Rigid cocycles
 \& Real quadratic singular moduli (Part III)

PCMI Summer School 2022
Jan Vonk (Leiden University)

Zagier’s letter (February 1983)

$$
\text { Mo.dy, fad. } 7 \text { (1983) }
$$

- Praky,

I've bew in Jyean for tho wecks now and. .
 potuming to cernary, mise o Lave sevend othen thinss to
 ant $N\left(j(z)-j\left(z_{1}\right)\right) \quad\left(\right.$ 保 $\left.z=-d i s e z^{\prime}=-p\right)$ mipht most genadige to sealts $-N\left(j(t)-j\left(z^{\prime}\right)\right)\left(10 n(x)-5\left(z^{\prime}\right)\right)$ for alltary
$C M$ poonts z and z^{\prime}, anth unselte' liseriminants. You Fook-ported the iles, explaining why you method yple the some ovden. Nothing daunted (atomll, I won: $j(z)-j\left|z^{\prime}\right|$ for $z=\frac{1+i \sqrt{f},}{z} z^{\prime}=\frac{1+i \sqrt{2}}{L}$ fo the phes inh dans member 1 - a somentht tricly buaress, inse y HP tno mly 10 places - and found the rlves

One of the examples discussed in this letter is

$$
\begin{aligned}
& j\left(\frac{1+\sqrt{-7}}{2}\right)-j\left(\frac{1+\sqrt{-163}}{2}\right) \\
= & -3^{3} \cdot 5^{3}+2^{18} \cdot 3^{3} \cdot 5^{3} \cdot 23^{3} \cdot 29^{3} \\
= & 3^{8} \cdot 5^{3} \cdot 7 \cdot 13 \cdot 17 \cdot 31 \cdot 103 \cdot 229 \cdot 283
\end{aligned}
$$

Zagier then tabulates the prime factorisations of the positive integers N_{x} of the form

$$
N_{x}=\left(7 \cdot 163-x^{2}\right) / 4
$$

x	N_{x}	x	N_{x}	x	N_{x}
1	$3 \cdot 5 \cdot 19$	13	3^{5}	25	$3 \cdot 43$
3	283	15	229	27	103
5	$3^{2} \cdot 31$	17	$3 \cdot 71$	29	$3 \cdot 5^{2}$
7	$3 \cdot 7 \cdot 13$	19	$3 \cdot 5 \cdot 13$	31	$3^{2} \cdot 5$
9	$5 \cdot 53$	21	$5^{2} \cdot 7$	33	13
11	$3 \cdot 5 \cdot 17$	23	$3^{2} \cdot 17$		

Zagier observes that all prime divisors q satisfy

$$
\left(\frac{-7}{q}\right) \neq 1, \quad\left(\frac{-163}{q}\right) \neq 1
$$

The work of Gross-Zagier

Zagier: conjectures an explicit formula for

$$
\operatorname{ord}_{q} \operatorname{Nm} j\left(\tau_{1}\right)-j\left(\tau_{2}\right)
$$

as a character sum, proves it using the real analytic Eisenstein family of Hecke (1924)

$$
E_{s}\left(z_{1}, z_{2}\right) \quad \text { over } \mathbf{Q}\left(\sqrt{D_{1} D_{2}}\right)
$$

Remark: He does not use CM theory.
He challenges Gross to find algebraic proof.

Gross: for any occurring q the reduction of endomorphism rings gives injections

$$
\alpha_{1}, \alpha_{2}: \mathcal{O}_{D_{1}}, \mathcal{O}_{D_{2}} \hookrightarrow R \subset B_{\infty q} .
$$

Counts the intersection multiplicity:

$$
\operatorname{ord}_{q}=\sum_{\substack{\left[\alpha_{1}\right],\left[\alpha_{2}\right] \\ b \in \Gamma_{1} \backslash R_{1}^{\times} / \Gamma_{2}}} m_{q} \cdot\left(\alpha_{1} \frown b \alpha_{2} b^{-1}\right)
$$

where images coincide $\left(\bmod q^{m_{q}-1}\right)$.

Gave rise to important later developments, for instance:

- Birch-Swinnerton-Dyer conjecture. Gross-Zagier (1986) and Gross-Kohnen-Zagier (1987) study height pairings of Heegner points on modular Jacobians:

$$
\begin{array}{ll}
L^{\prime}(E, 1) L\left(E_{D}, 1\right) & \doteq h\left(P_{D}\right), \\
L^{\prime}(E, 1) \int_{D_{1} D_{2}} f_{E}(z) d z & \doteq h\left(P_{D_{1}}, P_{D_{2}}\right) .
\end{array}
$$

- Traces of singular moduli. Zagier (2002) shows generating series is modular, weight 3/2.

