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1. INTRODUCTION

We start with the physical model of photon polarization as a concrete model of the
more abstract concept of single qubit systems. We then introduce the vector represen-
tation (linear algebra), Bloch’s sphere representation (geometry), and the wave function
representation (probability theory) of single qubit systems.

We then delve into wave functions, starting with the physical motivation behind wave
functions, namely wave function as a representation of a state of a quantum system.
Then, we introduce the mathematical insight of wave functions. After our discussion
of a toy model, a discretized space that operates on the quantum scale, we then travel
to the continuous space. In the continuum, we use Fourier transform to explore how a
particle’s position and momentum are derived (from the wave function) and measured.
From the relationship between position and momentum arises the famous Heisenberg
uncertainty principle.

This talk assumes basic knowledge of linear algebra (vector space, basis, orthonor-
mality, inner product), analysis (convergence, Fourier transform, square integrability),
and probability theory (probability density).

2. A PHYSICAL MODEL: PHOTON POLARIZATION

(Experimental set-up: explained during talk).

2.1. Dirac’s Notation for Arbitrary Polarization.

[v) =alt)+b|—=),

where a, b are non-zero amplitude coefficients.

2.2. QM Significance of Photon Polarization.

e Each possible state of polarization of the photon is represented by a unit vector;

e photon’s interaction with the polaroid is always probabilistic;

e photon polarization is a specific example of a qubit;

e a qubit has multiple possible states. More generally, a qubit is any quantum
mechanical system that can be modeled by a 2-dimensional complex vector
space.

3. SINGLE QUBIT SYSTEM

3.1. States of a Qubit. A single qubit can be viewed as a state space, whose elements
are the set of all possible states of the qubit. More particularly:

e such space has the standard basis defined as {|0),|1)};

e cach element (state) of such state space is denoted as:

al0)+b|1),
where a, b € C such that |a|? + |b]? = 1;
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e if you are not familiar with Dirac’s notation (e.g. {a|3)), think alternatively in
terms of matrices:

o= (5): 0= (3).

so that:

v) = a|0) + b|1) = (Z)

3.2. Bloch Sphere. The Bloch Sphere is a way to geometrically represent a qubit. It
becomes useful if one wishes to illustrate single-qubit quantum transformations. The
construction of the Bloch Sphere representation of a qubit is as follows:

Construction of Bloch Sphere

Step 1 Construct a 1-1 correspondence between each quantum state |v) of the
qubit and a € C, where:

[v) =a0) + 1)

o= —,
a

with consideration of the special case when a = 0:
w < [1).

Step 2 For each o € C, there exists s,t € R s.t. a = s+ it. Now construct a 1-1
correspondence between each « = (s,t) and a point on the unit sphere.

The projection is defined as follows:
2s 2t 1—|af?

G = lrs s

a2+ 1" a2+ 17 |af?2 +1

L
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Remark 3.1. The antipodal points on the Bloch sphere correspond to pairs of orthonor-
mal basis of the single-qubit system.

3.3. Wave Functions. Another way to represent each state of a single-bit system (or a
2- dimensional quantum system) is via wave functions. For now, you may think of wave
functions as identity cards that encode specific information assigned to each quantum
state. Moreover, wave functions are (time dependent) solutions to the time dependent
Schrodinger equation. In the literature, wave functions are denoted as ¥(x,t), with =
denoting the position of the particle, ¢ highlighting the time dependent nature of the
function.

4. WAVE FUNCTION

4.1. Classical vs. Quantum. As opposed to quantum mechanics, we refer to New-
tonian mechanics as classical. In the classical sense, a particle is completely described
by its position and momentum in time. In the quantum sense, a state of a particle (or
in other words, a quantum system), may be represented by a complex function 1 (z, t),
also known as the wave function. Its physical significance will be discussed in the below
sections. For the sake of clarity, in this talk we only consider the case of a quantum
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particle moving in the 1-dimension.

Though the function ¢ (z,t) does not encode information about the state’s momen-
tum directly, one may use the tool of Fourier transform to “extract” information about
momentum from the wave function. Unfortunately, the full measurement of position
and momentum of a quantum state may never be obtained simultaneously. This fact
can be more rigorously formulated as Heisenberg’s uncertainty principle (1927).

4.2. A Probabilistic Interpretation. By Born’s probabilistic interpretation of quan-
tum theory (1926), the outcome of an experiment may only be predicted in the prob-
abilistic sense instead of the deterministic sense of Newtonian mechanics. In terms of
bigger picture, one can construct the probability density function of finding the parti-
cle’s position from ¢ (x,t). The probability of the outcome of an experiment is
encoded in ¥(z,1).

In the ensuing sections, we mainly focus on the mathematical aspect of wave func-
tions. We use probability theory (section 4.5) to explore the probabilistic significance
of wave functions and linear algebra (section 4.4) to explore how wave functions are
elements of a vector space, which corresponds to a quantum system.

