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Rigid cocycles & Real quadratic singular moduli (Part I11)

Zagier’s letter (February 1983)
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One of the examples discussed in this letter is

J(2557) -5 (259)

J

—33.5% 4 218.33.53.233.293
38.53.7.13.17-31-103-229 - 283

Zagier then tabulates the prime factorisations of
the positive integers Ny of the form

Ny = (7-163 — x*)/4

X Ny X Nx X Nx

1 3-5-19 | 13 3° 25 | 3-43
3 283 15 229 27 103
5 32.31 17 3-71 29 | 3-52
7 | 3-7-13 | 19 | 3-5-13 || 31| 32.5
9 5.53 21 52.7 33 13

11| 3-5-17 || 23 32.17

Zagier observes that all prime divisors q satisfy

G) ()
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The work of Gross—Zagier

Zagier: conjectures an explicit formula for Gross: for any occurring q the reduction of
endomorphism rings gives injections

ordg Nm j(71) — j(72)
1,02 1 Op,,Op, = R C Boog-
as a character sum, proves it using the real
analytic Eisenstein family of Hecke (1924)

e . ~—~~ —1
Es(z1,22) over Q(v'D1Dy). ordg _[ ; ! M (a] e )
aqf,|o
beT1\R /T2

Counts the intersection multiplicity:

Remark: He does not use CM theory.
He challenges Gross to find algebraic proof. | where images coincide (mod g™~ ).

i

v v

Gave rise to important later developments, for instance:
@ Birch-Swinnerton-Dyer conjecture. Gross—Zagier (1986) and Gross—-Kohnen-Zagier
(1987) study height pairings of Heegner points on modular Jacobians:
L'(E, 1)L(Ep, 1) = h(Pp),
L/(E,1)fD1D2fE(Z)dZ = h(PD17PDz)~

o Traces of singular moduli. Zagier (2002) shows generating series is modular, weight 3/2. i
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RM values of rigid cocycles
Last time, we introduced rigid cocycles Z'(I", M*) modelled on the rational cocycles
defined by Knopp (1978) and its multiplicative lifts, where

I :=SL2(Z[1/p]) C M* := Meromorphic functions on H,

Input:
e apair (F,G) € Fp, X Fp, with Dy, D, > 0 non-squares,
@ aprime p such that (D1/p) = (D2/p) = —1,
Output:
o the invariant @; [F,C] == @;( [C] € P1(Cp). Joint with Darmon

Essential part is the (polynomial time in m) computation mod p™ of the product
07 (s) = H (z—r(Q)= A where ¥ :={{a,b,c) € F-T : ac <0}
Qexh
Example: Let p = 2 and F = (1, —1,—1) of D; = 5. Compute ©,°[F, G] (mod 23%) for
forms G = (1,3, —3) and (—1, 3, 3) of D, = 21. Using LLL we find that they are roots of
91x* + 112x% + 123x% + 112x + 91, roots in Q(+v/—3,+/—35)
Algebraic (). Hilbert class fields are H; = Q(+/5) and H, = Q(v/=3,v/—7).
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Now choose p = 3 and quadratic forms What is the influence of the choice of
prime p? Compute ©,°[F, G] for
F={1,-1,—1) D=5
G=(1,6,—2) D, =44 F={(1,3,—1) D =13,
©,[F, G] (mod 32} is root of polyno- ]
mial (spl. field K = Q(v/5,v/11,2/=1)) For D; = 12 we find
p=5 | p=7
48841x3 + 115280x° + 164562x* + 115280x% + 48841 a3 | iy
7 5
Note 48841 = 132 - 172, and tabulate the
positive integers Ny := (D1Dy — x*)/4: For D, = 45 we find
p=2 | p=7
x | N X N x | N 1508249174100674475/—3 | 1£+/—15
0|5-11 6 2-23 12 19 2-72.13:37-67-73 22
2023 | 8| 3-13 || 14|23
4 13-17 10 ]12-3-5 For D, = 108 we find
p=5 | p=7
1237487857860/ —3 | 128420461/ 1
Observation 1: Only get primes in K 72:19-31-67 2:52.41
above non-split g dividing a positive
integer
DiD; — X*

Observation 2: There is a relation
4ap ordy O [F, G| <+ ordq ©[F, G]. J
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Factorisation conjecture

If Dy, D, > 0 coprime discriminants and p inert for both,

then for i € {1,2} we define

Hi1H,

71N

Hy H,
g . 7 | DitV/D;
K, D OI =Z |: > ] PiC+(O1) / L \ PiC+(02)
H; := Narrow ring class field O; |
G := Gal(H;/ Q) = Pic(O;) x (Froby) Kk |F Ka
When ©,[F, C] is algebraic, should be in H; Hs. \ Q /

Intersections on Shimura curves
Choose optimal a; : O; <+ R C Bpq indefinite quat. alg. over Q of conductor pq. The
R;* -conjugacy classes [a;] admit a free action of G;. The g-intersection number
Intg(o, 2) = Z mq - (@1 ~ bazb™").
beT1\R /T2

is a g-weighted version of the intersection product of the classes [oj] € Hi(Xpq,Z) on
Xpg = ’H(X,/RT>< , the Shimura curve associated with Bp,.

N %
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Let G := Gal(H1H2/Q) ~ Gal(H1/Q) X Gal(Hz/Q) = G1 X Gy.

Factorisations Intersections
Choose a prime q|(q) in HiH,. Define Choose optimal aj : O;j < R. Define

Fpq = > ordge (e,,X IF, c]) g €ZIG) | Tg == > Intg(af',0f)-[g] € Z[C]
g€G g=(g1,2)€GC

Conjecture: F, g =1, 4 in Z[G]/G.

