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The first “Quantum advantage” claims have 
now been made…

Random Circuit Sampling (Google 
“Sycamore”) in late 2019, USTC in 2021, 
Google’s second experiment in 2023…

Gaussian BosonSampling – e.g., USTC “Jiuzhang” 
in late 2020, Xanadu’s “Borealis” in 2022…

These talks: the latest complexity theoretic arguments & classical algorithms to 
understand the power of these “random quantum circuit” experiments



Importance of experimental quantum 
advantage: foundations of computation
• Experimental violation of the Extended Church-Turing thesis

• i.e., If we want to model efficient computation, we must consider quantum 
mechanics!

• Complements theoretical evidence given by earlier speedups (e.g., 
[Bernstein-Vazirani ’93][Simon’94][Shor ‘94])



Importance of experimental quantum 
advantage: validating quantum physics
• Exponential growth one of the most counter-intuitive 

aspect of quantum mechanics.
• Is the exponential description of a quantum state really 

necessary?

• New limit in which to test physics: high complexity.
• Difficulty: how to verify something that’s exponentially 

complex?



What is the ideal goal of quantum advantage?

• Find a problem:
1. Can be solved efficiently using a 

near-term quantum experiment
2. Is classically hard to solve – can’t 

be solved in polynomial time with 
a classical computer as the 
system size scales

3. Solution can be efficiently verified 
with a classical computer with 
minimal trust in the experiment



What is the current goal of quantum advantage?
• Current quantum advantage experiments solve 

“sampling problems” in which the goal is to sample 
from a complicated distribution

• We have rigorous evidence that these problems 
cannot be solved classically in polynomial time 

• But current experiments are not scalable!
1. Require exponential time to verify
2. Uncorrected noise gets worse as system size grows

• So hope is to find a “Goldilocks” system size:
• Large enough to be classically challenging to simulate
• Not too large!  Otherwise effects of noise overwhelm 

and the experiment can’t be verified
• There is optimism that current experiments have 

reached this size, but classical simulation 
algorithms continually improve, as do quantum 
experiments.  

• Much is still unknown!!!!

Goldilocks and the three bears



What is Random Circuit Sampling? [e.g., Boixo 
et. al. 2017]
• Generate a quantum circuit C on 𝑛 qubits on a 2D 

lattice, with 𝑑 layers of (Haar) random nearest-
neighbor gates
• In practice use a discrete approximation to the Haar 

random distribution
• Start with |0n〉 input state, apply random quantum 

circuit and measure all qubits in computational basis
• i.e., Sample from a distribution 𝐷!  over 0,1 "

• Has now been implemented: 
• n = 53 qubits, d = 20 [Google, 2019]
• n = 60 qubits, d = 24 [USTC, 2021] 
• n = 70 qubits, d = 24 [Google, 2023]

• This will be the focus of these talks!

(single layer of Haar random two 
qubit gates applied on 2D grid of 
qubits)



Boson Sampling [Aaronson & Arkhipov ‘11]
• Prepare 𝑛 photon 𝑚 ≥ 𝑛!-mode “Fock” 

state
• i.e., 𝑛 identical single photons in the first of 𝑚 

modes
• Evolve under a Haar random linear optical 

unitary composed of beamsplitters and 
phaseshifters
• Take photon number resolving 

measurements in each mode
• Recent experiments use similar idea with 

Gaussian input states, rather than Fock 
states – called “Gaussian BosonSampling”
• Implemented with 144 modes and as many as 

113 detected photons by USTC ’21
• Implemented with as 216 modes and as many 

as 219 photons by Xanadu ‘22

Photo credit: R. Garcia-Patron, 
J. Renema and V. Shchesnovich



Agenda

1. Hardness argument 1 (hardness of quantum sampling)
2. Hardness argument 2 (hardness of benchmarks)
3. Easiness argument 1 (classical algorithm for the “XQUATH” benchmark)
4. Easiness argument 2 (classical algorithms taking advantage of 

uncorrected noise)



2. Hardness argument 1 (hardness of worst-case 
quantum circuit sampling)



What do we mean by quantum sampling?

• Current quantum advantage experiments sample from the output 
distribution of a quantum circuit
• i.e., on input 𝐶 the experiment runs 𝐶|0!⟩ and measures all 𝑛 qubits in 

computational basis to get a sample 𝑦 ∈ 0,1 !

• Definition: Let the “output probability” 𝑝! 𝐶 = 𝑦 𝐶 0" #	
• First goal: prove impossibility of an efficient classical sampler 

algorithm 𝑆 that samples from the same distribution:
• for all 𝐶, 𝑦 we have Pr

"
𝑆 𝐶, 𝑟 = 𝑦 = 𝑝#(𝐶)



Starting point: on “classical” vs “quantum” sum

• Consider two problems:
• “Classical” sum: Given classical circuit computing 𝑓: 0,1 ! → {0,1} compute 
∑$∈ &,( ! 𝑓(𝑥)

• “Quantum” sum: Given classical circuit computing 𝑔: 0,1 ! → {±1} compute 
∑$∈ &,( ! 𝑔(𝑥)

• Both are #𝐏-hard to exactly compute, since they are at least as hard 
as counting the number of satisfying assignments to a Boolean 
formula



On classical approximate sum
• Classical “approximate sum”: Given 𝑓: 0,1 " → {0,1} output 

multiplicative estimate 𝛼 so that:
•  (1 − 𝜖)∑$∈ &,( ! 𝑓 𝑥 ≤ 𝛼 ≤ (1 + 𝜖)∑$∈ &,( ! 𝑓(𝑥)

• Stockmeyer’s algorithm: classical approximate sum can be solved in 
classical 𝑝𝑜𝑙𝑦 𝑛, $

%
 time with an NP oracle [Stockmeyer’85]

• In particular, it’s strictly easier than exact case, unless PH collapses
• Consequence 1: If a classical sampler 𝑆 exists, then outputting a 

multiplicative estimate of probability for any outcome 𝑦 is strictly 
easier than #P
• Because output probability is a classical sum problem!
• i.e., define f(r)=1 if 𝑆 𝐶, 𝑟 = 𝑦 and otherwise 0 
• Then Pr

