Spanning Trees of Cayley Graphs

Diana Yang

IAS Park City Math Institute (PCMI)

22nd July, 2025

Mathematical Translation: Groups to Graphs

Definition

For a group G and a subset $S \subset G$, the Cayley Graph $\Gamma_{G,S}$ is a graph where $V(\Gamma_{G,S}) = G$. Furthermore, a directed edge $\{u,v\} \in E(\Gamma_{G,S})$ $\iff uv^{-1} \in S$

Mathematical Translation: Groups to Graphs

Definition

For a group G and a subset $S \subset G$, the Cayley Graph $\Gamma_{G,S}$ is a graph where $V(\Gamma_{G,S}) = G$. Furthermore, a directed edge $\{u,v\} \in E(\Gamma_{G,S})$ $\iff uv^{-1} \in S$

Immediate Consequences:

▶ If $S = S^{-1}$ then $\Gamma_{G,S}$ is undirected.

Mathematical Translation: Groups to Graphs

Definition

For a group G and a subset $S \subset G$, the Cayley Graph $\Gamma_{G,S}$ is a graph where $V(\Gamma_{G,S}) = G$. Furthermore, a directed edge $\{u,v\} \in E(\Gamma_{G,S})$ $\iff uv^{-1} \in S$

Immediate Consequences:

- ▶ If $S = S^{-1}$ then $\Gamma_{G,S}$ is undirected.
- ▶ $\Gamma_{G,S}$ is connected $\iff \langle S \rangle \cong G$.

Let *G* be finite group.

▶ $\{C_i\}_{i\in I}$ be its set of conjugacy classes; set $C_1 = \{e\}$

Let *G* be finite group.

- $\{C_i\}_{i\in I}$ be its set of conjugacy classes; set $C_1 = \{e\}$
- ▶ $\forall g \in G$, let $i(g) \in I$ return the index of its conjugacy class.

Let *G* be finite group.

- $\{C_i\}_{i\in I}$ be its set of conjugacy classes; set $C_1 = \{e\}$
- ▶ $\forall g \in G$, let $i(g) \in I$ return the index of its conjugacy class.
- require that G is **ambivalent**. This means every element is conjugate to its inverse, i.e, $i(g) = i(g^{-1})$

Let *G* be finite group.

- $\{C_i\}_{i\in I}$ be its set of conjugacy classes; set $C_1 = \{e\}$
- ▶ $\forall g \in G$, let $i(g) \in I$ return the index of its conjugacy class.
- require that G is **ambivalent**. This means every element is conjugate to its inverse, i.e, $i(g) = i(g^{-1})$
- ► Examples : S_n , Q_{4n} (n even), D_n , A_n for $n \in \{1, 2, 5, 6, 10, 14\}$

Consider the complete graph K_G whose vertex set is G

► To each edge $\{h, k\}$, assign the variable $x_{i(hk^{-1})}$

4

Consider the complete graph K_G whose vertex set is G

- ► To each edge $\{h, k\}$, assign the variable $x_{i(hk^{-1})}$
 - Because *G* is ambivalent, $x_{i(hk^{-1})} = x_{i(kh^{-1})}$

Consider the complete graph K_G whose vertex set is G

- ► To each edge $\{h, k\}$, assign the variable $x_{i(hk^{-1})}$
 - ▶ Because *G* is ambivalent, $x_{i(hk^{-1})} = x_{i(kh^{-1})}$
 - Later we will turn "on" and "off" edges by setting $x_{i(hk^{-1})} = 1$ or 0

Consider the complete graph K_G whose vertex set is G

- ► To each edge $\{h, k\}$, assign the variable $x_{i(hk^{-1})}$
 - ▶ Because *G* is ambivalent, $x_{i(hk^{-1})} = x_{i(kh^{-1})}$
 - Later we will turn "on" and "off" edges by setting $x_{i(hk^{-1})} = 1$ or 0
- Now to each spanning tree T of K_G we assign a weight

$$w(T) := \prod_{\{h,k\} \in T} x_{i(hk^{-1})}$$

4

Consider the complete graph K_G whose vertex set is G

- ► To each edge $\{h, k\}$, assign the variable $x_{i(hk^{-1})}$
 - ▶ Because *G* is ambivalent, $x_{i(hk^{-1})} = x_{i(kh^{-1})}$
 - Later we will turn "on" and "off" edges by setting $x_{i(hk^{-1})} = 1$ or 0
- Now to each spanning tree T of K_G we assign a weight

$$w(T) := \prod_{\{h,k\} \in T} x_{i(hk^{-1})}$$

▶ Big Idea : "Apply Matrix Tree Thm to determine $\sum_{T} w(T)$ to count number of spanning trees"

