D} -modules, ℓ -adic sheaves)

- 4 ロ ト 4 御 ト 4 恵 ト 4 恵 ト - 恵 - り 9 (P)

How to apply the colimit theorem (part 1)

- ${\mathfrak C}$ any stable monoidal ∞ -category. Assume I is irreducible. How to construct a monoidal triangulated functor $F:{\mathcal H}_{{\mathsf{aff}}}\to{\mathfrak C}$?
 - **1.** For $i \in I$, choose $F_i \in \operatorname{Fun}^{mon}(\mathcal{H}_{I \smallsetminus \{i\}}, \mathfrak{C})$
 - **2.** For $i, j \in I$, choose $F_i|_{\mathcal{H}_{I \smallsetminus \{i,j\}}} \xrightarrow{\sim}_{\sigma_{ij}} F_j|_{\mathcal{H}_{I \smallsetminus \{i,j\}}}$ in $\mathsf{Fun}^{\mathsf{mon}}(\mathcal{H}_{I \smallsetminus \{i,j\}}, \mathcal{C})$
 - **3.** For $i, j, k \in I$, ensure commutativity in $\text{Fun}^{\text{mon}}(\mathcal{H}_{I \setminus \{i,j,k\}}, \mathcal{C})$:



4. (higher associativity constraints)

How to apply the colimit theorem (part 2)

Choose a *t*-structure on \mathcal{C} . Restrict attention to functors $F:\mathcal{H}_{aff}\to\mathcal{C}$ which send all tilting generators into \mathcal{C}^{\heartsuit} .

To construct these functors, one only needs the "1-categorical colimit theorem," which follows from the Elias—Williamson presentation.

This is because of 'truncatedness':

$$\operatorname{\mathsf{Hom}}^i_{\operatorname{\mathcal{C}}}(F(\operatorname{\mathcal{T}}_1),F(\operatorname{\mathcal{T}}_2))=0 \quad \text{ for } i<0.$$

This corresponds to vanishing of some π_1, π_2, \ldots , because we are using cohomological indexing.

To construct more general functors, one needs the " ∞ -categorical colimit theorem."

How to apply the colimit theorem (part 3)

Problem: In a general ∞ -category, it's hard to check Step 4.

In an ordinary category, however, Step 4 automatically follows.

Key Idea

Choose a *t*-structure on \mathbb{C} . The subcategory of Fun^{mon} $(\mathcal{H}_{I \setminus \{i\}}, \mathbb{C})$ which sends all tilting generators into \mathbb{C}^{\heartsuit} is an ordinary category.

This trick may work even when there is no t-structure on $\mathfrak C$ such that the desired functor $\mathcal H_{\mathrm{aff}} \to \mathfrak C$ sends all tilting generators into $\mathfrak C^{\mathfrak O}$.

Indeed, we may now use a different t-structure for each $i \in I$.

Tolmachov's thesis: $\operatorname{Perf}^{G}(St) \to \mathcal{H}_{fin}$ in type A (part 1)

From now on, $I = \widetilde{A}_{n-1}$, with vertices $\{0, \dots, n-1\}$, and $G := \mathsf{GL}_n$.

Question

Is there a (monoidal) functor $\mathcal{H}_{\mathsf{aff}} \to \mathcal{H}_{I \smallsetminus \{0\}}$ which is compatible with the following map of braid groups $\mathbb{B}_{\mathsf{aff}} \to \mathbb{B}_{\mathsf{fin}}$?

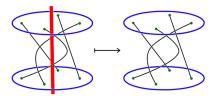


Image source: Tolmachov's thesis

Bezrukavnikov's equivalence states that $\mathcal{H}_{aff} \simeq D^b(\mathsf{Coh}^{\mathcal{G}}(\mathsf{St}))$. Tolmachov's thesis constructs a functor $\mathsf{Perf}^{\mathcal{G}}(\mathsf{St}) \to \mathcal{H}_{I \smallsetminus \{0\}}$.