)
[𝑆 𝐶, 𝑟 = 𝑦] = (

*|#|
∑) 𝑓(𝑟)



On quantum approximate sum

• Quantum “approximate sum”: Given g: 0,1 " → {±1} output multiplicative 
estimate 𝛼 so that:
• 1 − 𝜖 ∑#∈ %,' !𝑔 𝑥 ≤ 𝛼 ≤ 1+ 𝜖 ∑#∈ %,' !𝑔 𝑥

• Claim: Unlike the classical problem this is as hard as computing ∑# 𝑔(𝑥) exactly!
• Intuition: Exponential size cancellations (“interference”) make this problem 

much harder than classical approximate sum!
• Pf sketch: “binary search and padding” 

• Claim: even computing sign(∑$ g(x)) is #𝐏-hard (and is a strictly easier problem!)
1. “Padding”: By adding dummy variables can compute 𝑔′ so that ∑$% g% x′ = ∑$ g x − k
2. Then compute sign i.e., is (∑$% g′(x)) > 0 ?

• Then we know if ∑! g x >k
3. Then binary search on k and repeat!

• Exercise:  Similar argument proves it’s #P-hard to estimate (∑2𝑔(𝑥))2	
• i.e., can run the same binary search & padding argument on | ∑#𝑔(𝑥) |



Consequence 2: estimating output 
probabilities of quantum circuits is #P-hard
• Claim: given quantum circuit 𝐶 

estimating 𝑝&((𝐶) is as hard as squared 
quantum approximate sum.
• Pf:  By “quantum Fourier sampling”

• Given 𝑔: 0,1 ! → {±1} consider the 
quantum circuit C that:
• Prepares the state g = ∑!𝑔 𝑥 |𝑥⟩ then takes 

the Hadamard of each qubit
• Notice that 𝑝"" 𝐶 = 0# 𝐻⊗# 𝑔 % =

∑# ' ! $

%$"
• So multiplicative estimation of 𝑝&!(𝐶) is #𝐏-

hard
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Impossibility of exact sampling

• Assume, for contradiction, there is an efficient sampler 𝑆:
• This means for any quantum circuit 𝐶:

•  Pr
(
𝑆 𝐶, 𝑟 = 𝑦 = 𝑦 𝐶 0# % = 𝑝)(𝐶)

• By consequence 1 we know that estimating the probability 𝑆 outputs 
0: = 𝑝&( , is strictly easier than #P unless PH collapses
• But by consequence 2 know that estimating 𝑝&((𝐶) is #P-hard, since 

it is as hard as squared quantum approximate sum
• This is a contradiction!  So there can’t be such a sampler algorithm.
• Similar arguments appear in [Terhal-DiVincenzo ’04, Bremner-Jozsa-

Shepherd ’11, Aaronson-Arkhipov ’11…]



This result is not robust

• The impossibility result has two major weaknesses:
1. Exactness assumption: It requires that the classical algorithm 

samples exactly from the output distribution of each quantum 
circuit

2. Worst-case assumption: It requires that the classical algorithm 
works for all quantum circuits 

• Major goal in the theory of quantum advantage: prove 
impossibility of approximate average-case sampler
• i.e., efficient classical algorithm 𝑆(𝐶, 𝑟) that samples from any 

distribution 𝑋 −𝐷! )* ≤ 𝜖 whp over C

• Note: constant approximation in TVD is not intended to 
model physical noise but rather classical imprecision!

All distributions over 0,1 %

𝜖

𝐷&



Proving hardness of approximate sampling
• Central problem of study: 𝛿-random circuit estimation:

• To prove hardness of average-case approximate sampling suffices to prove 
𝜹 = 𝑶(𝟐3𝒏) random circuit estimation is #P-hard [Stockmeyer ‘85][Aaronson 
Arkhipov ‘11]
• Known hardness results with respect to C on 𝑛 qubits, size 𝑚 = 𝑂(𝑛 ⋅ 𝑑)

• Boson Sampling: goal is 5
6( +,- (

, whereas we have hardness at 5
6.( +,- (

 
[BFLL’21] 

Given as input quantum circuit C, output q so that 𝑞 − 𝑝"" 𝐶 ≤ 𝛿 
with probability 2/3 over C

Goal!

𝛿
2'((*!)

[Movassagh 2019]
𝑂 2'%2'((* ,-. *) 

[BFLL 2021]
[KMM 2021]

2'((/012(*))

        [BFNV 2018]
2'((*) 
[Krovi 2022]



Inspiration: average-case hardness of Permanent 
[Lipton ‘91]
• Permanent of 𝑛	×	𝑛	matrix is #P-hard in the worst-case [Valiant ‘79]
• 𝑃𝑒𝑟 𝑋 = ∑7∈9(∏:;5

" 𝑋:,7(:)
• Algebraic property: 𝑃𝑒𝑟[𝑋] is a degree 𝑛 polynomial with 𝑛! variables
• Need compute 𝑃𝑒𝑟 𝑋  of worst-case matrix 𝑋	

• But we only have access to algorithm 𝑂 that correctly computes most permanents over 𝔽/
• i.e., Pr

*∈3𝔽4"	×	"
𝑂 𝑌 = 𝑃𝑒𝑟 𝑌 ≥ 1 − -

./0)(#)

• Choose 𝑛 + 1 fixed non-zero points	𝑡5, 𝑡!… , 𝑡"=5 ∈ 𝔽> 	and uniformly random 
matrix 𝑅
• Consider line 𝐴(𝑡) = 𝑋 + 𝑡𝑅

• Observation 1 “scrambling property”: for each 𝑖, 𝐴(𝑡0) is a random matrix over 𝔽/	"	×	"
• Observation 2: “univariate polynomial”: 𝑃𝑒𝑟[𝐴(𝑡)] is a degree 𝑛 polynomial in 𝑡

• But now these 𝑛 + 1 points uniquely define the polynomial, so use polynomial 
extrapolation to evaluate 𝑃𝑒𝑟[𝐴(0)] = 𝑃𝑒𝑟[𝑋]



[BFNV’18]: Hardness for Random Quantum Circuits

• Algebraic property: much like 𝑃𝑒𝑟[𝑋], output probability of random 
quantum circuits has polynomial structure
• Consider circuit 𝐶 = 𝐶9𝐶9:(…𝐶(
• Polynomial structure comes from path integral:

• ⟨0! 𝐶 0!⟩ = ∑#& ,#' ,…,#(∈ &,( ! 0! 𝐶9 𝑦9 𝑦9 𝐶9:( 𝑦9:( … 𝑦* 𝐶( 0!