4

Constructing the Laplacian

Let
$$\Delta = \sum_{g \in G - \{e\}} x_{i(g)} = \sum_{i \in I - \{1\}} |C_i| \cdot x_i$$

Constructing the Laplacian

Let
$$\Delta = \sum_{g \in G - \{e\}} x_{i(g)} = \sum_{i \in I - \{1\}} |C_i| \cdot x_i$$

Let $M = (m_{h,k})$ be the Laplacian :

$$m_{h,k} = \begin{cases} -x_{i(hk^{-1})} & h \neq k \\ \Delta & h = k \end{cases}$$

Constructing the Laplacian

Let
$$\Delta = \sum_{g \in G - \{e\}} x_{i(g)} = \sum_{i \in I - \{1\}} |C_i| \cdot x_i$$

Let $M = (m_{h,k})$ be the Laplacian :

$$m_{h,k} = \begin{cases} -x_{i(hk^{-1})} & h \neq k \\ \Delta & h = k \end{cases}$$

How does it compare to our usual definition of a Laplacian?

Finding Eigenvalues of Laplacian

Proposition

Let χ be an irreducible character of group G. Then :

$$\Delta - \sum_{i \in I - \{1\}} \frac{x_i \cdot |C_i| \cdot \chi(i)}{\dim(\chi)}$$

is an eigenvalue of the Laplacian M of multiplicity. $\dim(\chi)^2$

Given a group G, a representation is a pair (ϕ, V) , where V is a vector space and $\phi: G \to GL(V)$ is a homomorphism.

Given a group G, a representation is a pair (ϕ, V) , where V is a vector space and $\phi: G \to GL(V)$ is a homomorphism.

Its associated character $\chi_V : G \to \mathbb{C}$ is defined $\chi_V(g) = tr(\phi(g))$

Given a group G, a representation is a pair (ϕ, V) , where V is a vector space and $\phi: G \to GL(V)$ is a homomorphism.

Its associated character $\chi_V:G\to\mathbb{C}$ is defined $\chi_V(g)=tr(\phi(g))$

Let's consider an example:

(Left) Regular Representation

It comprises of the group ring : $V=\mathbb{C}[G]$ and the map $\pi:G\to GL(V)$ where $\pi(g)$ acts by left multiplication. (Thus for two elements, $h,k\in G,\pi(g)\cdot h=k\iff g=hk^{-1}$)

Given a group G, a representation is a pair (ϕ, V) , where V is a vector space and $\phi: G \to GL(V)$ is a homomorphism.

Its associated character $\chi_V : G \to \mathbb{C}$ is defined $\chi_V(g) = tr(\phi(g))$

Let's consider an example:

(Left) Regular Representation

It comprises of the group ring : $V=\mathbb{C}[G]$ and the map $\pi:G\to GL(V)$ where $\pi(g)$ acts by left multiplication. (Thus for two elements, $h,k\in G,\pi(g)\cdot h=k\iff g=hk^{-1}$)

Therefore if we consider the matrix $\pi(g)$ at the (h,k)-entry:

$$\pi(g)_{h,k} = \begin{cases} 1 & g = hk^{-1} \\ 0 & otherwise \end{cases}$$

This also means $\chi(e) = dim(V)$ and $\chi(g) = 0, \forall g \in G - \{e\}$

Important Theorems

Cor. of Maschke's Thm

Every representation of a finite group G over $\mathbb C$ can be expressed as a direct sum of irreducible representations.

$$V = \bigoplus_{j \in J} V_j^{\oplus^{d_j}}$$

Important Theorems

Cor. of Maschke's Thm

Every representation of a finite group G over $\mathbb C$ can be expressed as a direct sum of irreducible representations.

$$V = \bigoplus_{j \in J} V_j^{\oplus^{d_j}}$$

Schur's Lemma

Given two irreps of G, (ρ_V, V) and (ρ_W, W) . For any intertwining operator $\psi \in Hom_G(V, W)$ [i.e. $\psi \circ \rho_V = \rho_W \circ \psi$]

$$\psi = \begin{cases} 0 & (\rho_V, V) \ncong (\rho_W, W) \\ \alpha \psi_o & (\rho_V, V) \cong (\rho_W, W) \end{cases}$$

Where ψ_o is an isomorphism.

