PCMI 2022: Around the inverse Galois problem

Diego Izquierdo

Instructions.

- 1. Read the course notes and try to do some of the exercises before coming to the exercise session. You may of course discuss the exercises with other participants.
- **2.** During the session, form small groups of four or five to work together. It is important in mathematics to collaborate!
- **3.** There are many exercises you can do in this booklet. You can of course choose those you want to work on in priority. To help you choose, I have indicated the difficulty of the exercises with stars. The exercises with 3 stars are bonus exercises that you should only do once you have done the others.
- **4.** Sections 1 to 5 roughly correspond to the first class, sections 6 and 7 to the second, and sections 8 and 9 to the third.
- 5. Let me know if you find typos!

1 Warm-up: some explicit examples

Reminder 1.1 Let K be a field and let G be a finite abstract group. We say that **the** *inverse Galois problem for* G *has a positive answer over* K *if there exists a finite Galois extension* L of K with Galois group G.

Exercise 1: * (*Inverse Galois problem for abelian groups and cyclotomic extensions*)

- **1.** Let ζ_n be a primitive *n*-th root of unity in \mathbb{C} . Recall what the Galois group of the extension $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ is.
- **2.** By using Dirichlet's Theorem on arithmetic progressions ¹, prove that every finite abelian group is a quotient of $(\mathbb{Z}/n\mathbb{Z})^{\times}$ for some $n \ge 1$.
- **3.** Solve the inverse Galois problem for finite abelian groups over \mathbb{Q} .

Exercise 2: \star (*Symmetric group of prime order*) Let *p* be a prime number.

^{1.} For any two positive coprime integers *a* and *d*, there are infinitely many prime numbers of the form a + nd.

- **1.** Let $f \in \mathbb{Q}[X]$ be an irreducible polynomial of degree p with exactly p 2 real roots. Prove that the Galois group of f over \mathbb{Q} is isomorphic to \mathscr{S}_p .
- **2.** Consider the polynomial $f = (X^2 + m) \prod_{i=1}^{p-2} (X n_i)$ for some positive integer *m* and some pairwise distinct integers n_1, \ldots, n_{p-2} . For each prime number ℓ , introduce the polynomial $f_{\ell} = \ell^p f(X/\ell) + \ell$. Prove that, if ℓ is large enough, the Galois group of f_{ℓ} is isomorphic to \mathscr{S}_p .

2 Hilbert's irreducibility Theorem and Hilbertian fields

Reminder 2.1 Let K be a field of characteristic 0.

- Let $f_1(T, X), ..., f_r(T, X)$ be r irreducible polynomials in K(T)[X]. We introduce the subset $H_K(f_1, ..., f_r)$ of K given by the elements $t \in K$ such that the polynomials $f_1(t, X), ..., f_r(t, X)$ are all well-defined and irreducible in K[X]. The intersection of the set $H_K(f_1, ..., f_r)$ with a Zariski open subset of K is called a Hilbertian subset of K.
- We say that K is **Hilbertian** if every Hilbertian subset of K is nonempty. **Hilbert's** *irreducibility Theorem* states that number fields are Hilbertian.

Exercise 3: ★ (Examples of non-Hilbertian fields)

- 1. Prove that the maximal solvable extension \mathbb{Q}_{sol} of \mathbb{Q} is not Hilbertian.
- 2. Let *K* be a Henselian discretely valued field of characteristic 0.
 - (a) Let *p* be a prime number and let π be a uniformizer in *K*. Prove that, for each $a \in K^{\times}$, at least one of the two polynomials $f(X) = X^p + \pi a 1$ and $g(X) = X^p + a^{-1} 1$ has a root in *K*.
 - (b) Deduce that *K* is not Hilbertian.

Exercise 4: ★ (Hilbertian fields and valuations)

Let *K* be a Hilbertian field of characteristic 0 endowed with a valuation *v*. Prove that every Hilbertian subset of *K* is *v*-dense.

Hint: Let $H = H_K(f_1, ..., f_m)$ be a Hilbertian subset of K, with $f_1, ..., f_m$ irreducible polynomials in K(T)[X]. Given $a \in K$ and $\gamma = v(c) \in v(K^{\times})$, consider the Hilbertian subset

$$H' := H_K(g_{i,\epsilon} : 1 \le i \le m, \epsilon \in \{\pm 1\})$$

of K, where $g_{i,\epsilon}(T, X) \coloneqq f_i(a + cT^{\epsilon}, X)$.

Exercise 5: * * (*Finite extensions of Hilbertian fields*)

Let L/K be a finite extension of fields of characteristic 0. Let d be its degree and let S be a set of representatives of the quotient $Gal(\overline{K}/K)/Gal(\overline{K}/L)$. Take an irreducible polynomial $f \in L(T)[X]$.

- 1. (a) Assume that the $\sigma(f)$ for $\sigma \in S$ are pairwise relatively prime in $\overline{K(T)}[X]$. Prove that there exists an irreducible polynomial $p \in K(T)[X]$ such that $H_K(p) \subset H_L(f)$.
 - (b) Prove that the same result still holds without the assumption that the $\sigma(f)$ for $\sigma \in S$ are pairwise relatively prime in $\overline{K(T)}[X]$. *Hint: Prove that there exists* $c \in L(T)$ *such that the polynomials* $\sigma(f(T, X + c))$ *for* $\sigma \in S$ *are pairwise relatively prime in* $\overline{K(T)}[X]$.
- **2.** Prove that every Hilbertian subset of *L* contains a Hilbertian subset of *K* and deduce that, if *K* is Hilbertian, then so is *L*.
- **3.** Let *G* be a finite group. Assume that *K* is Hilbertian and that there exists a finite Galois extension L of K(T) in which *K* is algebraically closed and that has Galois group *G*. Prove that there are infinitely many pairwise linearly disjoint finite Galois extensions of *K* with Galois group *G*.

Exercise 6: $\star \star$ (*Geometrical irreducibility and spreading out*) Let *K* be a field.