Tolmachov's thesis: $\operatorname{Perf}^G(St) \to \mathcal{H}_{\operatorname{fin}}$ in type A (part 2)

Key Idea for Bezrukavnikov's equivalence

Perf^G(St) is generated by the vector bundles $\mathcal{O}(\lambda,\mu)\otimes_{\mathbb{C}}V$ and maps (highest weight arrows, monodromy endomorphisms) subject to some relations. The object $\mathcal{O}(\lambda,\mu)\otimes V$ corresponds to $J_{\lambda}\star\mathcal{Z}_{V}\star\Xi\star J_{\mu}\in\mathcal{H}_{\mathrm{aff}}$.

Question 1: Where should $J_{\lambda} \star \mathcal{Z}_{V} \star \Xi \star J_{\mu}$ map to?

Weight decomposition $V = \bigoplus_{\lambda} V_{\lambda}$.

Recall that \mathcal{Z}_V is an iterated extension, in which J_λ occurs dim V_λ times.

 $\mathbb{B}_{\mathsf{aff}} \to \mathbb{B}_{\mathsf{fin}}$ forces $J_{\lambda} \mapsto \mathbb{L}_{\lambda}$ (Jucys–Murphy sheaves).

Anything in \mathbb{B}_{fin} convolved with Ξ yields Ξ .

Answer: $J_{\lambda} \star \mathcal{Z}_{V} \star \Xi \star J_{\mu} \mapsto \mathbb{L}_{\lambda} \star (V \otimes_{\mathbb{C}} \Xi) \star \mathbb{L}_{\mu}$.

→ロト→部ト→差ト→差 のQで

Tolmachov's thesis: $\operatorname{Perf}^G(St) \to \mathcal{H}_{fin}$ in type A (part 3)

To get maps and relations, need to 'take apart' $V \otimes_{\mathbb{C}} \Xi$. Thus, we ask:

Question 2: Under $\mathcal{H}_{aff} \to \mathcal{H}_{fin}$, where should \mathcal{Z}_V map to?

Answer: For V_{std} , it's an "averaged" parabolic Springer sheaf.

Let P be the parabolic which fixes a line. $G\setminus (G\overset{P}{\times}U_P)\simeq P\setminus U_P$ $\overset{G}{\sqcup}\longrightarrow U\setminus G/U$

$$\overline{U} \longrightarrow U \setminus G \setminus G$$

$$\downarrow \qquad \qquad \downarrow$$

$$\overline{U_P} \xrightarrow{\pi} \frac{G}{G}$$

Parabolic Springer sheaf: $\operatorname{Spr}_P := \pi_* \underline{\mathbb{C}}_{\frac{U_P}{P}}[2 \dim U_P]$

Pull-push Spr_P , then force it to be T-monodromic.

Tolmachov's thesis: $\operatorname{Perf}^G(St) \to \mathcal{H}_{fin}$ in type A (part 4)

What about $\wedge^k V_{\text{std}}$?

 λ_k – partition of *n* given by the 'hook' (k, 1, ..., 1).

 IC_{λ_k} – IC-complex of the unipotent orbit in $G = GL_n$ given by λ_k .

Main Theorem of Tolmachov's thesis

- (a) $\wedge^k \operatorname{Spr}_P \simeq \operatorname{IC}_{\lambda_k} \oplus \operatorname{IC}_{\lambda_{k+1}}$ for $1 \leq k \leq n-1$.
- (b) $\wedge^n \operatorname{Spr}_P \simeq \operatorname{IC}_{\lambda_n}$.
- (c) IC_{λ_n} becomes invertible after some averaging.
- (d) $\wedge^{n+1} \operatorname{Spr}_P = 0$.

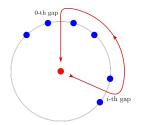
Finally, bootstrap from $\wedge^k V_{\text{std}}$ to all GL_n -reps via a Tannakian argument.