Returning to the Laplacian we've previously defined:

$$m_{h,k} = \begin{cases} -x_{i(hk^{-1})} & h \neq k \\ \Delta & h = k \end{cases}$$

We can rewrite it as
$$M = \Delta \cdot \pi(e) - \sum_{g \in G - \{e\}} x_i(g) \cdot \pi(g)$$
,

Returning to the Laplacian we've previously defined:

$$m_{h,k} = \begin{cases} -x_{i(hk^{-1})} & h \neq k \\ \Delta & h = k \end{cases}$$

We can rewrite it as $M = \Delta \cdot \pi(e) - \sum_{g \in G - \{e\}} x_i(g) \cdot \pi(g)$,

Furthermore we can block decompose M,

$$M_j = \Delta \cdot \pi_j(e) - \sum_{g \in G - \{e\}} x_{i(g)} \cdot \pi_j(g) = \Delta \cdot Id_{d_j} - \sum_{i \in I - \{1\}} \sum_{g \in C_i} \pi_j(g)$$

$$\pi_j(h) \cdot \sum_{g \in C_i} \pi_j(g) = \pi_j(h) \cdot \sum_{g \in C_i} \pi_j(h^{-1}gh) = \sum_{g \in C_i} \pi_j(g) \cdot \pi_j(h)$$

So we see that M_j is an intertwining operator from $(\pi_j, V_j) \to (\pi_j, V_j)$

$$\pi_j(h) \cdot \sum_{g \in C_i} \pi_j(g) = \pi_j(h) \cdot \sum_{g \in C_i} \pi_j(h^{-1}gh) = \sum_{g \in C_i} \pi_j(g) \cdot \pi_j(h)$$

So we see that M_j is an intertwining operator from $(\pi_j, V_j) \to (\pi_j, V_j)$

By Schur's lemma,
$$M_j = \alpha_j \cdot Id_{dim(V_j)}$$

$$tr(M_j) = \alpha_j \cdot dim(V_j)$$

$$\alpha_j = \frac{tr(M_j)}{dim(V_j)}$$

$$\alpha_j = \Delta - \sum_{i \in I - \{1\}} \frac{x_i \cdot |C_i| \cdot \chi_j(i)}{dim(\chi_j)}$$

With multiplicity $dim(\chi_j)^2$

Applications

For a connected graph Γ , its Laplacian has eigenvalue 0 of multiplicity 1.

Applications

For a connected graph Γ , its Laplacian has eigenvalue 0 of multiplicity 1.

In our case, a simple calculation verifies only the trivial representation yields a zero eigenvalue

$$\Delta - \sum_{i \in I - \{1\}} \frac{x_i \cdot |C_i| \cdot \chi_{triv}(i)}{\dim(\chi_{triv})} = \Delta - \sum_{i \in I - \{1\}} x_i \cdot |C_i| = 0$$

Applications

For a connected graph Γ , its Laplacian has eigenvalue 0 of multiplicity 1.

In our case, a simple calculation verifies only the trivial representation yields a zero eigenvalue

$$\Delta - \sum_{i \in I - \{1\}} \frac{x_i \cdot |C_i| \cdot \chi_{triv}(i)}{\dim(\chi_{triv})} = \Delta - \sum_{i \in I - \{1\}} x_i \cdot |C_i| = 0$$

Thus the number of spanning trees of $\Gamma_{G,S}$ is given by

$$\frac{1}{|G|} \cdot \prod_{\chi \in Irrep(G) - \{\chi_{triv}\}} \left(\Delta - \sum_{i \in I - \{1\}} \frac{x_i \cdot |C_i| \cdot \chi(i)}{dim(\chi)} \right)^{dim(\chi)^2}$$
Where $x_i = \begin{cases} 1 & C_i \subset S \\ 0 & else \end{cases}$