1. Let $P_1, ..., P_r$ be r polynomials in $K(T_1, ..., T_n)[X_1, ..., X_m]$, and assume that the system $\{P_i = 0, 1 \le i \le r\}$ (with variables $X_1, ..., X_m$) has no solutions in the algebraic closure of $K(T_1, ..., T_n)$. Prove that there is a non-empty Zariski open subset U of \overline{K}^n such that the system

 $\{P_i(t_1,...,t_n,x_1,...,x_m) = 0, 1 \le i \le r\}$

is well-defined and has no solution in \overline{K} for $(t_1, ..., t_n) \in U$. *Hint: Use the Nullstellensatz.*

- **2.** Let $f(T_1, ..., T_n, X_1, ..., X_m) \in K(T_1, ..., T_n)[X_1, ..., X_m]$ be an absolutely irreducible polynomial. Prove that there is a non-empty Zariski open subset U of \overline{K}^n such that the polynomial $f(t_1, ..., t_n, X_1, ..., X_m)$ is well-defined and irreducible in $\overline{K}[X_1, ..., X_m]$ for each $(t_1, ..., t_n) \in U$.
- **3.** Let $f(T_1,...,T_n,X_1,...,X_m) \in K(T_1,...,T_n)[X_1,...,X_m]$ be an irreducible polynomial. Is there necessarily a non-empty Zariski open subset *U* of K^n such that the polynomial $f(t_1,...,t_n,X_1,...,X_m)$ is well-defined and irreducible in $K[X_1,...,X_m]$ for each $(t_1,...,t_n) \in U$?

Exercise 7: $\star \star \star$ (Function fields and Hilbertian subsets of K^n)

Let *K* be a field of characteristic 0. In this exercise, we prove that the rational function field K(U) is Hilbertian.

1. Let $f \in K[U, T, X]$ be a polynomial with deg_X f > 0.

- (a) Assume first that *f* is absolutely irreducible. By using the second question of exercise 6, prove that there exists a non-empty open subset *U* of \overline{K}^2 such that, for any pair $(a, b) \in U$, the polynomial f(U, a + bU, X) is absolutely irreducible.
- (b) Assume now that *f* is irreducible (but not necessarily absolutely irreducible). Prove that there exists a non-empty open subset *U* of K^2 such that, for any pair $(a, b) \in U$, the polynomial f(U, a+bU, X) is irreducible over *K*.
- **2.** Deduce from the previous question that the field K(U) is Hilbertian.
- **3.** Assume now that *K* is Hilbertian. Let $f_1(T_1, ..., T_n, X), ..., f_r(T_1, ..., T_n, X)$ be *r* irreducible polynomials in $K(T_1, ..., T_n)[X]$. Use the previous question to prove that the subset $H_K(f_1, ..., f_r)$ of K^n given by the elements $(t_1, ..., t_n) \in K^n$ such that the polynomials

 $f_1(t_1,...,t_n,X),...,f_r(t_1,...,t_n,X)$

are all well-defined and irreducible in K[X] is Zariski dense in K^n .

Remark: this last question shows that Theorem 1.4 of the course notes implies Corollary 1.5.

3 Noether's problem

Reminder 3.1

- Let L/K be a field extension. We say that L is rational (or pure) over K if L is K-isomorphic to the field of rational functions K(x₁,...,x_n) for some n. We say that L is stably rational if there exists an integer m such that the field of rational functions L(y₁,...,y_m) is rational over K.
- Let K be a field and let G be a finite abstract group of order n. We make G act on the field $K(x_1,...,x_n)$ by permuting the coordinates. We say that **Noether's problem has a positive answer for** G **over** K if the fixed field $K(x_1,...,x_n)^G$ is rational (or stably rational) over K. In that case, the inverse Galois problem for G also has a positive answer over K.
- The **no-name lemma** states that, if the fixed field $K(V)^G$ is stably rational for **some** faithful representation V of G, then the same result holds for **any** faithful representation of G. Noether's problem is the particular case of the regular representation.

Exercise 8: * (*Noether's problem for symmetric groups*)

Prove that Noether's problem has a positive answer for symmetric groups over number fields.

Exercise 9: \star (*Noether's problem for* $\mathbb{Z}/3\mathbb{Z}$ *over* \mathbb{C})

The goal of this exercise is to prove that Noether's problem holds for the group $\mathbb{Z}/3\mathbb{Z}$ over \mathbb{C} . To do so, make $A = \mathbb{Z}/3\mathbb{Z}$ act on $\mathbb{C}(x_1, x_2, x_3)$ cyclically. Let *j* be a primitive third root of unity and introduce the elements:

$$\begin{cases} e_1 = x_1 + x_2 + x_3 \\ e_2 = x_1 + jx_2 + j^2 x_3 \\ e_3 = x_1 + j^2 x_2 + jx_3. \end{cases}$$

- **1.** Prove that $\mathbb{C}[x_1, x_2, x_3] = \mathbb{C}[e_1, e_2, e_3]$.
- **2.** Compute the action of A on an element of $\mathbb{C}[x_1, x_2, x_3]$ of the form $e_1^n e_2^m e_3^p$.
- **3.** Deduce that $\mathbb{C}[x_1, x_2, x_3]^A = \mathbb{C}[e_1, e_2e_3, e_2^3]$.
- **4.** Deduce that $\mathbb{C}(x_1, x_2, x_3)^A = \mathbb{C}(e_1, e_2e_3, e_2^3)$.

Exercise 10: ★ (*Fischer's Theorem over the complex numbers*)

The goal of this exercise is to prove that Noether's problem holds for all finite abelian groups over \mathbb{C} by generalizing the argument of the previous exercise. To do so, fix a finite abelian group *A*, consider an embedding $A \subset \mathscr{S}_n$ for some integer *n* and make *A* act on $V := \mathbb{C}^n$ by permuting the coordinates.

1. Explain why there is a basis $(e_1, ..., e_n)$ of *V* and characters $\chi_1, ..., \chi_n \in \text{Hom}(A, \mathbb{C}^{\times})$ such that:

$$\forall a \in A, \forall \lambda_1, \dots, \lambda_n \in \mathbb{C}, a \cdot \left(\sum_i \lambda_i e_i\right) = \sum_i \chi_i(a) \lambda_i e_i.$$

- **2.** Let *G* be the subgroup of $\mathbb{C}(V)^{\times}$ spanned by e_1, \ldots, e_n . Check that *G* is a free abelian group of rank *n*.
- **3.** Let *H* be the kernel of the morphism $\varphi : G \to \text{Hom}(A, \mathbb{C}^{\times})$ that sends each e_i to χ_i . Prove that $\mathbb{C}(V)^A = \mathbb{C}(H)$.
- **4.** Deduce that Noether's problem has a positive answer for *A* over C.
- **5.** Given a number field *K*, do the previous arguments still hold when one replaces ℂ by *K*?

Exercise 11: \star (Noether's problem for Q_8)

Let *K* be a field of characteristic other than 2. Let \mathbb{H} be Hamilton's quaternion algebra over *K* and let \mathbf{H}^{\times} be the multiplicative group of \mathbb{H} , seen as an algebraic group over *K*. Denote by Q_8 the quaternion group and set $X := \mathbf{H}^{\times}/Q_8$.