• This is a polynomial of degree 𝑚 in the gate entries of the circuit
• So the output probability 𝑝&((𝐶) is a polynomial of degree 2𝑚



First attempt at adapting Lipton’s proof

• Fix 𝑚 Haar random two qubit gates 𝐻? ?∈[B] 

• Main idea: Implement tiny fraction of 𝐻?D$
• i.e.,	𝐶<= = 𝐶<𝐻<𝑒:<>)?

• This scrambles C if 𝜃	 ≈ 	𝑠𝑚𝑎𝑙𝑙, since each gate is close to Haar random
• However, if 𝜃 = 1 the corresponding circuit 𝐶′ = 𝐶

• Strategy (in style of Lipton): take several non-zero but small	𝜃, 
compute output probabilities of “random but correlated” circuits 
𝐶′E3 , 𝐶′E4 … , 𝐶E45

F   and apply polynomial extrapolation, evaluate at 
𝜃 = 1 to retrieve 𝑝&((𝐶)



This is not quite the “right way” to scramble!

• Problem: 𝑒D?G6E  is not polynomial in 𝜃
• Solution: take fixed truncation of Taylor series for 𝑒D?G6E

• i.e., each gate of 𝐶?
=  is 𝐶<𝐻< ∑@A&B :<>)? *

@!
• So each gate entry is a polynomial in 𝜃 and so is 𝑝&!(𝐶?

= )
• Now extrapolate and compute 𝑝(1) = 𝑝&!(𝐶)



How to motivate the truncations?

• Main technical result in [BFNV’18]: Estimating 𝑝&((𝐶′) is hard iff 
estimating 𝑝&((𝐶) is hard
• Intuitively, because the “truncation error” is so much smaller than the size of 

the additive error we are conjecturing is hard.

• More recently, [Movassagh’19’20] has shown a related argument (using 
the so called “Cayley path”) that eliminates the need for these 
truncations

𝑝!!(𝐶)

2:!/𝑝𝑜𝑙𝑦 2:!/𝑒𝑥𝑝

𝑝!!(𝐶")



On robustness to imprecision
• So far we assumed the ability to 

compute the output probabilities of 
random circuits {𝑝&((𝐶′E6)} exactly 
• Actual setting: Given 2𝑚 evaluation 

points {(𝜃? , 𝑦?)}	so that for most 𝑖,
𝑦? − 𝑝&((𝐶′E6) ≤ 𝛿

• We have two polynomials:
• The “ideal” 𝑝 𝜃< = 𝑝&! 𝐶?)

=

• The extrapolated polynomial 𝑞 𝜃< = 𝑦< 

• Our question: How close is 𝑞(1) to 
𝑝 1 = 𝑝&( 𝐶  in terms of 𝛿, 𝜃BHI  ?

0 1𝜃*78
𝜃

“average-case” points “worst-case” point

?
𝑞(𝜃)

p(𝜃)



The “Paturi picture”
• [Paturi ’92] If we have a degree 𝑑 polynomial 𝑧 𝜃  bounded on an 

interval [0, 𝜃BHI] by 𝛿 then |𝑧 1 | ≤ 𝛿2J(KE5;<
=3 ) 

• Our case: Consider the degree 2𝑚 polynomial 𝑧 𝜃 = 𝑝 𝜃 − 𝑞 𝜃

0 1𝜃*78 𝜃

“average-case” points “worst-case” point

𝛿

𝛿2((9:"#$
%& )



How large can we take 𝜃!"#?
• Lagrange extrapolation requires getting all 𝑑 = 2𝑚 points 

correct
• So we need the algorithm to succeed wp ≥ 1 − 𝑂 (

9

• As 𝜃 gets larger 𝐶?
=  is further away from random circuit

• i.e., Distribution of 𝐶?
=  is 𝑂(𝑚𝜃)-close in TVD from Haar 

random circuit
• So algorithm works wp 1 − 𝑂(𝑚𝜃) on these points

• So need 𝜃9I$ ≤
(

J(9&)

• Plugging in Paturi’s bound: z 1 ≤ 𝛿2J K?(+,
-. = 𝛿2J(9')

• So need 𝛿 = (
*/((')

0 1𝜃*78 𝜃

“average-case” points “worst-case” 
point

𝛿

𝑧 𝜃 = 𝑝 𝜃 − 𝑞 𝜃

𝛿2((9:"#$
%& )



Increasing robustness [BFLL’21] (see also 
[Kondo et. al.’21])
• To improve imprecision we need a new, 

error-robust means of polynomial 
extrapolation
• Will do this by oversampling – i.e., taking 

many more points than degree
• “Robust Berlekamp-Welch” Thm. Given 
O(𝑑!) “faulty” evaluation points {(𝜃: , 𝑦:)} to 
𝑝(𝜃) of degree 𝑑 so that:

1. 𝜃2 ∈ 0, 3
4

2. We know at least 2/3 of 𝑦2  are 𝛿-close to 𝑝(𝜃2)

• Then any polynomial 𝑞(𝜃) which is 𝛿-close 
on 2/3 fraction of the points is 𝛿2E F -close 
to 𝑝(𝜃) for all 𝜃 ∈ 0, 5

F
 

0 11
𝑑

𝜃

“average-case” points “worst-case” point

𝑞(𝜃)

p(𝜃)



How large can we take 𝜃!"# now?
• Input: faulty points to polynomial 𝑝(𝜃): 
𝜃$, 𝑦$ , 𝜃#, 𝑦# … (𝜃J B4 , 𝑦J B4 ) 