Source

Advances in Applied Mathematics 125 (2021) 102150

Contents lists available at ScienceDirect

Advances in Applied Mathematics

www.elsevier.com/locate/yaama

The number of spanning trees of the Bruhat graph

Richard Ehrenborg

 $Department\ of\ Mathematics,\ University\ of\ Kentucky,\ Lexington,\ KY\ 40506-0027,\\ United\ States\ of\ America$

Onto D_n

Here are the irreducible representations of D_n

1 dimensional Irreps

	r ^k	sr ^k
ψ_1 ψ_2	1 1	1 - 1
	<u> </u>	

	r ^k	sr k
ψ_1	1	1
ψ_2	1	- 1
ψ_3	$(-1)^k$	$(-1)^k$
ψ_4	$(-1)^k$	$(-1)^{k+1}$

n even

n odd

2 dimensional Irreps

$$\rho^h(r^k) = \begin{pmatrix} w^{hk} & 0 \\ 0 & w^{-hk} \end{pmatrix}, \qquad \rho^h(sr^k) = \begin{pmatrix} 0 & w^{-hk} \\ w^{hk} & 0 \end{pmatrix}.$$

for
$$0 < h < \frac{n}{2}$$
, $w = e^{\frac{2\pi i}{n}}$.
 $\chi_h(r^k) = 2\cos(\frac{2\pi h k}{n})$ and $\chi_h(sr^k) = 0$

Onto D_n

Conjugacy Classes for D_n

For n odd:

$$\{1\}, \{r, r^{-1}\}, \dots, \{r^{\frac{n-1}{2}}, r^{\frac{1-n}{2}}\}, \{s, sr^1, \dots, sr^{n-1}\}$$

For n even:

$$\{1\}, \{r, r^{-1}\}, \dots, \{r^{\frac{n}{2}}\}, \{s, sr^2, \dots, sr^{n-2}\}, \{sr^1, sr^3, \dots, sr^{n-1}\}$$

Onto D_n

Conjugacy Classes for D_n

For *n* odd:

$$\{1\}, \{r, r^{-1}\}, \dots, \{r^{\frac{n-1}{2}}, r^{\frac{1-n}{2}}\}, \{s, sr^1, \dots, sr^{n-1}\}$$

For *n* even:

$$\{1\}, \{r, r^{-1}\}, \dots, \{r^{\frac{n}{2}}\}, \{s, sr^2, \dots, sr^{n-2}\}, \{sr^1, sr^3, \dots, sr^{n-1}\}$$

Since we want $\Gamma_{G,S}$ connected, we need S to generate D_n : it has to have the conjugacy class(es) of "flips"

Observation

If
$$S = \{s, sr^1, ..., sr^{n-1}\}, \Gamma_{D_n,S}$$
 is complete bipartite graph $K_{n,n}$

Sanity Check: Cayley's Tree Formula

Since
$$S = \{s, sr^1, ..., sr^{n-1}\}, \Delta = n$$

Sanity Check: Cayley's Tree Formula

Since
$$S = \{s, sr^1, ..., sr^{n-1}\}, \Delta = n$$

We will first start with n odd:

1-D Irrep:
$$\lambda_2 = n - \sum_{i \in I - \{1\}} \frac{x_i \cdot |C_i| \cdot \chi_2(i)}{dim(\chi_2)} = n - (-n) = 2n$$

2-D Irrep :
$$\lambda_h = n - \sum_{i \in I - \{1\}} \frac{x_i \cdot |C_i| \cdot \chi_h(i)}{\dim(\chi_h)} = n - 0 = n$$

There are $\frac{n-1}{2}$ 2-D Irreps, and each eigenvalue shows up $2^2 = 4$ times.

Sanity Check: Cayley's Tree Formula

Since
$$S = \{s, sr^1, ..., sr^{n-1}\}, \Delta = n$$

We will first start with n odd:

1-D Irrep:
$$\lambda_2 = n - \sum_{i \in I - \{1\}} \frac{x_i \cdot |C_i| \cdot \chi_2(i)}{dim(\chi_2)} = n - (-n) = 2n$$

2-D Irrep :
$$\lambda_h = n - \sum_{i \in I - \{1\}} \frac{x_i \cdot |C_i| \cdot \chi_h(i)}{\dim(\chi_h)} = n - 0 = n$$

There are $\frac{n-1}{2}$ 2-D Irreps, and each eigenvalue shows up $2^2 = 4$ times.