◆ロト ◆団ト ◆豆ト ◆豆ト ・豆 ・ かへで

Constructing $\mathcal{H}_{\mathsf{aff}} \to \mathcal{H}_{\mathsf{fin}}$ via the colimit theorem (part 1)

To apply the colimit theorem, we need to do Steps 1, 2, 3 from before.

1. $F_i: \mathcal{H}_{I \smallsetminus \{i\}} \to \mathcal{H}_{I \smallsetminus \{0\}}$ is conjugation by a specific element $b_i \in \mathbb{B}_{aff}$.



 $\textbf{2.} \ \ \sigma_{ij}: F_i|_{\mathcal{H}_{I \smallsetminus \{i,j\}}} \xrightarrow{\sim} F_j|_{\mathcal{H}_{I \smallsetminus \{i,j\}}} \text{ expresses that } b_j^{-1}b_i \text{ centralizes } \mathcal{H}_{I \smallsetminus \{i,j\}}.$ (Use centrality of $\Delta^2_{w_0}$, Prop. 5.4, Monodromic model for Khovanov–Rozansky homology, Bezrukavnikov–Tolmachov)

Constructing $\mathcal{H}_{\mathsf{aff}} \to \mathcal{H}_{\mathsf{fin}}$ via the colimit theorem (part 2)

3. Want to check $\sigma_{jk} \circ \sigma_{ik} \simeq \sigma_{ik}$ in Fun^{mon} $(\mathcal{H}_{I \setminus \{i,j,k\}}, \mathcal{C})$. Right now, we do not know if this is true.

What if Step 3 fails?

That is, what if $\sigma_{ik}^{-1} \circ \sigma_{jk} \circ \sigma_{ik}$ is not the id. natural transformation?

Key Idea (deformed affine Hecke category)

One may define a new category $\mathcal{H}^{(\alpha)}_{\mathrm{aff}}$ by deforming $\mathcal{H}_{\mathrm{aff}}$ using the 'cocycle' $\sigma_{ik}^{-1} \circ \sigma_{jk} \circ \sigma_{ik}$. By construction, there will be a monoidal functor

$$\mathcal{H}_{\mathsf{aff}}^{(\alpha)} \to \mathcal{H}_{I \smallsetminus \{0\}}.$$

Deformed affine Hecke category (part 1)

Interpret the colimit diagram in $\mathcal{H}_{aff} \simeq \text{colim}_{J \subseteq I} \mathcal{H}_J$ as follows:

- **1.** For $i \in I$, write down the category $\mathfrak{H}_{I \setminus \{i\}}$.
- **2.** For $i, j \in I$, write down the identity functor

$$\begin{array}{ccc} \mathcal{H}_{I \smallsetminus \{i,j\}} & & & \mathcal{H}_{I \smallsetminus \{i\}} \\ & & & & \\ \mathbf{H}_{I \smallsetminus \{i,j\}} & & & & \\ \mathcal{H}_{I \smallsetminus \{i,j\}} & & & & \\ \end{array}$$

3. For $i, j, k \in I$, write down the trivial commutativity natural iso

Deformed affine Hecke category (part 2)

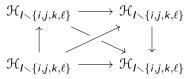
Define $\mathcal{H}_{\mathrm{aff}}^{(\alpha)} := \operatorname{colim}_{J \subsetneq I} \mathcal{H}_J$ using a modified colimit diagram:

Steps 1 and 2 are the same as before.

3'. For $i, j, k \in I$, write down a nontrivial commutativity natural iso

$$\mathcal{H}_{I \setminus \{i,j,k\}} \xrightarrow{\text{Id}} \mathcal{H}_{I \setminus \{i,j,k\}} \xrightarrow{\text{Id}} \mathcal{H}_{I \setminus \{i,j,k\}}$$

4. For $i, j, k, \ell \in I$, the following tetrahedron must commute:



All six maps are Id, all four triangles come from step 3'.

