(1) In class, we discussed the metric
\[ds^2 = -2e^q dv du + g_{AB}(dx^A + c^A dv)(dx^B + c^B dv), \]
where \(q \) is independent of \(u \) at \(v = 0 \), but otherwise the functions \(q \), \(g_{AB} \), and \(c^A \) depend on all coordinates \(u, v, x^A \). As discussed in class, this is a canonical form for the metric near a null hypersurface \(Y \) that is swept out by a family of orthogonal null geodesics from a codimension 2 spacelike submanifold \(W \). \(W \) is the hypersurface \(u = v = 0 \) and \(Y \) is the hypersurface \(v = 0 \).

Calculate \(R_{uu} \) along \(Y \), that is at \(v = 0 \). As explained in class, this step leads to Raychaudhuri’s equation.

(2) Consider the metric
\[ds^2 = (t^2 - 1) \left(-dt^2 + d\tilde{x}^2 \right), \]
where \(\tilde{x} = (x^1, \ldots, x^{D-1}) \).

In this spacetime, consider the codimension 2 spacelike hypersurface \(W \) defined by \(t = t_0, \ |\tilde{x}| = R \), with constants \(t_0, R \). What is the condition for \(W \) to be a trapped surface?

(3) In a spacetime \(M \), let \(S \) be a spacelike hypersurface (dimension \(D - 1 \) if \(M \) has dimension \(D \)) and let \(Q \subset S \) be a manifold with boundary, also of dimension \(D - 1 \); let \(\partial Q \) be the boundary of \(Q \). For example, in Minkowski space, \(Q \) might be a closed ball and then its boundary \(\partial Q \) is a sphere. As usual, we let \(J^+(Q) \) be the causal future of \(Q \) and \(J^+(\partial Q) \) be the causal future of \(\partial Q \). The boundaries of these sets are \(\partial J^+(Q) \) and \(\partial J^+(\partial Q) \).

Show that any point in \(\partial J^+(Q) \) that is not in \(Q \) itself (in other words, any point that is strictly to the future of \(Q \) is in \(\partial J^+(\partial Q) \). This fact will be useful in discussing black holes.