For *n* even, there are $\frac{n}{2} - 1$ 2-D Irreps, however 2 more 1-D Irreps.

$$\lambda_3 = n - (\frac{n}{2} - \frac{n}{2}) = n \text{ and } \lambda_4 = n - (-\frac{n}{2} + \frac{n}{2}) = n$$

Sanity Check: Cayley's Tree Formula

Since
$$S = \{s, sr^1, ..., sr^{n-1}\}, \Delta = n$$

We will first start with n odd:

1-D Irrep:
$$\lambda_2 = n - \sum_{i \in I - \{1\}} \frac{x_i \cdot |C_i| \cdot \chi_2(i)}{dim(\chi_2)} = n - (-n) = 2n$$

2-D Irrep :
$$\lambda_h = n - \sum_{i \in I - \{1\}} \frac{x_i \cdot |C_i| \cdot \chi_h(i)}{\dim(\chi_h)} = n - 0 = n$$

There are $\frac{n-1}{2}$ 2-D Irreps, and each eigenvalue shows up $2^2 = 4$ times.

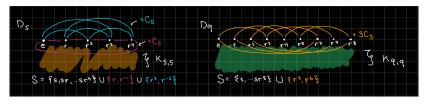
For *n* even, there are $\frac{n}{2} - 1$ 2-D Irreps, however 2 more 1-D Irreps.

$$\lambda_3 = n - (\frac{n}{2} - \frac{n}{2}) = n \text{ and } \lambda_4 = n - (-\frac{n}{2} + \frac{n}{2}) = n$$

Thus in either case, we get n^{n-2} spanning trees. (Very Nice :) !)

What if we add rotations into *S*?

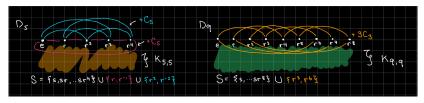
Let's see some examples:



addition of cycles

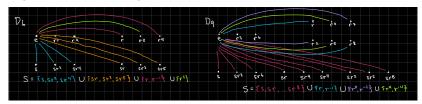
What if we add rotations into *S*?

Let's see some examples:



addition of cycles

It gets more interesting:



Turan Graphs

What if we add rotations into S?

Observation

We can count the number of spanning trees for $T_{2k}(2n)$ whenever k|n using this method.

These will be the partitions : Letting
$$d=\frac{n}{k}$$
 $\{e,r^k,...,r^{k(d-1)}\},\{r,r^{k+1},...,r^{k(d-1)+1}\},...\{r^{k-1},r^{2k-1},...r^{dk-1}\},$ $\{s,sr^k,...,sr^{k(d-1)}\},...,\{sr^{k-1},sr^{2k-1},...sr^{dk-1}\}$ Where $S=D_n-\{e,r^k,...,r^{k(d-1)}\}$

Disjoint Union of Graphs

Consider $G \sqcup H$

Then, its Laplacian
$$L_{G \sqcup H} = L_G \oplus L_H = \begin{pmatrix} L_G & 0 \\ 0 & L_H \end{pmatrix}$$

Thus its eigenvalues are $\{\lambda_j^G\}_j \cup \{\lambda_k^H\}_k$

Consider $\Gamma_{D_n,S}$ where $sr^i \notin S$, $\forall i \in [n]$ By picking the "correct" rotations to stick in S, we get two disjoint Turan graphs.

Consider $\Gamma_{D_n,S}$ where $sr^i \notin S$, $\forall i \in [n]$ By picking the "correct" rotations to stick in S, we get two disjoint Turan graphs.

A simple calculation will verify that the irreducible character χ_2 (where $\chi_2(r^k) = 1$, $\chi_2(sr^k) = 0$), will give you the second zero eigenvalue.

Consider $\Gamma_{D_n,S}$ where $sr^i \notin S$, $\forall i \in [n]$ By picking the "correct" rotations to stick in S, we get two disjoint Turan graphs.

A simple calculation will verify that the irreducible character χ_2 (where $\chi_2(r^k)=1, \chi_2(sr^k)=0$), will give you the second zero eigenvalue.