• Ask NP oracle to give us a polynomial 𝑞(𝜃) that is 
𝛿-close to 2/3 of these points
• This can easily be checked by evaluating 𝑞 at each 𝜃<

• Robust Berlekamp-Welch theorem tells us:
• 𝑝 𝜃 − 𝑞 𝜃 ≤ 𝛿= = 𝛿2J 9  for all 𝜃 ∈ 0, (

9

• Then Paturi tells us:
• 𝑝 1 − 𝑞 1 = 𝑧 1 ≤ 𝛿′2J K?(+,

-. = 𝛿2J 9&

• So we need to take 𝛿~ (

*/ (& 	

0 11
𝑚

𝜃

“average-case” points
“worst-case” 
point

𝛿′

𝑧 𝜃 = |𝑝 𝜃 − 𝑞 𝜃 |



Getting to robustness 2$%(! '()!)

• Given faulty points 𝜃-, 𝑦- , 𝜃%, 𝑦% …(𝜃3 4$ , 𝑦3 4$ ) with 𝜃5 ∈ 0, -
4

• Trick! Rather than asking the NP oracle for the approximating 
polynomial q of degree 𝑚, replace the variable 𝜃 with 𝜃6 for some large 
𝑘 and ask for this new poly q′
• This rescaling increases the degree to 𝑘𝑚!  
• But it “stretches” unit interval near 0 and “compresses” near 1 

• So for fixed value of 𝜃47! =
-
4

 the corresponding value of 𝜃47! has 
increased, it’s now -

4;/= 

• Plugging in Paturi’s bound: z 1 ≤ 𝛿′23(64⋅4;/=)

• Setting 𝑘 = log(𝑚) we have z 1 ≤ 𝛿23(4⋅9:; 4 )

• So we need to set 𝛿	~	2<3 4⋅0/' 4 	

0 11
m>/?

𝜃

“average-case” points
“worst-case” 
point

2@⋅*𝛿

𝑧 𝑥 = 𝑝B 𝑥 − 𝑞′(𝑥)



Comments & Open Directions

• Main open question in the theory of quantum advantage: improve the 
additive imprecision of these average-case hardness results to 𝑂(2D") 
from 2DJ(B) for RCS or $

Y( +,- ( from $
Y.( +,- ( for Boson Sampling

• Current hardness results have improved dramatically but we’ve also 
discovered barriers implying that new techniques will be needed to 
improve them further (e.g., [AA’2011][Napp et. al. ‘19][BFLL’21])



3. Hardness argument 2 (hardness of 
benchmarks)



Limitations of total variation distance

• Total variation distance is difficult to measure!
• There are well-known exponential lower bounds for sample complexity, even for 

“merely” testing closeness to the uniform distribution e.g., [Valiant & Valiant’17]

• Closeness in total variation distance is not a reasonable model of 
uncorrected physical noise
• i.e., system size increases, having TVD remain a small constant isn’t realistic 

without error mitigation

• Is there a “quantum signal” that is easier to verify and implement?



Candidates for verifiable “quantum signals”

• Many candidates rely on the “Porter-Thomas property” of random 
quantum circuits
• Each output probability is exponentially distributed
• i.e., Pr

!
𝑥 𝐶 0" > = ?

>!
~𝑒@?

• True for Haar random unitaries
• Conjectured to be true even for shallow depth random circuits

• This Porter-Thomas property implies that the output distribution of a  
random but fixed circuit is somewhat “flat” but not uniform whp
• Observation: Easy to sample from the output distribution with a quantum 

computer and observe many “heavy” outcomes – how difficult is this to do 
classically?



Heavy Output Generation [Aaronson & Chen ’17]

• Definition: With respect to a circuit 𝐶 call an 
outcome 𝑥 ∈ 0,1 " heavy if 𝑝I  is greater 
than median in the output distribution of 𝐶
• HOG: Given random circuit 𝐶 output strings 
𝑥$, 𝑥#, … , 𝑥Z  so that at least 2/3 are heavy
• Claim: Quantumly can solve HOG simply by 

repeatedly running 𝐶|0"⟩ and measuring
• Why?  Because whp over 𝐶, the sum of 

probabilities that are above median in output 
distribution is ≥ 0.7 
• Using Porter-Thomas property!

• Then use Chernoff bound to prove 2/3 of 
outputs are heavy whp

Median outcome𝑪 𝟎𝒏 →

𝑝8&
𝑝8'

...

𝑝8(/'

…

𝑝8(

Heaviest outcome

Lightest outcome



Quantum Threshold Assumption (QUATH)

• HOG still seems like a sampling task – why should this be hard classically? 
• [Aaronson and Chen’17]:  HOG is classically hard assuming QUATH
• QUATH: No efficient classical algorithm takes input random 𝐶 with 𝑚 ≫
𝑛 gates and decides if 𝑝&( 	is heavy with probability $

#
+ Ω $

#(
• Where probability is over both 𝐶 and internal randomness of classical algorithm

• Motivation: QUATH seems closer to problems we understand, since it 
involves estimation of 𝑝&(
• Key point is that the bias scales exponentially in 𝑛 rather than size 𝑚

• Not hard to show classical algorithm with a bias that scales exponentially in 𝑚
• e.g., randomly guessing a small number of Feynman paths and comparing to a 

threshold



QUATH implies HOG is hard
• Pf.  (Intuition): By contrapositive assume there’s an algorithm for HOG.  We 

want to solve QUATH.
• On input 𝐶 use HOG algorithm to output list of mostly heavy strings in output distribution 

of 𝐶
• Output “heavy” if 0" is on the list.