1. Prove that $X \cong \mathbb{G}_{\mathrm{m}} \times \mathrm{SO}_3 / G$ where *G* is the finite group:

$$G = \left\{ 1, \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}.$$

Hint: consider the morphism (N, ϕ) : $\mathbf{H}^{\times} \to \mathbb{G}_{\mathrm{m}} \times \mathrm{SO}_3$ *in which* N *is the reduced norm and* ϕ *maps a quaternion* x *to the rotation* $y \mapsto xyx^{-1}$ *on the 3-dimensional vector space of quaternions of trace 0.*

2. Prove that *X* is a rational variety and deduce that Noether's problem has a positive answer for Q_8 over *K*.

Exercise 12: * (Noether's problem for dihedral groups)

Let *K* be a field and *G* a finite group.

- **1.** Consider an action of *G* on the polynomial ring K[t] such that *K* is stable under the action of *G*. Prove that there exists a *G*-invariant polynomial *f* such that $K(t)^G = K^G(f)$.
- **2.** Consider a linear action of *G* on a finite dimensional *K*-vector space *V*. Prove that $K(V)^G$ is a purely transcendental extension of $K(\mathbb{P}(V))^G$.
- **3.** Deduce that Noether's problem has a positive answer for every finite subgroup of $GL_2(K)$. In particular, this applies to the dihedral groups D_{2n} when *K* is algebraically closed or when $K = \mathbb{R}$.

Exercise 13: $\star \star$ (*Noether's problem for* \mathcal{A}_5)

- 1. By proceeding as in the previous exercise, prove that Noether's problem has a positive answer for every finite subgroup of $GL_3(\mathbb{C})$ over \mathbb{C} . You may use without proof Castelnuovo's Theorem².
- **2.** Deduce that Noether's problem has a positive answer for the alternating group \mathscr{A}_5 over \mathbb{C} . This result is due to Maeda.

Exercise 14: * * * (*No-name lemma*)

This exercise aims at proving the no-name lemma. Let *K* be a field.

1. Let L/K be a finite Galois extension with Galois group *G*. Prove that, for any finite dimensional *L*-vector space *V* and any semi-linear action³ of *G* on *V*, there is a canonical isomorphism:

$$V \cong V^G \otimes_K L.$$

Deduce that the extension $L(V)^G/K = K(V^G)/K$ is purely transcendental. This statement is called *Speiser's Lemma*.

2. Let *G* be a finite group. Let *V* and *W* be two faithful finite-dimensional linear representations of *G* over *K*. Deduce from question 1 that the fields $K(V)^G$ and $K(W)^G$ are stably equivalent⁴.

4. This means that there exist integers *n* and *m* such that $K(V)^G(x_1, \ldots, x_n) \cong K(W)^G(y_1, \ldots, y_m)$.

^{2.} Over an algebraically closed field, a unirational surface, that is a surface that is dominated by a rational variety, is rational.

^{3.} An action of *G* on *V* such that $\sigma \cdot (\lambda v) = \sigma(\lambda)(\sigma \cdot v)$ for $\sigma \in G$, $\lambda \in L$ and $v \in V$.

Remark 1: Geometrically, this means that, if we consider two embeddings $G \hookrightarrow GL_p(K)$ and $G \hookrightarrow GL_q(K)$ and we set $X_1 := \mathbb{A}_K^p/G$ and $X_2 := \mathbb{A}_K^q/G$, then there exist integers m and n such that $X_1 \times \mathbb{A}_K^m$ and $X_2 \times \mathbb{A}_K^n$ are birationally equivalent. We say that X_1 and X_2 are **stably bira***tional*.

Remark 2: The no-name lemma can also be used to study a quotient of the form $X_3 := SL_r/G$ for some embedding $G \hookrightarrow SL_r(K)$. If you wish, you can try to prove by yourself that X_1 and X_3 are stably birational.

4 Versal torsors

Reminder 4.1 Let G be a finite abstract group, K an infinite field, and X a K-variety. A G-torsor $f : Y \to X$ is called **versal** if, for every extension L/K and for every Gtorsor $P \to \operatorname{Spec} L$, there exists an L-point Q in X such that the fiber $X_Q := f^{-1}(Q)$ is isomorphic to the G-torsor $P \to \operatorname{Spec} L$.

Exercise 15: \star (*A torsor under* $\mathbb{Z}/2\mathbb{Z}$)

Let *K* be an infinite field. Make $G := \mathbb{Z}/2\mathbb{Z}$ act on $X := \mathbb{A}_K^1 \setminus \{-1, 0, 1\}$ by $\sigma \cdot x = x^{-1}$, where σ is a generator of *G*. Consider the *G*-torsor $X \to X/G$. Depending on the characteristic of *K*, decide whether it is versal.

Exercise 16: ** (*Versal torsors and twisting*)

Let *K* be an infinite field and *G* a finite abstract group.

1. Consider *X* a quasi-projective *K*-variety endowed with an action of *G*, and *P* a *G*-torsor over *K*. We define the **twist** $_PX$ of *X* by *P* as the quotient $(X \times P)/G$. The natural map $X \times P \rightarrow_P X$ makes $X \times P$ into a *G*-torsor over $_PX$. Prove that there is a bijection between the set of *K*-rational points $_PX(K)$ and the set of *G*-equivariant morphisms $P \rightarrow X$.

Hint: when you start with a point $Q \in_P X(K)$, you may consider its fiber Y_Q in $Y := X \times P$, construct a *G*-equivariant morphism from Y_Q to *P*, and use the general fact that every *G*-equivariant morphism between two *G*-torsors over *K* is an isomorphism.

2. Let now *X* be a *K*-variety and $f : Y \to X$ a *G*-torsor. Deduce from the previous question that *f* is versal if, and only if, for every field extension *L*/*K* and every *G*-torsor *P* over *L*, the set of *L*-rational points $_PX(L)$ is non-empty.

Exercise 17: $\star \star (A \text{ torsor under } \mathbb{Z}/3\mathbb{Z})$ Let *K* be an infinite field. Consider the action of $G := \mathbb{Z}/3\mathbb{Z}$ on \mathbb{P}^1_K defined by:

$$\sigma \cdot [x:y] = [y:y-x],$$

where σ is a generator of *G*. Let *U* be a *G*-stable open subset of \mathbb{P}^1_K on which the action is free and consider the *G*-torsor $\pi : U \to V := U/G$. Let *P* be a *G*-torsor over *K*.