Why should we believe this conjecture? Want to test it! Algorithm by James Rickards.
Example. Let (D1, D,) = (13,136) and p = 7. We have Pic™(0,) ~ Cs = (s).
We recognise ©5° [F, G] (mod 7%%) as root of the polynomial (with splitting field H; H)

36673x® — 77740x” + 82758x° — 93080x° 4 113387x* — 93080x° + 82758x> — 77740x + 36673

Note: Factorisation of constant coefficient 36673 = 7 - 132 - 31.

James Rickards computes that the only non-trivial Iy 4 are:

q I7,4

7 (+ DO =[]

1B ([ —T[s] + [ = [SD( + 1)
31 | (4O =[s°])

7/
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What happens for larger primes p?
Try for instance p = 11 and F = (1,3, —3) of D; = 13. We attempt as usual

For G = (1,4,—4) LLL (@ﬁ[F7 G]) = Unconvincing... &€ Q?
Suspected ‘culprit’ is lifting obstruction to H'(I', M) — H'(I', M/ C,*), lives in
2641
HA(T, C) ~ H'(To(p), €} ) = (c;) & := genus(Xo(p)).
Solution 1: Kill it Solution 2: Cherish it
For p = 11 it is killed by Hecke Modulo the obstructions of analytic cocycles, get
operator (W, — ). We find that (T, .AX/C ) "
OFIF - Wy, G1/OIF, CI N N
H(rM/Cp)—>H(GC)—> XJO(P)
computed (mod 11%°) satisfies M
2 _ 32
13x* + 126% + 14x% + 12x + 13, Jo(11) 1 y" +y = x* = x" = 10x — 20.
g X 100
with splitting field Q(v/=T, v=3). Obstruction of © equals (e, P,0) mod 11, where
v

12102 + 206cx + 121 = 0, a e Q(vV/-7),
p= (7—3—2ﬁ, 7—3—2ﬁ) € h(11).
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The analytic argument of Zagier

Motivation

What about traces of CM singular moduli? Zagier (2002) makes modular generating series,
and relates it to the theory of Borcherds products, which provide a morphism

Wpor + M (To(4)) — HY(SLa(Z), M)

Our belief in the existence of RM analogues of the analytic arguments in Gross-Zagier is
strengthened by construction (Darmon-V. 2022) of a similar morphism

Wrig © M7 (Fo(4p)) — H'(F, MX).

1/2
”
Consider Hasse diagram: Real analytic Hilbert Eisenstein series Es(z1, 22):
L - —1 . 5.5
~ I X O\ Z (a) Nm(a)"*% 2’: (mzi + ) ' (m'za + ") 'yiys
Q(m) F Q(7) X |mzy + n|»|m’z, + n’|?

\(\1/ [a]ectf (m,n) € a2/OF

Zagier (1983) then computes the Fourier expansion of

@ its diagonal restriction Es(z, z) (vanishes at s = 0)
@ its analytic first order derivative with respect to s
@ its holomorphic projection, contained in M2(SL2(Z)) = {0}.

The first Fourier coefficient is of the form logNm(j(71) — j(72)) + X2, Intq - log(q).
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The analytic argument (p-adic version)

Prove that ©, [F, G] is algebraic, when F = (0, 1,0) is degenerate. J

Relate logp@;,< [F, G] <— Fourier coefficients of p-adic family through E(%)) over Q(+/Dg)
<— p-adic deformations of Galois representation p = 1@ .

| <=
[Darmon-Pozzi-V. 2021]  Diagonal restrictions of p-adic Eisenstein families
[Darmon-Pozzi-V. 2022]  On the RM values of the Dedekind—-Rademacher cocycle
Using an idea of Hecke—Klingen-Siegel, this proof also yields algorithm to compute p-adic
Gross—Stark units, developed further by Havard Damm-Johnsen (Thesis 2024).
Example
Let K = Q(+/136) with CIT(K) ~ Z /4Z, and p = 19 inert in K. For F = (0, 1,0) and G of
discriminant 136, Havard computes (in less than 3 seconds) that up to precision 19°° we have
O%[F,C] satisfies 361x* + 508x> + 310x* + 508x + 361 = 0,
which generates the narrow Hilbert class field over K.

10/11



Rigid cocycles & Real quadratic singular moduli (Part I11)

Future directions

What are some promising avenues?
@ Computational: Many challenges lie ahead!
e Systematic computations in all cases (ramified, non-coprime, split

[Darmon-V. 2021]  RM singular moduli for SL,(Z[1/p]), where p is inert.
[Darmon-V. 2022]  Stark-Heegner points for SLy(Z[1/p]), where p is inert.
[Guitart-Masdeu-Xarles 2021] ~ Quaternion orders over totally real fields.

o Orthogonal group O(3, 1) by Darmon-Lipnowski-Gehrmann (forthcoming).
Other orthogonal groups / general construction?
o Factorisations of quaternionic / orthogonal invariants?
@ Theoretical: Two great mysteries remain, corresponding to

e (Analytic) How far can analytic arguments with p-adic families be pushed, relying
on deformations of Artin representations? Can one construct p-adic Borcherds lifts?

[Darmon-Pozzi-V. 2021]  Diagonal restrictions of p-adic Eisenstein families
[Darmon—-Pozzi-V. 2022] ~ On the RM values of the Dedekind—Rademacher cocycle
[Darmon-V. 2022]  Real quadratic Borcherds products

o (Geometric) What is the geometric meaning of RM singular moduli?
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