• Pf. (More formal analysis): 
• Easier to consider a uniform outcome 𝑧 ∈ 0,1 " rather than the 0" outcome

• But it doesn’t matter by a property of random circuits called “hiding”
• i.e., Let 𝐶′ be the circuit chosen by taking 𝐶 and appending Pauli X gates to each 𝑖-th qubit if 𝑧2 = 1
• Notice that new circuit, 𝐶′, has property that  𝑝5# = 06 𝐶 06 7 = 𝑧 𝐶% 06 7 and 𝐶% is still 

random circuit
• Strategy is same as the intuition: use HOG algorithm on 𝐶′ to output list 𝑧', … , 𝑧A so that 
2/3 of 𝑧0 are heavy, then choose uniform element of list, call it 𝑧0∗
• If 𝒛 = 𝒛𝒊∗ 	output “heavy” 
• If 𝒛 ≠ 𝒛𝒊∗  output “heavy” wp ½, “light” wp ½ 

• The probability this algorithm is correct on heaviness of 𝑝%!(𝐶) is at least:
• Pr 𝑧2∗ = 𝑧 ⋅ 7

:
+ Pr 𝑧2∗ ≠ 𝑧 ⋅ 3

7
= 3

7#
⋅ 7
:
+ 1 − 2;6 ⋅ 3

7
= 3

7
+ Ω 3

7#



Linear Cross-Entropy (XEB) [Boixo et. al. ’16] 
[Arute et. al. ‘19]

• An alternative measure of heaviness is XEB:
• 𝐗𝐄𝐁 𝑝U$V, 𝑝<KUIW = 2! ∑$ 𝑝U$V 𝑥 𝑝<KUIW 𝑥 = 2!𝐸$~V<,=($) 𝑝<KUIW(𝑥)

• If 𝑝U$V = 𝑝<KUIW then 𝐗𝐄𝐁 𝑝U$V, 𝑝<KUIW = 2 but 𝐗𝐄𝐁 𝑈, 𝑝<KUIW = 1

• XEB can be well-approximated in few device samples via concentration 
of measure arguments, but requires exponential time to compute ideal 
output probabilities of observed samples
• i.e., observe experimental outcomes 𝑧(, … , 𝑧@ and compute *

! ∑) V)><+? Y)
@



Why is scoring well on XEB classically hard? 
[Aaronson & Gunn ‘19]
• XHOG (“Linear Cross Entropy Heavy Output Generation”)

• Given 𝐶, output 𝑘 distinct samples 𝑧(, 𝑧*, … , 𝑧@ so that 𝐸< 𝑧< 𝐶 0! * ≥ 𝒃
*!
	

• Where 𝑏 = 1 + 𝜖 

• By repeatedly running a noiseless circuit we’d be able to achieve 𝒃 = 2
• Noise can cause the experiment to have considerably different values for 𝒃

• E.g., Google scores 𝑏 = 1.002 on its 53 qubit RCS experiment 

• Still seems like a sampling task – why should this be hard classically?  



The XQUATH assumption [Aaronson & Gunn ’19]

• XHOG is hard assuming XQUATH
• XQUATH: No efficient classical algorithm, given random 𝐶, produces 

estimate, 𝑝, to 𝑝&( = | 0" 𝐶 0" |# so that: 

• 2*! 𝐸[ 𝑝&! −
(
*!

*
− 𝐸[ 𝑝&! − 𝑝 * = Ω 2:!

• i.e., No classical algorithm can achieve a mean squared error at estimating 
an output probability of a random circuit, that’s slightly better than the 
trivial algorithm that always outputs 2D"

• XQUATH implies XHOG is hard by very similar reduction!
• i.e., assume there’s an XHOG algorithm that outputs samples 𝑧(, 𝑧*, … , 𝑧@ so that 
𝐸< 𝑝Y) = \

*!
 then output \

*!
 if 0! is on the list and else output (

*!



Comments & Open Directions

• This is a very “lossy” reduction!  Even scoring well (e.g., constant 𝑏 >
1) on XHOG gives rise to exp(−𝑛) bias for XQUATH.  Can this be 
improved?
• Under certain assumptions about the noise, the XEB score well-

approximates the fidelity of the noisy experiment.  Hence it can be 
useful for benchmarking (see e.g., [Boixo et. al. ‘17] and our work [Liu 
et. al. ‘21] for more details).



4. Easiness argument 1 (XQUATH is false at sublinear 
depth) [Gao et. al. ‘21][Aharonov et. al. ‘22]



Revisiting the intuition for XQUATH

• Recall XQUATH: No efficient classical algorithm, given random 𝐶, 
produces estimate, 𝑝, to 𝑝&( = | 0" 𝐶 0" |# so that: 
• XScore = 2*] 𝐸[ 𝑝&! −

(
*!

*
− 𝐸[ 𝑝&! − 𝑝 * = Ω 2:!

• Intuition is that the best classical algorithm for estimating 𝑝& for a 
random circuit 𝐶 = 𝐶B𝐶BD$…𝐶$ is to sample the path integral in the 
computational basis:
• 𝑝&! = ∑#& ,#' ,…,#(∈ &,( ! 0! 𝐶9 𝑦9 𝑦9 𝐶9:( 𝑦9:( … 𝑦* 𝐶( 0!

*

• There are exp(𝑛 ⋅ 𝑑) paths with uniform value, so it’s unclear how to achieve an 
advantage that scales as 2:! 

• Observation: Turns out this isn’t true!  If we consider the path integral in 
the Pauli basis the values of the paths are highly non-uniform!



Pauli path integrals

• Rather than thinking of quantum circuit as applying unitary gates to 
vectors, think about it as applying unitary channels to density matrices

• Denote the normalized Pauli operators 𝑃" =
\
#
, ]
#
, ^
#
, _
#

⊗"

• Can write an 𝑛-qubit density matrix 𝜌 = ∑a∈b( 𝛼a ⋅ 𝑡 with 𝛼a = 𝑇𝑟 𝑡𝜌
• Recall in the “computational basis” path integral we express:

• 𝑥 𝑈 𝜓 = ∑#∈ &,( !⟨𝑥|𝑈|𝑦⟩⟨𝑦|𝜓⟩

• Analogously, in Pauli basis 𝑇𝑟 𝑠𝑈𝜌𝑈c = ∑a∈b( 𝑇𝑟 𝑠𝑈𝑡𝑈
c 𝑇𝑟[𝑡𝜌]

• We call 𝑇𝑟 𝑠𝑈𝑡𝑈^  the “transition amplitude”