1. Prove that the twist ${}_{P}\mathbb{P}^{1}_{K}$ is a genus 0 smooth projective curve that has a point in a degree 3 extension of *K*.

Hint: you may observe that, in general, when you twist a variety X endowed with an action of G by the trivial G-torsor, you get a variety that is isomorphic to X.

- **2.** By using the Riemann-Roch Theorem, deduce that ${}_{P}\mathbb{P}^{1}_{K}$ is a projective line.
- **3.** Deduce that the set of rational points $Q \in V(K)$ such that the fiber U_Q is isomorphic to *P* as a *G*-torsor is non-empty. This shows that $\pi : U \to V$ is a versal *G*-torsor.

Exercise 18: ** (*Versal torsors and Noether's problem*)

Let *K* be an infinite field and let *G* be a finite group. Consider a generically free linear action of *G* on \mathbb{A}^n_K . Let *U* be an open subset of \mathbb{A}^n_K on which *G* acts freely, consider the *G*-torsor $\pi : U \to V := U/G$, and take a *G*-torsor *P* over *K*.

- 1. Prove that the twist ${}_{P}\mathbb{A}_{K}^{n}$ is isomorphic to \mathbb{A}_{K}^{n} . *Hint: recall that, by Hilbert's Theorem 90, every* GL_{n} *-torsor over a field is trivial.*
- **2.** Deduce that the set of rational points $Q \in V(K)$ such that the fiber U_Q is isomorphic to *P* as a *G*-torsor is non-empty. This shows that $U \rightarrow V$ is a versal *G*-torsor.

5 Grunwald-Wang problem

Reminder 5.1 Let K be a number field and let G be a finite abstract group. We say that **the Grunwald-Wang problem for** G **has a positive answer over** K if, whenever we are given a finite set S of places of K and a Galois extension L_v/K_v for each $v \in S$ whose Galois group can be embedded into G, one can find a Galois field extension L/K with Galois group G such that the completion of L/K at any place of L lying above a place $v \in S$ is isomorphic to L_v/K_v . A positive answer to Noether's problem implies a positive answer to the Grunwald-Wang problem, which itself implies a positive answer to the inverse Galois problem.

Exercise 19: ★ (*An explicit example*)

Find an explicit Galois extension *K* of \mathbb{Q} with Galois group \mathscr{S}_3 such that, if v_p stands for a place of *K* above *p* for each prime number *p*, then:

$$K_{\nu_3} \cong \mathbb{Q}_3(\sqrt{2}), \quad K_{\nu_5} \cong \mathbb{Q}_5(\sqrt[3]{5}, j), \quad K_{\nu_7} \cong \mathbb{Q}_7(\zeta_9), \quad K_{\nu_{11}} \cong \mathbb{Q}_{11},$$

where *j* is a primitive third root of unity and ζ_9 is a primitive 9-th root of unity.

Exercise 20: * * (Wang's counter-example)

Let L/\mathbb{Q} be a Galois extension with Galois group $G = \mathbb{Z}/8\mathbb{Z}$. Assume by contradiction that the prime 2 is unramified.

- **1.** Prove that *L* contains the field $K := \mathbb{Q}(\sqrt{m})$ for some integer *m* such that $m \equiv 5 \mod 8$.
- **2.** Let *p* be a prime divisor of *m*.
 - (a) Prove that *p* is totally ramified in *L*.
 - (b) Let \mathfrak{p} be the unique prime ideal of *L* lying above *p* and let $L_{\mathfrak{p}}$ be the completion of *L* at \mathfrak{p} . Let *U* be the unit group of $\mathcal{O}_{L_{\mathfrak{p}}}$. Prove that the order of $H^1(G, U)$ is divisible by 8.
 - (c) Prove that there exists an injective morphism $H^1(G, U) \to H^1(G, \mathbb{F}_p^{\times})$.
 - (d) Deduce that 8 divides p 1.
- 3. Get a contradiction!
- **4.** Does Noether's problem for $\mathbb{Z}/8\mathbb{Z}$ over \mathbb{Q} have a positive answer?

6 Regular inverse Galois problem

Reminder 6.1 Let K be a field and let G be a finite abstract group. We say that a finite Galois extension L of K(t) is **regular** if K is algebraically closed in L. We say that **the regular inverse Galois problem for** G **has a positive answer over** K if there exists a finite regular Galois extension L of K(t) with Galois group G. A positive answer to Noether's problem implies a positive answer to the regular inverse Galois problem, which itself implies a positive answer to the inverse Galois problem.

Exercise 21: ★ (Regular inverse Galois problem for products)

Let *K* be a field. Let G_1 and G_2 be two finite groups for which the regular Galois problem over *K* has a positive answer. Prove that the regular Galois problem for $G_1 \times G_2$ over *K* also has a positive answer.

Hint: study the ramification of some given solutions to the regular Galois problems for the groups G_1 *and* G_2 *.*

Exercise 22: \star (*The regular inverse Galois problem for* \mathcal{A}_n)

Let *K* be a number field. Consider the polynomial $f(X, T) = (n-1)X^n - nX^{n-1} + T$ and let *G* be the Galois group of f(X, t) over K(t). In order to compute *G*, we introduce the curve *C* given by the equation f(x, t) = 0 and the finite cover $\pi : C \to \mathbb{A}^1$ that sends (x, t) to *t*.

1. Prove that π is étale outside 0 and 1.

- **2.** By studying the ramification of π at 0 and 1, prove that $G = \mathcal{S}_n$.
- **3.** Prove that the field fixed by the subgroup \mathscr{A}_n of *G* is rational, and deduce that the regular inverse Galois problem for \mathscr{A}_n over *K* has a positive answer. This result was first proved by Hilbert.

```
Hint: compute the discriminant of f(X, T) \in K(T)[X].
```

4. More generally, use the Riemann-Hurwitz formula ⁵ to prove the *double group trick*: if *G* is the Galois group of a regular extension *L* of K(T) ramified at most at three places which are rational over *K*, and if *H* is a subgroup of *G* of index 2, then the fixed field L_1 of *H* is rational, and hence the regular inverse Galois problem for *H* has a positive answer.

Exercise 23: ** (*Regular inverse Galois problem for abelian groups*)

Let *K* be a number field. In this exercise, we prove that the regular inverse Galois problem has a positive answer for finite abelian groups over *K*.

1. Let *B* be a finite Galois module 6 over *K*. This question aims at proving that there exists an exact sequence of Galois modules:

$$0 \to P \to F \to B \to 0$$

in which *P* and *F* are finitely generated and torsion-free as abelian groups and *P* is a permutation module 7 .