4.3. Toy Model: Discretized Space. Before we go to the continuous space, we start
with a toy model, the discretized space:

L partide

f(d,), a‘m i(e.) 2(“4*)
o q, 9, 3,

—l—l—i—l—)R

L Vs N B

z g e ( £-€R)
[ A purice w:ﬂna alana R, with rosszblt rhws d.,...,d.,]

Suppose we have a particle on the real number line, such that the particle might end up
at four possible positions aq, as, a3, ay. Moreover, the distance between each position
is €. By the probabilistic interpretation of quantum theory, the position of the particle
can only be known in terms of probability. Mathematically, for all a;,i = {1,2,3, 4},
the probability of finding the particle at «; is :

‘\Ij<0‘i7t)‘267

where W(ay,t) is the wave function corresponding to each ;.
As mentioned earlier, each state of a quantum system may be encoded in a corre-
sponding wave function. Thus, one may naturally think about expressing a system’s



6 JINKUN HAN

information via wave functions. This is indeed possible: we can encode the above dis-
cretized space using a four dimensional complex vector. The rigorousness of such vector
representation will be discussed in section 4.4.

Encoding Information Using Wave Functions (toy model version)

We define the toy model as a one dimensional discretized space (a real number
line) such that a particle may have a finite number of positions denoted as a(
i =1,2,..,n). The wave function corresponding to each «; is denoted as ¥ («;, t),
then:

(1) The probability of finding such particle at «; is:
@ (0, t) e,
and to make notation clearer, define:
P = VeP(a, ),

so that the probability distribution of the position of the particle is |1;
Then it follows that:
Z |1/J2|2 = 17

and (the linear algebra aspect will be explained in section 4.4):

W) = D 1wl

>

(2) State Vector
We now see how exactly the toy model is encoded by wave functions. The
system is encoded in a n— dimensional complex vector:

(W) = (WY1, -, Yn).-

Example 4.1. Say we have a particle that has equally spaced possible positions
{a1, a9, a3,a4}. What is the state vector representing the particle ending up at po-
sition as?

4.4. Wave Functions Live in H. We may now extend our toy model to the con-
tinuum. For the toy model introduced in section 4.3., notice that the state vector
representing the system lives in a finite dimension. Now extend the space to an infinite
dimensional vector space. In other words, we are still considering one particle moving
along the real axis, but now the particle may end up at infinite number of positions.
We still consider wave function ¢ : R — C.

We may now define the sufficient mathematical scheme, in terms of linear algebra, to
describe how each 1 belongs to a vector space that corresponds to a quantum system.
Later in section 4.5, we use probability theory to explore the information encoded in .
Now, we define the type of space that we deal with in quantum mechanics, the Hilbert
spaces.
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Definition 4.2. Hilbert space
A Hilbert space is a real or complex vector space equipped with an inner product (-, -),
such that it is complete in the norm defined as:

-1 =)
In this talk we consider wave functions that belong to the Hilbert space L?(R) (the

space of square integrable functions). The proof for L?(R) being a Hilbert space is left
to the readers to verify.

Definition 4.3. Inner product in Dirac’s notation
In Dirac’s notation, given a vector space V' equipped with an inner product ¢, ), then
for vectors |, |8) € V' chosen arbitrarily:

(a|B) =<a, ).

Wave Functions Live in a Unique Hilbert Space H

You might ask:“why do wave functions live in a Hilbert space?” For now, just
take this fact as an axiom of quantum mechanics.

(1) Wave functions belong to a unique Hilbert space H (linearity is implied)
such that given ¥ (x), s (x) € H,a, S € C:

ahi(z) + Bia(z) € H.
(2) The inner product associated with H is defined as:
+00

(ilba) = . 1 (z)e(z)dz.

(3) For all ¥(z) € H:
+o0

o=l = [ T = [ lpeprds <o,

—a0
and due to (3), we say that wave functions live in the Hilbert space of square
integrable functions, denoted L?(R).

4.5. Probabilistic Approach to Wave Functions. Recall that we consider a par-
ticle moving along R whose wave functions is defined as:

Yv:R—C,
such that the probability density of such particle being at position x is
()|
Then, the probability of the particle being in I < R is defined as:
Plalze IR} — J () 2dz.
I

Moreover:

| 1wtopas =1,
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which, from the physical point of view, is interpreted as the probability of the particle
ending up at different positions on R must add up to 1. We then conclude that in
general:

Normalization Condition for Wave Functions ¢ (x)

All ¢)(x) must be normalizable, i.e.:

[l =1

—00

Example 4.4. Normalizing a function
2

Given the function f(z) = =7, notice that:

+o
f e 2dx = /7.

—00
How can you modify f(x) so that you get a new normalized function f(x)? What
is your normalization factor? What can you say about the general pattern for
normalizing a function (given that it is normalizable)?

\. J

4.6. Deriving Momentum. Notice that in the quantum mechanical sense, the parity

that we have in the classical sense between position and momentum of a particle is

broken. However, it is still possible to extract information about a particle’s momentum

from the wave functions. This section assumes basic knowledge of Fourier transform.
We start with a physical motivation:

De Broglie’s Hypothesis (1924)

Given a particle such that its wave function has spatial frequency k (where k € Z),
then its momentum p can be expressed as:

p = hk,

where A is the reduced Plank constant.