Expressing 𝑝# as a Pauli path integral

• Now we can express any output probability as a Pauli path integral, in 
analogy to what we are accustomed to in the computational basis 
• Let 𝐶 = 𝐶K𝐶KD$…𝐶$ where each layer 𝐶?  acts on 𝑛 qubits
• 𝑝I = 𝑥 𝐶 0" #

• = ∑d∈b(BC3 Tr 𝑥 ⟨𝑥|𝑠K Tr(𝑠K𝐶K𝑠KD$𝐶K
c) … Tr s$𝐶$𝑠&𝐶$

c Tr s& 0: ⟨0"|)

• = ∑d∈b(BC3 𝑓(𝐶, 𝑠, 𝑥) (we define 𝑓(𝐶, 𝑠, 𝑥) as the “value” of path 𝑠)



Two important facts
• The XQUATH algorithm relies on two facts which both follow from elementary 

properties of Haar random gates
• Fact 1 (e.g., [HL’09]) Let 𝑈 be a Haar random 2 qubit gate and 𝑝, 𝑞 ∈ 𝑃!,

•  Then 𝐸D Tr 𝑝𝑈𝑞𝑈E > =

1, 𝑖𝑓	𝑝 = 𝑞 = F⊗&

>

0, 𝑖𝑓	𝑝 = F⊗&

>
	𝑎𝑛𝑑	𝑞 ≠ F⊗&

>

0, 𝑖𝑓𝑝 ≠ F⊗&

>
	𝑎𝑛𝑑	𝑞 = F⊗&

>
'
'G
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	

• Fact 2 (“orthogonality of Pauli paths”) Let 𝐶 be a random circuit (with Haar gates) 
and s ≠ 𝑠T ∈ 𝑃"F=5	be any two different paths and any 𝑥 ∈ 0,1 "

• Then 𝐸! 𝑓 𝐶, 𝑠, 𝑥 𝑓 𝐶, 𝑠H, 𝑥 = 0
• Corollary: for any path 𝑠 ≠ 𝐼"

⊗JK', 𝐸L 𝑓 𝐶, 𝑠, 𝑥 = 0   
• since the 𝐼6

⊗4A3 path has value 3
7#

 so 𝐸B 𝑓 𝐶, 𝑠, 𝑥 𝑓 𝐶, 𝐼6
⊗4A3, 𝑥 = 3

7#
𝐸 𝑓(𝐶, 𝑠, 𝑥) = 0



XQUATH algorithm (part 1)
• Claim: Given a random circuit 𝐶 outputting 𝑝 = $

#(
+ 𝑓 𝐶, 𝑠∗, 0"  achieves 

𝑋𝑆𝑐𝑜𝑟𝑒 of $
$f

K
 where 𝑠∗ = $

#(
𝑍 ⊗ 𝐼⊗"D$

⊗Kg$

• Recall: 𝑋𝑆𝑐𝑜𝑟𝑒 = 2#: 𝐸h 𝑝&( −
$
#(

#
− 𝐸h 𝑝&( − 𝑝 #

• Proof: 𝑋𝑆𝑐𝑜𝑟𝑒 = 2#"𝐸h
$
#4(

− #
#(
𝑝&( − 𝑝# + 2𝑝 ⋅ 𝑝&(      (by algebra)

• = 2*!𝐸[[−
(
*&!

− 𝑝* + 2𝑝 ⋅ 𝑝&!]   (using that 𝐸[ 𝑝&! = (
*!

) 

• = 2*!𝐸[[−
*
*&!

− 𝑓 𝐶, 𝑠∗, 0! * + 2𝑝 ⋅ 𝑝&!] (by def. of 𝑝 & by cor. Fact 2 cross terms = 0)

• = 2*!𝐸[[−
*
*&!

− 𝑓 𝐶, 𝑠∗, 0! * + *VC!
*!

+ 2𝑓 𝐶, 𝑠∗, 0! 𝑝&!]  (by def. of 𝑝)

• = 2*!𝐸[[−𝑓 𝐶, 𝑠∗, 0! * + 2𝑓 𝐶, 𝑠∗, 0! *]  (using that 𝐸[ 𝑝&! = (
*!
	 & orthogonality) 

• = 2*!𝐸[[𝑓 𝐶, 𝑠∗, 0! *]      (by algebra)



XQUATH algorithm (part 2)
• Recall 𝐶 = 𝐶F𝐶F35…𝐶5  and the path 𝑠∗ = 5

!(
𝑍 ⊗ 𝐼⊗"35

⊗F=5

• where each layer 𝐶0 consists of two qubit gates 𝐶0
('), 𝐶0

(>), … , 𝐶0
("/>)

• So far we have:	𝑋𝑆𝑐𝑜𝑟𝑒 = 2!"𝐸\ 𝑓 𝐶, 𝑠∗, 0" !

• = 2>NEO Tr 𝑥 ⟨𝑥|𝑠J∗ > ⋅ Tr 𝑠J∗𝐶J𝑠J@'∗ 𝐶J
E >

⋅ … ⋅ Tr s'∗𝐶'𝑠%∗𝐶'
E >

⋅ Tr s%∗ 0N 0" > 	

• First and the last terms are 3
7#

7
 which cancels the 276 term in front

• = Product of 𝑑 squared transition amplitudes each of the form:
• = 𝐸B% 𝑇𝑟 𝑍 ⊗ 𝐼⊗6;3 	𝐶2 𝑍 ⊗ 𝐼⊗6;3 𝐶2

D 7
	 (using that each 𝑠E∗ = (𝑍 ⊗ 𝐼⊗6;3))

• = 𝐸B%
(') 𝑇𝑟 𝑍 ⊗ 𝐼 𝐶2

3 𝑍 ⊗ 𝐼 𝐶2
3 D 7

⋅ 𝐸B% )
𝑇𝑟 𝐼 ⊗ 𝐼 𝐶2

7 𝐼 ⊗ 𝐼 𝐶2
7 	D 7

⋅… 
• Grouping the two qubit gates that act on each pair of qubits together and 𝑇𝑟 𝐴⊗𝐵 = 𝑇𝑟 𝐴 ⋅ 𝑇𝑟[𝐵]

• By Fact 1, all of these expectations except the first are 1, the first is 5
5`

• So the total score is ~ '
'G>



Consequences of XQUATH algorithm

• Notice that the classical algorithm simply computes value of single 
path in the Pauli basis (takes time 𝑂(𝑛 ⋅ 𝑑))

• Algorithm achieves X𝑆core of $
#Q B

• If circuit depth is sublinear, then this is a higher score than $
#(	

contradicting XQUATH!