(a) Prove that there exists an exact sequence:

$$0 \to D \to C \to B \to 0$$

in which C and D are finitely generated torsion-free Galois modules.

(b) Prove that there exists an exact sequence:

$$0 \to D \to P \to E \to 0$$

in which *E* and *P* are finitely generated torsion-free Galois modules and *P* is a permutation module.

$$2g_1 - 2 = \deg(\phi) \cdot (2g_2 - 2) + \sum_{P \in C_1} (e_{\phi}(P) - 1)$$

where $e_{\phi}(P)$ is the ramification index of ϕ at *P*.

6. An abelian group on which $Gal(\overline{K}/K)$ acts compatibly and continuously.

7. A Galois module that has a Galois-stable $\mathbb Z\text{-}\text{basis.}$

^{5.} Let *K* be a field of characteristic 0. Let C_1 and C_2 be two smooth projective *K*-curves with respective genera g_1 and g_2 , and consider a non-constant morphism $\phi : C_1 \to C_2$. Then:

(c) Let *F* be the amalgamated sum of *C* and *P* over *D*. Check that *F* is torsion-free and prove that there is an exact sequence:

$$0 \to P \to F \to B \to 0.$$

2. Let *A* be a finite abelian group. By using question 1, prove that there exists an exact sequence:

$$1 \to A \to T \to Q \to 1$$

in which T and Q are K-tori and Q is quasi-trivial⁸.

Hint: Recall that one defines an equivalence of categories between groups of multiplicative type and finitely generated Galois modules by sending a group of multiplicative type to its character module.

3. Deduce from question 2 that the regular inverse Galois problem for *A* over *K* has a positive answer.

Exercise 24: $\star \star \star$ (*Regular inverse Galois problem for groups of order* p^3) Let *K* be a number field and consider a split exact sequence of finite groups:

$$1 \to A \to H \to G \to 1,$$

so that *H* is the semi-direct product $A \rtimes G$ for some action of *G* on *A*. Assume that *A* is abelian and that the regular inverse Galois problem for *G* has a positive answer. This means that there exists an open subset *U* of \mathbb{P}^1_K and a regular étale *G*-covering $\pi: C \to U$.

1. In this question, we assume that $A = \prod_{g \in G} B$ and that *G* acts on *A* by permuting the coordinates. Question 2 of the previous exercise then gives an exact sequence:

$$1 \rightarrow B \rightarrow T \rightarrow Q \rightarrow 1$$

in which *T* and *Q* are tori and *Q* is quasi-trivial. Construct a free action of *H* on $X := (\prod_{g \in G} T) \times C$ such that Y := X/H is rational. Deduce that the regular inverse Galois problem for *H* has a positive answer.

- **2.** We do not assume anymore that $A = B^G$. Prove that the regular inverse Galois problem for *H* still has a positive answer.
- **3.** Let now H' be a finite group that is generated by a normal abelian subgroup A' and by a subgroup G' for which the regular inverse Galois problem has a positive answer. Prove that the regular inverse Galois problem for H' also has a positive answer.

^{8.} A torus whose character module is a permutation module.

4. Let p be a prime number. Deduce from the previous question that the regular inverse Galois problem has a positive answer for all groups of order p^3 . This result is due to Schneps.

Exercise 25: $\star \star \star$ (From PAC fields of characteristic 0 to finite fields)

A characteristic 0 field *K* is said to be *pseudo-algebraically closed* (PAC) if each geometrically irreducible variety *V* defined over *K* has a rational point. In 1991, Fried and Völklein proved that the regular inverse Galois problem has a positive answer over characteristic 0 PAC fields. In this exercise, we aim at deducing that every finite group *G* is a regular Galois group over $\mathbb{F}_p(t)$ for almost all *p*.

- 1. (a) Let *L* be a field. Construct a field $\phi(L)$ such that every geometrically irreducible *L*-variety has a $\phi(L)$ -point and *L* is algebraically closed in $\phi(L)$.
 - (b) Construct a PAC field *K* of characteristic 0 in which \mathbb{Q} is algebraically closed.
- **2.** Let *G* be a finite group.
 - (a) Use the previous question and Fried and Völklein's Theorem on PAC fields to prove that there exists a finitely generated \mathbb{Z} -algebra *B*, an irreducible scheme \mathscr{C} and a finite morphism $f : \mathscr{C} \to \mathbb{P}^1_B$ satisfying the following properties:
 - i. the fibers of $\mathscr{C} \to \operatorname{Spec} B$ are geometrically irreducible,
 - ii. for each closed point $b \in \operatorname{Spec} B$, the function field of the fiber \mathscr{C}_b is a Galois extension with Galois group *G* of the function field of the fiber $(\mathbb{P}^1_B)_b$,
 - iii. almost every fiber of Spec $B \rightarrow$ Spec \mathbb{Z} is geometrically irreducible.

Hint: Use exercise 6.

- (b) Prove that Spec *B* has an \mathbb{F}_p -point for almost every prime number *p*. *Hint: Use the Lang-Weil estimates.*
- (c) Deduce from (a) and (b) that *G* is a regular Galois group over $\mathbb{F}_p(t)$ for almost every prime number *p*.

7 Rigidity method

Reminder 7.1 Let G be a finite group with trivial center. Denote its order by n.

• Let \mathscr{C} be the set of conjugation classes of G. We consider the action of the group $\Gamma := \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$ on G which sends each $g \in G$ to g^r for $r \in \Gamma$. It also induces an action on \mathscr{C} . A conjugation class of G is said to be **rational** if it is fixed by this action.

- Let $(C_1, ..., C_r)$ be a finite sequence of conjugacy classes of G. Let Σ be the set of r-tuples $(g_1, ..., g_r) \in C_1 \times \cdots \times C_r$ such that $G = \langle g_1, ..., g_r \rangle$ and $g_1 ... g_r = 1$. We say that $(C_1, ..., C_r)$ is **rigid** if $\Sigma \neq \emptyset$ and the action of G on Σ by conjugation is transitive.
- **Rigidity Theorem (Belyi, Fried, Matzat, Shih, Thompson).** Let K be a field of characteristic 0. Let $(C_1, ..., C_r)$ be a rigid family of rational conjugacy classes of G, and let $P_1, ..., P_r$ be distinct rational points in \mathbb{P}^1_K . Then there exists a regular Galois extension L of K(t) with Galois group G that is unramified outside $P_1, ..., P_r$ and such that the inertia subgroup at P_i is generated by an element of C_i for each i.
- More generally, let (C₁,...,C_r) be a rigid family of conjugacy classes of G and let P₁,...,P_r be r distinct points in P¹_K. Assume that the set {C₁,...,C_r} is stable under the action of Gal(Q
 (Q), that the set {P₁,...,P_r} is stable under the action of Gal(K/K), and that the Gal(K/K)-sets {C₁,...,C_r} and {P₁,...,P_r} are isomorphic. Then there exists a regular Galois extension L of K(t) with Galois group G that is unramified outside P₁,...,P_r and such that the inertia subgroup at P_i is generated by an element of C_i for each i.