Deformed affine Hecke category (part 3)

Key Idea (deformed affine Hecke category)

Use the natural iso's $\sigma_{ik}^{-1} \circ \sigma_{jk} \circ \sigma_{ik}$ to define natural iso's for Step 3'. The resulting category $\mathcal{H}_{aff}^{(\alpha)}$ admits a monoidal functor to $\mathcal{H}_{I \smallsetminus \{0\}}$.

We expect that $\mathcal{H}_{aff}^{(\alpha)}$ can be (noncanonically) obtained from \mathcal{H}_{aff} by altering the 3-term (and higher) associativity constraints for the monoidal structure.

Hence, the centers of $\mathcal{H}_{aff}^{(\alpha)}$ and \mathcal{H}_{aff} are equivalent (as categories), but their (braided) monoidal structures are different.

Next steps. Describe the categories $\mathcal{H}^{(\alpha)}_{aff}$ more explicitly. Investigate the center of $\mathcal{H}^{(\alpha)}_{aff}$ and compare with the center of $\mathcal{H}_{I \smallsetminus \{0\}}$.

References

B. Elias and G. Williamson, *Soergel calculus*, Represent. Theory **20** (2016), p. 295-374.

B. Elias and G. Williamson, *Diagrammatics for Coxeter groups and their braid groups*, Quantum Topology **8**(3) (2017), pp. 413–457.

S. Riche and G. Williamson, *Tilting modules and the p-canonical basis*, Asterisque, Société Mathématique de France, 2018, 397. hal-01249796v3

J. Tao and R. Travkin, *The affine Hecke category is a monoidal colimit*, preprint arXiv:2009.10998 (New version will be available soon.)

K. Tolmachov, *Towards a functor between affine and finite Hecke categories in type A*, Ph.D. thesis (2018), available at http://tolmak.khtos.com/thesis_tolmachov.pdf

R. Bezrukavnikov and K. Tolmachov, *Monodromic model for Khovanov–Rozansky homology*, preprint arXiv:2008.11379

Appendix: How to construct $\mathbb{B}_{\mathsf{aff}} o \mathcal{H}_{\mathsf{aff}}$ (part 1)

"Reduced lift" presentation of braid monoid $\mathbb{B}_{\rm aff}^+$:

$$\mathbb{B}^+_{\mathsf{aff}} \simeq \left\langle t_w \text{ for } w \in W_{\mathsf{aff}} \ \middle| \ egin{array}{c} t_{w_1} t_{w_2} = t_{w_1 w_2} \text{ whenever} \\ \ell(w_1) + \ell(w_2) = \ell(w_1 w_2) \end{array}
ight
angle$$

Valid even when \mathbb{B}_{aff}^+ is viewed as a discrete topological monoid!

Finite type: Thm. 1.7, Action du groupe des tresses sur une catégorie, Deligne (1997)
Arbitrary type: Generalize Deligne's proof, or apply Thm. 5.1, Configuration spaces of labeled particles, Dobrinskaya (2006)

Define the monoidal functor $\mathbb{B}^+_{\mathrm{aff}} \to \mathcal{H}_{\mathrm{aff}}$ via $t_w \mapsto (j_w)_! \underline{\mathbb{C}} = \Delta_w$.

Appendix: How to construct $\mathbb{B}_{\mathsf{aff}} \to \mathcal{H}_{\mathsf{aff}}$ (part 2)

Thm. 5.2 of Dobrinskaya (2006)

I – any Coxeter–Dynkin diagram

The homotopy groupification of \mathbb{B}_I^+ is the (discrete) braid group \mathbb{B}_I if and only if $K(\pi, 1)$ conjecture holds for \mathbb{B}_I .

Paolini and Salvetti (2020) proved the $K(\pi,1)$ conjecture for affine I.

Universal property of homotopy groupification:

 $(j_w)_!\underline{\mathbb{C}}=\Delta_w$ invertible \Longrightarrow Get a monoidal functor $\mathbb{B}_{\mathsf{aff}} o\mathfrak{H}_{\mathsf{aff}}.$