Comments & Open Directions

• A similar algorithm achieves a score of 2DJ K  on XEB but this 
algorithm is not yet practical i.e., it doesn’t spoof current experiments 
–  can we improve this?
• How hard is achieving a sufficiently large constant score on XEB for 

random quantum circuits with super-constant depth?  Recall this is 
what a noiseless random quantum circuit achieves by sampling!   
• There’s an alternative spoofing method due to [Pan-Chen-Zhang ‘21], 

which uses a clever tensor contraction method to simulate Google’s 
53 qubit XEB score on supercomputer in a reasonably short amount 
of time but takes considerably longer for the USTC 60 qubit 
experiment 



5. Easiness argument 2 (classical algorithms 
taking advantage of uncorrected noise)



Uncorrected noise defines the NISQ era
• Without error-correction noise eventually overwhelms

• e.g., Google’s RCS experiment  ~0.2% signal and 99.8% noise

• Can uncorrected noise help us to classical simulate near-term quantum 
experiments?
• That is, consider fixing a noise model and for RCS a first reasonable choice 

is depolarizing noise  
• e.g., Each layer of random gates is followed by layer of single qubit depolarizing 

noise channel with constant noise strength 𝛾:
• ℰ 𝜌 = 1 − 𝛾 𝜌 + hi

*
𝑇𝑟[𝜌]

• Note that ℰ(I)=I but ℰ 𝑃 = 1 − 𝛾 𝑃 for 𝑃 ∈ {𝑋, 𝑌, 𝑍}

• Note: having only depolarizing noise is a simplification!



Quantifying the effects of uncorrected noise
• Intuitively, uncorrected depolarizing noise increases entropy.  As our 

circuit gets deeper the output distribution converges to uniform
• Main question: how quickly does this happen?
• We’ve known since the late 90’s that the noisy quantum circuit 

distribution with depth 𝑑 and the uniform distribution are ≤ 2DqK  close 
in TVD [Aharonov et. al. ’96]
• This rules out scalable noisy quantum advantage at super-logarithmic 

depth
• What about random circuits?  Could the convergence be faster?

• Numerical evidence that convergence to uniform happens faster [Boixo et. al. ‘17]
• i.e., TVD upper bounded by ≤ 2:h⋅K⋅!  whp over 𝐶 

• This would rule out scalable noisy quantum advantage at any depth!



How much depth is required for quantum 
advantage?
• Anticoncentration is one ingredient of current hardness of sampling arguments 

that requires sufficiently deep random circuits (with Haar random gates)
• A distribution over circuits anticoncentrates if: 

• There exists constants 𝛼 ∈ (0,1], 𝑐 > 0 so that  Pr
!
𝑝%! 𝐶 ≥ R

>!
≥ 𝑐

• Notice this is not sufficient for hardness e.g., the uniform distribution anticoncentrates!
• Rather it’s a sanity check that ±𝑂(2@") additive estimates to 𝑝%! aren’t trivial!

• Until recently, we only knew anticoncentration for 2D circuits (with Haar 
random gates) happened at depth ≥ 𝑛 [Harrow & Mehraban ‘18]
• This is too deep for scalable noisy quantum advantage!

• i.e., we know that the output distributions are ≤ 2@SJ~2@ "	 close to uniform



Is there any hope for fully scalable, noisy 
quantum advantage from RCS?
• Consequently until last year, there was little 

optimism that we could get such an advantage
• Rather we hope for “Goldilocks” system sizes to 

keep the system from getting too noisy 

• Then two results rekindled some hope at 
log(𝑛) depth…

1. Anticoncentration at log(𝑛) depth [Barak et. al. 
‘21][Dalzell et. al. ’22]

2. TVD between noisy random circuit distribution 
and uniform is lower bounded by 2:J(K) whp 
[Deshpande et. al. ‘22]
• Matches the Aharonov et. al. ‘96 upper bound and rules 

out faster convergence rates 

Goldilocks and the three bears



Can a classical algorithm beat uniform sampling 
at depth log 𝑛?
• For d = O(log 𝑛 ) depth noisy circuits we know that the uniform 

distribution is 2DJ(K) = $
:T

 close in TVD to the output distribution by 
[Aharonov et. al. ‘96] upper bound
• But it was possible that quantum advantage persists for sampling from a 

distribution $
"UV

 -close in TVD to the noisy output distribution for some 
sufficiently large constant 𝑐′ > c 
• This possibility has recently been ruled out by very recent work of 

[Aharonov et. al. ‘22]



The [Aharonov, Gao, Landau, Liu, Vazirani’22] 
algorithm 
• [Aharonov et. al. ’22] give a classical algorithm for sampling from a 

distribution 𝜖 − 𝑐𝑙𝑜𝑠𝑒 to the distribution of noisy random quantum 
circuits in 𝑝𝑜𝑙𝑦 𝑛, $

%
	 time modulo several caveats

• This hides a factor of 𝑛$/q  with noise-rate 𝛾, which keeps the 
algorithm from being competitive with near-term experiments
• Also algorithm requires anticoncentration, so is only efficient and 

useful (i.e., beats uniform sampling) at 𝐥𝐨𝐠(𝒏) depth
• Finally, algorithm requires certain constraints on the gate set (satisfied 

e.g., by Haar random gates)



Main ideas of [Aharonov et. al. ’22]