Exercise 26: ★ (*Rigidity*)

We keep the notations of the previous reminder. Prove that *G* acts freely on Σ . Deduce that (C_1, \ldots, C_r) is rigid if, and only if, $|\Sigma| = |G|$.

Exercise 27: \star (On the assumption about the triviality of the center)

Prove that every finite group is a quotient of a finite group with trivial center. *Hint: consider well-chosen wreath products.*

Remark: this exercise shows that the assumption about the triviality of the center in the rigidity method is not a big deal.

Exercise 28: ★ (*Rigidity for the symmetric group*)

Let $n \ge 4$ be an integer.

- **1.** Prove that every conjugacy class in \mathcal{S}_n is rational.
- **2.** Let C_2 , C_{n-1} and C_n be the conjugation classes of transpositions, (n-1)-cycles and *n*-cycles respectively. Prove that the triple (C_n, C_2, C_{n-1}) is rigid.
- **3.** Thanks to the rigidity method, deduce that, for every characteristic 0 field K, the group \mathscr{S}_n is the Galois group of a regular extension of K(t). What local conditions can one impose?

Exercise 29: $\star \star$ (*Rigidity for* \mathscr{A}_5)

In the alternating group \mathcal{A}_5 , let C_2 be the conjugation class of double transpositions and C_5 and C'_5 the two conjugation classes of 5-cycles.

- 1. Prove that the set $\{C_2, C_5, C'_5\}$ is stable under the action of the absolute Galois group of \mathbb{Q} .
- **2.** Prove that the triple (C_2, C_5, C'_5) is rigid.
- **3.** Thanks to the rigidity method, deduce that the group \mathcal{A}_5 is the Galois group of a regular extension of $\mathbb{Q}(t)$. What local conditions can one impose?

8 Weak approximation

Reminder 8.1 Let K be a number field.

- Let X be a smooth variety over K. We say that X satisfies weak approximation if, for every non-empty finite set S of places of K, the set of rational points X(K) is dense in the product $\prod_{v \in S} X(K_v)$ (where each $X(K_v)$ is endowed with the v-adic topology).
- Let G be a finite group. Embed it in SL_n for some n. Then the Grunwald-Wang problem for G over K has a positive answer if, and only if, the homogeneous space $X := SL_n/G$ satisfies weak approximation.

Exercise 30: ★ (*Artin-Whaples approximation Theorem*)

Let *K* be a number field.

- **1.** Let $|\cdot|_1, \dots, |\cdot|_n$ be *n* inequivalent nontrivial absolute values of *K*. Prove that there exists $a \in K$ such that $|a|_1 > 1$ and $|a|_i < 1$ for i > 1.
- **2.** Prove that the affine line \mathbb{A}^1_K satisfies weak approximation.

Exercise 31: * (*Weak approximation, birationality, and retract rationality*)

- **1.** Let *X* and *Y* be two smooth varieties over a number field *K*. Assume that *X* and *Y* are stably birational, that is there exist integers *m* and *n* such that $X \times \mathbb{A}_K^m$ and $Y \times \mathbb{A}_K^n$ are birationally equivalent. Prove that *X* has weak approximation if, and only if, so does *Y*.
- **2.** Prove that smooth retract rational varieties defined over number fields satisfy weak approximation.

Exercise 32: $\star \star$ (*Cohomological interpretation of weak approximation*) Let *K* be a number field.

1. Let *F* be a finite algebraic group over *K* and embed it in SL_n . Consider the homogeneous space $X := SL_n/F$. Prove that *X* satisfies weak approximation if, and only if, the restriction map:

$$H^1(K,F) \to \prod_{\nu \in S} H^1(K_\nu,F)$$

is surjective for every non-empty finite set of places *S* of *K*. In that case, we say that *F* satisfies weak approximation.

Hint: Consider the sequence $1 \rightarrow F \rightarrow SL_n \rightarrow X \rightarrow 1$ and write the non-abelian cohomology exact sequence associated to it.

- **2.** Deduce that, for each integer $n \ge 1$, the group μ_n satisfies weak approximation.
- **3.** Can you find an integer *n* such that $\mathbb{Z}/n\mathbb{Z}$ does not satisfy weak approximation over \mathbb{Q} ?

Exercise 33: * * * (*Weak weak approximation*)

Let *K* be a number field. One says that a smooth *K*-variety *X* satisfies the *weak weak approximation property* if there exists a finite set of places S_0 of *K* such that, for every finite set of places *S* of *K* that does not intersect S_0 , the set X(K) is dense in $\prod_{v \in S} X(K_v)$.

1. Let *F* be a finite algebraic group over *K*. Embed it in SL_n and consider the homogeneous space $X := SL_n/F$. By proceeding as in the previous exercise, prove that *X* has the weak weak approximation property if, and only if, there exists a finite set of places S_0 of *K* such that, for every non-empty finite set of places *S* of *K* that does not intersect S_0 , the diagonal map:

$$H^1(K,F) \to \prod_{\nu \in S} H^1(K_{\nu},F)$$

is surjective. In that case, we say that *F* satisfies weak weak approximation.

In the following questions, we aim at proving that, if *F* is abelian, then it satisfies the weak weak approximation property. This result is due to Neukirch.

2. Let *S* be a finite set of places of *K*, set $F' := \text{Hom}(F, \overline{K}^{\times})$, and introduce the Tate-Shafarevich groups:

$$\begin{split} & \coprod^1(K,F') \coloneqq \ker \left(H^1(K,F') \to \prod_{\nu} H^1(K_{\nu},F') \right), \\ & \coprod^1_S(K,F') \coloneqq \ker \left(H^1(K,F') \to \prod_{\nu \not\in S} H^1(K_{\nu},F') \right). \end{split}$$

By using Tate's local duality Theorem⁹ and the Poitou-Tate exact sequence 10 , prove that, for each non-empty finite set of places *S* of *K*, the diagonal map:

$$H^1(K,F) \to \prod_{\nu \in S} H^1(K_\nu,F)$$

$$H^1(K_v, M) \times H^1(K_v, M') \to \operatorname{Br} K_v \subset \mathbb{Q}/\mathbb{Z}.$$

10. Let *K* be a number field and *M* a finite Galois module over *K*. Set $M' := \text{Hom}(M, \overline{K}^{\times})$. Then there

^{9.} Let *K* be a local field of characteristic 0 and *M* a finite Galois module over *K*. Set $M' := \text{Hom}(M, \overline{K}^{\times})$. Then the cup-product induces a perfect pairing of finite groups:

is surjective if, and only if, $\coprod^1(K, F') = \coprod^1_S(K, F')$.