\. J

Putting on the physicist’s hat, if we attempt to recover the form of wave function
Y(z) from de Broglie’s hypothesis, we may guess that given k which represents the
angular frequency, then:

Y(a) = €7
But notice that e** ¢ L? (Why?). Thus, we may carry out more careful derivations.
For the sake of clarity, we consider a particle moving on a circle and restrict the wave

function to be 27 periodic. Then by the normalization requirement of wave functions,
we expect ¥ (z,t) (eL?([0,27])) to be:

[(wwpar =1

0
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To satisfy the above condition, we may modify our original guess for ¢ (z) = €** to be
the normalized function (check this):

1 )
r) = ——c* pe [*
w( ) \/% ) w Y
and by de Broglie’s hypothesis, such particle has the momentum p = hk with probability
1, which is a nonrandom, deterministic measurement. We are, of course, not satisfied
with the guess of wave function being 1(z) = \/%e”“, as it does not match up to the
probabilistic interpretation of quantum mechanics: it is impossible to know the exact

momentum of a particle with probability 1.

Example 4.5. What is k7?7
Given a wave function for a 1-dimensional traveling wave:

f(x,t) = Acos(ox — ot + ¢),
in which o should & be filled in?

Answer: the equation is:
f(z,t) = Acos(kx — wt + @),

where:

k :=spatial angular frequency, i.e. the number of oscillations of the wave

per unit space;

w :=number of oscillations of the wave per unit time such that Tperiod = 27Tw;
A :=amplitude;

¢ :=the phase constant.

It is reasonable to conclude that for the limited case of a particle moving on a circle,
its associated state space is the Hilbert space L?([0, 27]) equipped with an orthonormal
basis (check this) defined in terms of functions {%}kez- Thus, we may further modify
our guess for wave function of such particle into a linear combination of the orthonormal
basis:

P(x) = Z ape™. (1)

k=—00

Now we have a model of wave function that encodes the particle’s momentum in the
probabilistic sense. That is, every measurement gives momentum p = hk, for some
k € Z, with probability |az|?.

Now, instead of considering a particle on a circle (see equation (1)), we consider a
particle moving along R. Recall that we first proposed the candidate e***(k € Z) for
wave function. However, we were not satisfied with e’** being not square integrable.
Thus, we use Fourier transform to construct a square integrable wave function as a linear
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combination (of functions of the form €**?) in the continuous sense, i.e. an integral. As

an analogy to (1), we define:

Constructing the Momentum Expression (k) of a Particle

_ L e ik N
vw) = o= | eiar,

where ¢ (k) is the Fourier transform of 1:

A~

== [ e

(2) The associated Fourier transform operator F (i.e. imagine a function with
input ¢ (k), output ¢ (k)) that maps from L?(R) to L?(R).
(3) (The Plancherel theorem)

[ wwrds = [ depa =1

—a0 —Q0

To rigorously provide a support for facts (1),(2),(3) stated above, we state the below
proposition and theorem. Fact (2) directly follows from the below proposition, which
is an extension of the result proven in the Schwarz space. This is because the Schwarz
space is dense in L?(R") and the Bounded Linear Theorem allows us to carry out such
extension.

Proposition 4.1. Given that ¢ € L*(R"), then ¢) € L*(R™).
Fact (1) and fact (3) follow from the below theorem:

Theorem 4.6. The Fourier transform on L*(R)
Given the Fourier transform on L*(R"), F : L*(R") — L*(R"™), then:

(1) F is defined as:

FOVE) = — Tim [ e *yp(a)da.

(2) The Fourier inversion, denoted as F~ ', is computed as:

(F')@) = — 1im | e*g(k)dk.

T2 A>w |lz|<A

(3) The Plancherel theorem:

[ = [ o ®)

It is worthwhile to notice that for the sake of presenting a big picture of the repre-
sentation of the momentum function and its relation with the position function, many
details of the Fourier transform has been swept under the rug. Moreover, if you are not
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satisfied with the explanation for the term e¢”** in the above expression, you may con-

sult the formal explanation for such term, which involves solving the time independent
Schrodinger equation.
In brief, the main take away from this section is :

Relation Between Position and Momentum

The probability density of the momentum of a particle is obtained via carrying
out Fourier transform on the probability density of the position of the particle.

More insights could be obtained from the study of the relationship between the posi-
tion and the momentum of a particle. For example, the uncertainty principle postulated
by Heisenberg in 1927 is an intriguing result.

4.7. A Quick Taste of the Heisenberg Uncertainty Principle. As concluded in
section 4.6., one may define the position and momentum of a particle using Fourier
transform. However, both values cannot be measured simultaneously in the quantum
mechanical sense (when the scale is smaller than h, the Planck constant). Such obser-
vation is formulated into the Heisenberg uncertainty principle:

Uncertainty Principle Stated in the Brief Way

If one measures the position and momentum of a particle on the quantum scale
simultaneously, then:

h
Ax - Ap > X
where Ax, Ap correspond to the precision of the measurement of the position and

momentum of the particle.

There exist(s) more rigorous derivation(s) of the uncertainty principle. However, due
to space and time limitation, we only cover the general take of the principle.
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