• Key observation [Gao & Duan’18][Aharonov et. al. ‘22]: Output 
probabilities (and marginals) of noisy random quantum circuits in Pauli 
basis have most mass on a small number of paths, rest of the paths are 
exponentially suppressed
• Recall notation: in Pauli basis 𝑝#(𝐶) = ∑a∈b(BC3 𝑓(𝐶, 𝑠, 𝑥)
• Then by definition of depolarizing noise, the noisy output probability:  
a𝑝# = ∑a∈b(BC3 1 − 𝛾

a 𝑓 𝐶, 𝑠, 𝑥
• Where 𝑠  is the Hamming weight, or number of non-Identity Paulis in path

• Main idea: To compute 𝑝#  simply throw away high-weight Pauli terms and 
exactly compute the low weight terms!
• i.e., for appropriate cutoff, ℓ, compute 𝑞# = ∑a: a dℓ 1 − 𝛾 a 𝑓(𝐶, 𝑠, 𝑥)	



Analysis of the [Aharonov et. al. ’22] 
algorithm 
• Recall the algorithm works by truncating the Pauli path integral of 

each noisy output probability, then computing each truncated 
probability path by path
• Analysis in two steps:

1. Upper bound the TVD, | r𝑝 − s𝑞|(	as a function of the truncation parameter ℓ
2. Upper bound the running time of the algorithm as a function of ℓ



Step 1: How to set cutoff ℓ to bound TVD

• Goal is to obtain upper bound on | a𝑝 − f𝑞|5 = Δ
• 𝐸\ Δ! ≤ 2"𝐸\ ∑#∈ f,5 ( 	( a𝑝#−f𝑞#)

!                (by Cauchy-Schwarz)

• = 2"𝐸\ ∑# ∑a: a gℓ 1 − 𝛾 a 𝑓 𝐶, 𝑠, 𝑥
!

    (by definition of a𝑝#  and f𝑞#)

• = 2"𝐸\ ∑#∑a: a gℓ 1 − 𝛾 ! a 𝑓 𝐶, 𝑠, 𝑥
!

     (orthog. of Pauli paths, Fact 2)
• = ∑hgℓ 1 − 𝛾 !h 	𝑊h              (rewriting, where 𝑊h  is “Fourier weight”)
• ≤ 1 − 𝛾 !ℓ ∑hgℓ𝑊h               (since 𝑘 > ℓ)
• ≤ 𝑒3!iℓ ⋅ 𝑂 1 	 (nontrivial upper bound on 𝑊h  follows from anticoncentration)

• So can take ℓ ≈ 5
i
⋅ log 5

j
  to obtain Δ ≤ 𝜖 with high probability by Markov



Step 2: How to compute truncated prob., )𝑞#?

• Algorithm works by computing value of each path in truncated probability
• How many terms in f𝑞# = ∑a: a dℓ 1 − 𝛾 a 𝑓(𝐶, 𝑠, 𝑥)	?
• Number of paths with Hamming weight at most ℓ is ≤ ℓ ⋅ " F=5

ℓ ⋅ 3ℓ
• Since each path has 𝑛 𝑑 + 1  Pauli operators and we’re choosing ℓ to be non-identity & 

there are 3ℓ different sequences of operators 𝑋, 𝑌, 𝑍 ℓ

• Takes 𝑂(𝑛 ⋅ 𝑑) time to compute each path 

• Total time dominated by # of paths ~ 𝑛 ⋅ 𝑑 E ℓ  ~	𝑛
3
X klm

3
Y  if ℓ = 5

i
log 5

j
 

• Can improve dependence to 2E ℓ  by being be more clever – uses 
anticoncentration and the fact that many paths contribute 0 to the path 
integral.
• Notice by choice of ℓ that this is exponential in '

S
 as well     

   



Comments & Open Directions
• This algorithm applies to constant noise rates.  For 𝛾 = u𝑂 (

!
 there’s evidence for 

hardness of sampling [Dalzell et. al. ’21]
• This algorithm doesn’t spoof near-term RCS experiments due to scaling of runtime with 

noise rate – can we improve this dependence?
• Can we generalize the Aharonov et. al. algorithm to other noise models besides 

depolarizing? 
• Our very recent work suggests this result is quite sensitive to unital noise (Ghosh et. al., arXiv: 

2306.16659)!  Real world experiments have both unital and non-unital noise channels!
• Can we generalize the Aharonov et. al. algorithm to gate sets that are very far from 

Haar random?
• E.g., See our work with [Haferkamp et. al. ’19] for a candidate architecture that anticoncentrates at 

constant depth…
• How hard are noisy random circuits with sublogarithmic depth and Haar random gates?

• Not covered by this algorithm because of anticoncentration is known to fail here [Dalzell et. al. 
’21][Deshpande et. al. ‘22]!

• Most generally, is fully scalable quantum advantage possible without error 
mitigation, for any experiment?



More work I hope you check out!
• Random circuits with non-unital noise do not anticoncentrate at any depth

• Our work: Ghosh et. al., arXiv: 2306.16659 
• Hardness of Gaussian Boson Sampling experiments: e.g.,

• Our work on this [Deshpande et. al. ’21, arXiv: 2102.12474]
• “Bipartite GBS” [Grier et. al.’21, arXiv: 2110.06964]

• Verifying and spoofing current Boson Sampling experiments
• Efficiently distinguishing Boson Sampling distribution from uniform [Aaronson Arkhipov ’13, 

arXiv:1309.7460]
• Our very recent  work classically simulates the largest current size Gaussian Boson Sampling [Oh et. 

al. ’23, arXiv:2306.03709]
• Tensor network that takes advantage of photon loss!

• Useful applications of quantum advantage experiments? e.g.,
• Molecular vibronic spectra problem via Boson Sampling

• See original proposal of  [J.Huh et. al., arXiv: 1412.8427]
• See our quantum inspired classical algorithm for this problem, as well as alternative quantum chemistry 

problems that still might be classically hard [Oh et. al., arXiv: 2202.01861]
• Certified random number generation from Random Circuit Sampling

• see proposal of Aaronson and Hung (e.g., arXiv: 2303.01625)
• our work providing evidence for this proposal [Bassirian et. al. ’22, arXiv: 2111.14846])



Thanks!