3. Let *L* be a finite Galois extension of *K* over which F' splits ¹¹. For each finite set of places *S* of *K*, prove that:

$$\operatorname{III}^{1}(K, F') = \operatorname{III}^{1}(L/K, F') \text{ and } \operatorname{III}^{1}_{S}(K, F') = \operatorname{III}^{1}_{S}(L/K, F')$$

where:

$$\begin{split} & \operatorname{III}^{1}(L/K, F') \coloneqq \operatorname{ker} \left(H^{1}(L/K, F') \to \prod_{w \mid v} H^{1}(L_{w}/K_{v}, F') \right), \\ & \operatorname{III}^{1}_{S}(L/K, F') \coloneqq \operatorname{ker} \left(H^{1}(L/K, F') \to \prod_{w \mid v, v \notin S} H^{1}(L_{w}/K_{v}, F') \right). \end{split}$$

4. Assume now that *S* does not contain those places that ramify in *L*. Prove that:

$$\coprod_{S}^{1}(L/K, F') = \coprod^{1}(L/K, F').$$

5. Conclude that *F* satisfies the weak weak approximation property.

Exercise 34: * * * (*Hyper-weak approximation*)

Let *K* be a number field and let *F* be a finite group, that we see as a finite constant *K*-group. Following Harari, we say that *F* has the *hyper-weak approximation property* if there exists a finite set of places S_0 of *K* such that, for every non-empty finite set of places *S* of *K* that does not intersect S_0 , the image of the diagonal map:

$$H^1(K,F) \to \prod_{\nu \in S} H^1(K_\nu,F)$$

contains $\prod_{v \in S} H^1(K_v^{nr}/K_v, F)$.

is an exact sequence:

$$\begin{array}{cccc} 0 & \longrightarrow & H^{0}(K,M) & \longrightarrow & \prod_{\nu} H^{0}(K_{\nu},M) & \longrightarrow & H^{2}(K,M')^{D} \\ & & & \downarrow \\ & & & \downarrow \\ & & & \\ & & H^{1}(K,M')^{D} & \longrightarrow & \prod_{\nu}' H^{1}(K_{\nu},M) & \longrightarrow & H^{1}(K,M) \\ & & & \downarrow \\ & & & \\ & & & H^{2}(K,M) & \longrightarrow & \bigoplus_{\nu} H^{2}(K_{\nu},M) & \longrightarrow & H^{0}(K,M')^{D} & \longrightarrow & 0, \end{array}$$

where the restricted product is computed with respect to the $H^1(\mathcal{O}_v, M)$ and $-^D := \text{Hom}(-, \mathbb{Q}/\mathbb{Z})$ is the Pontryagyn duality.

11. This means that $Gal(\overline{K}/L)$ acts trivially on F'.

1. Prove that, if *F* satisfies the hyper-weak approximation property, then it is the Galois group of some finite Galois extension *L* of *K*.

Hint: you may use the following classical result about abstract finite groups: if H *is a subgroup of a finite group* G *and if* H *intersects all the conjugation classes of* G*, then* H = G.

- **2.** Prove that quotients of a group satisfying the hyper-weak approximation property also satisfy the hyper-weak approximation property.
- 3. Consider a split exact sequence of finite groups:

$$1 \to A \to E \to G \to 1$$

in which *A* is abelian and *G* satisfies the hyper-weak approximation property. Prove that *E* satisfies the hyper-weak approximation property. *Hint: use exercise* 33.

9 The Brauer-Manin obstruction

Reminder 9.1 *Let K be a number field, X a smooth K-variety and G a finite abstract group.*

• Let X_c be a smooth compactification of X. The **unramified Brauer group** of X is defined as the étale cohomology group $\operatorname{Br}_{\operatorname{nr}} X := H^2(X_c, \mathbb{G}_m)$. It can also be computed thanks to the exact sequence:

$$0 \to \operatorname{Br}_{\operatorname{nr}} X \to \operatorname{Br} K(X) \to \bigoplus_{\nu \in X_c^{(1)}} H^1(K(\nu), \mathbb{Q}/\mathbb{Z})$$

where $X_c^{(1)}$ is the set of codimension 1 points in X_c and the second arrow is induced by the residue maps. It is a stable birational invariant, and hence we also denote $\operatorname{Br}_{nr} K(X)$ instead of $\operatorname{Br}_{nr} X$.

Consider an embedding of G in some SL_n. Set X := SL_n/G. The following two theorems are helpful to compute the unramified Brauer group of X.
 Theorem (Bogomolov). Let B_G be the set of bicyclic subgroups of G (i.e. those subgroups of G that are spanned by at most two elements). Then:

$$\operatorname{Br}_{\operatorname{nr}} \overline{X} \cong \operatorname{ker} \left(H^3(G, \mathbb{Z}) \to \prod_{H \in \mathscr{B}_G} H^3(H, \mathbb{Z}) \right).$$

Theorem (Harari). Let G^{ab} be the abelianization of G and set $M := \text{Hom}(G^{ab}, \overline{K}^*)$. Consider the algebraic unramified Brauer group of X:

$$\operatorname{Br}_{\operatorname{nr}_1} X \coloneqq \operatorname{ker}\left(\operatorname{Br}_{\operatorname{nr}} X \to \operatorname{Br}_{\operatorname{nr}} \overline{X}\right).$$

Then the quotient $\operatorname{Br}_{\operatorname{nr}_1} X/\operatorname{Br} K$ is isomorphic to the subgroup of $H^1(K, M)$ given by those elements a whose restriction $a_v \in H^1(K_v, M)$ is orthogonal¹² to the image im $(H^1(K_v, G) \to H^1(K_v, G^{\operatorname{ab}}))$ for almost all v.