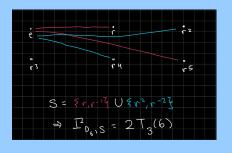
Thus by picking the correct *S*, we can express the number of spanning trees of

$$T_k(n) = \frac{1}{n} \cdot \prod_{\chi \in Irrep(D_n) - \{\chi_{triv}, \chi_2\}} \left(\Delta - \sum_{i \in I - \{1\}} \frac{x_i \cdot |C_i| \cdot \chi(i)}{dim(\chi)} \right)^{\frac{dim(\chi)^2}{2}}$$

$$\text{Where } x_i = \begin{cases} 1 & C_i \subset S \\ 0 & else \end{cases}$$

Example with D_6

Example with D₆



Observation

Thus to get $T_k(n)$ from D_n , we let $S = \{r^i\} - \{r^{ki}\}$ where $i \in [n]$

The End / Thank You

Questions?

Other Semidirect Products?

Consider $C_7 \rtimes C_3$

- $ightharpoonup \alpha: C_3 \to Aut(C_7) \cong C_6$
- $\phi: C_7 \to C_7$, $\phi(1) = 4$ (order 3 automorphism)
- $(a,b)*(c,d) = (a+4^bc,b+d)$
- $ightharpoonup C_7
 times C_3 \cong \langle a, b | a^7, b^3, a^4b = ba \rangle = \{b^i a^j | i \in [3], j \in [7]\}$
- ► However fails to be ambivalent

Conjugacy Class of a

$$(b^i a^j)a(a^{-j}b^{-i}) = b^i ab^{-i} = a^{4i}b^{i-i} = a^{4i}$$

Conjugacy class for a is $\{a, a^4, a^2\}$. Notably, a^{-1} is not an element.

Generalized Quaternion Group (Order 4*n*)

$$Q_{4n} = \frac{C_{2n} \rtimes C_4}{\langle (n,2) \rangle} = \langle a, b | a^{2n}, b^4, bab^{-1} = a^{-1}, b^2 = a^n, \rangle$$

Conjugacy Classes of Q_{4n}

Representative	e	a	a^2	 a^{n-1}	a^n	b	ab
Size	1	2	2	 2	1	n	\overline{n}

There are n + 3 conjugacy classes.

Representations of Q_{4n} , n even

4 1-D Irreps

Representation
$$a^k \ (0 \le k \le 2n-1)$$
 $ba^k \ (0 \le k \le 2n-1)$ ψ_1 1 1 1 ψ_2 1 -1 ψ_3 $(-1)^k$ $(-1)^k$ $(-1)^{k+1}$

Generalized Quaternion Groups

Representations of Q_{4n} , n even

2-D Irreps,
$$w = e^{\frac{\pi i}{n}}$$

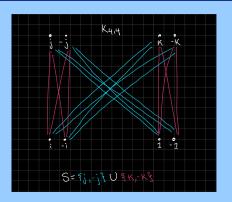
Representation
$$a^k \qquad ba^k$$

$$\phi_j \ (1 \le j \le n-1, j \text{ odd}) \qquad \begin{pmatrix} w^{kj} & 0 \\ 0 & w^{-kj} \end{pmatrix} \qquad \begin{pmatrix} 0 & w^{-kj} \\ w^{-kj} & 0 \end{pmatrix}$$

$$\eta_h \ (1 \le h \le \frac{n-2}{2}) \qquad \begin{pmatrix} w^{2kh} & 0 \\ 0 & w^{-2kh} \end{pmatrix} \qquad \begin{pmatrix} 0 & w^{-2kh} \\ w^{-2kh} & 0 \end{pmatrix}$$

Cayley Graphs for Generalized Quaternions Let $S = [b] \cup [ab]$

Example on Q_8

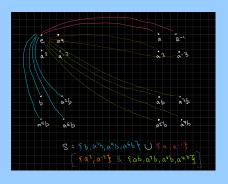


Complete Bipartite Graph

Cayley Graphs for Generalized Quaternions

Let
$$S = [b] \cup [a]$$

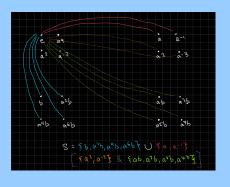
Example on Q_{16}



Cayley Graphs for Generalized Quaternions

Let
$$S = [b] \cup [a]$$

Example on Q_{16}



 $Q_{4n}/Z(Q_{4n}) \cong D_n$, probably won't get anything interesting.