• The Brauer-Manin pairing is defined by:

BM:
$$X(K_{\Omega}) \times \operatorname{Br}_{\operatorname{nr}} X \to \mathbb{Q}/\mathbb{Z}$$

 $((p_{\nu})_{\nu}, \alpha) \mapsto \sum_{\nu} j_{\nu}(p_{\nu}^{*}\alpha),$

where $X(K_{\Omega}) := \prod_{v} X(K_{v})$ and $j_{v} : \operatorname{Br} K_{v} \to \mathbb{Q}/\mathbb{Z}$ is the local invariant. The Brauer-Manin pairing is continuous with respect to the *v*-adic topologies on the $X(K_{v})$. The **Brauer-Manin set** $X(K_{\Omega})^{\operatorname{Br}_{nr}}$ of X is the orthogonal of $\operatorname{Br}_{nr} X$ with respect to BM. It always contains the set of rational points of X.

• We say that G is supersolvable if there exists a normal series

$$1 = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_{r-1} \triangleleft H_r = G$$

such that each quotient group H_{i+1}/H_i is cyclic and each H_i is normal in G.

• **Theorem (Harpaz-Wittenberg).** Assume that G is supersolvable and consider an embedding of G in some SL_n . Set $X := SL_n/G$. Then X(K) is dense in $X(K_{\Omega})^{Br_{nr}}$.

Exercise 35: \star (*Brauer-Manin obstruction and weak weak approximation*) Let *K* be a number field and let *X* be a smooth *K*-variety such that *X*(*K*) is a dense non-empty subset of $X(K_{\Omega})^{\text{Br}_{nr}}$. Assume that $\text{Br}_{nr} X/\text{Br} K$ is finite. Prove that *X* satisfies the weak weak approximation property.

Exercise 36: $\star \star$ (*Generalized quaternion groups*) For $n \ge 3$, consider the generalized quaternion group:

$$Q_{2^n} := \langle i, j \mid i^{2^{n-2}} = j^2, i j i = j \rangle.$$

Let V be a finite-dimensional \mathbb{Q} -vector space on which Q_{2^n} acts faithfully and linearly.

1. In this question, we aim at computing the group $\operatorname{Br}_{\operatorname{nr}}\overline{\mathbb{Q}}(V)^{Q_{2^n}}$ thanks to Bogomolov's formula.

12. With respect to Tate's perfect pairing of finite groups:

 $H^1(K_v,M)\times H^1(K_v,G^{\mathrm{ab}})\to \mathrm{Br}(K_v)\subset \mathbb{Q}/\mathbb{Z}$

given by the cup-product.

(a) Prove that the following square is exact:

where:

$$f_1 = \begin{pmatrix} i-1 \\ -(ij-1) \end{pmatrix}, \quad f_2 = \begin{pmatrix} \sum_{m=0}^{2^{n-2}-1} i^m & ij+1 \\ -(j+1) & i-1 \end{pmatrix}, \quad f_3 = \begin{pmatrix} i-1 & j-1 \end{pmatrix}, \quad f_4 = \sum_{x \in Q_{2^n}} x.$$

- (b) Thanks to the previous question, compute the cohomology groups $H^*(Q_{2^n}, \mathbb{Z})$.
- (c) Use Bogomolov's formula to compute $\operatorname{Br}_{\operatorname{nr}}\overline{\mathbb{Q}}(V)^{Q_{2^n}}$.
- **2.** In this question, we aim at computing the group $\operatorname{Br}_{\operatorname{nr}_1} \mathbb{Q}(V)^{Q_{2^n}}$ thanks to Harari's formula. This computation is due to Demarche.
 - (a) Compute the group $Q_{2^n}^{ab}$.

Let now *p* be an odd prime number and let \mathbb{Q}_p^{tr} be the maximal tamely ramified extension of \mathbb{Q}_p . Set $\Gamma_p := \text{Gal}(\mathbb{Q}_p^{\text{tr}}/\mathbb{Q}_p)$.

- (b) Prove that, for each $b \in Q_{2^n}^{ab}$, there exist elements $a_1, \ldots, a_r, b_1, \ldots, b_r \in Q_{2^n}$ such that the product $b_1 \ldots b_r$ lifts b and $a_s b_s a_s^{-1} = b_s^p$ for each s.
- (c) Deduce that the image of the natural map $\varphi : H^1(\Gamma_p, Q_{2^n}) \to H^1(\Gamma_p, Q_{2^n}^{ab})$ spans the whole group $H^1(\Gamma_p, Q_{2^n}^{ab})$.

Hint: recall that the group Γ_p *is the profinite group generated by two elements* σ *and* τ *satisfying the relation* $\sigma \tau \sigma^{-1} = \tau^p$.

- (d) Deduce that the image of the natural map $H^1(\mathbb{Q}_p, Q_{2^n}) \to H^1(\mathbb{Q}_p, Q_{2^n}^{ab})$ spans the whole group $H^1(\mathbb{Q}_p, Q_{2^n}^{ab})$.
- (e) Use Harari's formula to compute $\operatorname{Br}_{nr_1} \mathbb{Q}(V)^{Q_2 n}$.
- **3.** Compute the group $\operatorname{Br}_{\operatorname{nr}} \mathbb{Q}(V)^{Q_{2^n}}$ and use supersolvable descent to prove that the group Q_{2^n} satisfies the weak approximation property over \mathbb{Q} .

Remark: this result is not at all obvious, since for $n \ge 4$ *, the field* $\mathbb{Q}(V)^{Q_{2^n}}$ *is not rational.*

Exercise 37: * (Inverse Galois problem with norm conditions)

Let *K* be a number field and $\mathscr{A} \subset K^{\times}$ a finitely generated subgroup. Let *G* be a supersolvable finite group. In this exercise, we are going to prove the following Theorem of Harpaz and Wittenberg: there exists a Galois extension L/K with Galois group *G* such that every element of \mathscr{A} is a norm from *L*. To do so, we choose an embedding $G \hookrightarrow SL_n(K)$ and a finite system of generators $\alpha_1, \ldots, \alpha_m \in \mathscr{A}$. We then consider the variety $Y := SL_n \times T^{\alpha_1} \times \cdots \times T^{\alpha_m}$ where, for each α , we denote by T^{α} the fiber above α of the multiplication map $\prod_{g \in G} \mathbb{G}_m \to \mathbb{G}_m$. Note that *G* acts on the T^{α} 's by permutation of the coordinates.

- **1.** We make *G* act on *Y* diagonally and we set X := Y/G. It is well-known that the quotient $\text{Br}_{nr}(X)/\text{Br}(K)$ is finite. Use Ekedahl's irreducibility Theorem ¹³ to prove that there exists $x \in X(K)$ such that the fiber Y_x is irreducible.
- **2.** Conclude that the function field *L* of Y_x is a Galois extension of *K* with group *G* such that $\mathscr{A} \subset N_{L/K}(L^{\times})$.

^{13.} See Theorem 1.8 of the course notes.