RM values of rigid cocycles

Last time, we introduced rigid cocycles $Z^{1}\left(\Gamma, \mathcal{M}^{\times}\right)$modelled on the rational cocycles defined by Knopp (1978) and its multiplicative lifts, where

$$
\Gamma:=\mathrm{SL}_{2}(\mathbf{Z}[1 / p]) \subset \mathcal{M}^{\times}:=\text {Meromorphic functions on } \mathcal{H}_{p}
$$

Input:

- a pair $(F, G) \in \mathcal{F}_{D_{1}} \times \mathcal{F}_{D_{2}}$ with $D_{1}, D_{2}>0$ non-squares,
- a prime p such that $\left(D_{1} / p\right)=\left(D_{2} / p\right)=-1$,

Output:

- the invariant $\Theta_{p}^{\times}[F, G]:=\Theta_{F}^{\times}[G] \in \mathbf{P}^{1}\left(\mathbf{C}_{p}\right)$.

Joint with Darmon

Essential part is the (polynomial time in m) computation mod p^{m} of the product

$$
\Theta_{F}^{\times}(S) \doteq \prod_{Q \in \Sigma_{F}^{p}}(z-r(Q))^{\operatorname{sgn} Q(0)} \quad \text { where } \Sigma_{F}^{p}:=\{\langle a, b, c\rangle \in F \cdot \Gamma: a c<0\}
$$

Example: Let $p=2$ and $F=\langle 1,-1,-1\rangle$ of $D_{1}=5$. Compute $\Theta_{2}^{\times}[F, G]\left(\bmod 2^{300}\right)$ for forms $G=\langle 1,3,-3\rangle$ and $\langle-1,3,3\rangle$ of $D_{2}=21$. Using LLL we find that they are roots of

$$
91 x^{4}+112 x^{3}+123 x^{2}+112 x+91, \quad \text { roots in } \mathbf{Q}(\sqrt{-3}, \sqrt{-35})
$$

Algebraic (!). Hilbert class fields are $H_{1}=\mathbf{Q}(\sqrt{5})$ and $H_{2}=\mathbf{Q}(\sqrt{-3}, \sqrt{-7})$.

Now choose $p=3$ and quadratic forms

$$
\begin{array}{ll}
F=\langle 1,-1,-1\rangle & D_{1}=5 \\
G=\langle 1,6,-2\rangle & D_{2}=44
\end{array}
$$

$\Theta_{3}^{\times}[F, G]\left(\bmod 3^{200}\right)$ is root of polynomial (spl. field $K=\mathbf{Q}(\sqrt{5}, \sqrt{11}, \sqrt{-1})$)

$$
48841 x^{8}+115280 x^{6}+164562 x^{4}+115280 x^{2}+48841
$$

Note $48841=13^{2} \cdot 17^{2}$, and tabulate the positive integers $N_{x}:=\left(D_{1} D_{2}-x^{2}\right) / 4$:

\boldsymbol{x}	N_{x}	\boldsymbol{x}	N_{x}	\boldsymbol{x}	$N_{\boldsymbol{x}}$
0	$5 \cdot 11$	6	$2 \cdot 23$	12	19
2	$2 \cdot 3^{3}$	8	$3 \cdot 13$	14	$2 \cdot 3$
4	$3 \cdot 17$	10	$2 \cdot 3 \cdot 5$		

Observation 1: Only get primes in K above non-split q dividing a positive integer

$$
\frac{D_{1} D_{2}-x^{2}}{4 p}
$$

What is the influence of the choice of prime p ? Compute $\Theta_{p}^{\times}[F, G]$ for

$$
F=\langle 1,3,-1\rangle \quad D_{1}=13
$$

For $D_{2}=12$ we find

$$
\begin{array}{c|c}
p=5 & p=7 \\
\hline \frac{1 \pm 4 \sqrt{-3}}{7} & \frac{3 \pm 4 \sqrt{-1}}{5}
\end{array}
$$

For $D_{2}=45$ we find

$p=2$	$p=7$
$\frac{150824917 \pm 100674475 \sqrt{-3}}{2 \cdot 7^{2} \cdot 13 \cdot 37 \cdot 67 \cdot 73}$	$\frac{1 \pm \sqrt{-15}}{2^{2}}$

For $D_{2}=108$ we find

$p=5$	$p=7$
$\frac{1237487 \pm 857860 \sqrt{-3}}{7^{2} \cdot 19 \cdot 31 \cdot 67}$	$\frac{128 \pm 2046 \sqrt{-1}}{2 \cdot 5^{2} \cdot 41}$

Observation 2: There is a relation

$$
\operatorname{ord}_{\mathfrak{p}} \Theta_{q}^{\times}[F, G] \leftrightarrow \operatorname{ord}_{\mathfrak{q}} \Theta_{p}^{\times}[F, G] .
$$

Factorisation conjecture

If $D_{1}, D_{2}>0$ coprime discriminants and p inert for both, then for $i \in\{1,2\}$ we define

$$
\begin{aligned}
& K_{i} \supset \mathcal{O}_{i}:=\mathbf{Z}\left[\frac{D_{i}+\sqrt{D_{i}}}{2}\right] \\
& H_{i}:=\operatorname{Narrow} \text { ring class field } \mathcal{O}_{i} \\
& G_{i}:=\operatorname{Gal}\left(H_{i} / \mathbf{Q}\right)=\operatorname{Pic}\left(\mathcal{O}_{i}\right) \rtimes\left\langle\operatorname{Frob}_{p}\right\rangle
\end{aligned}
$$

When $\Theta_{p}^{\times}[F, G]$ is algebraic, should be in $H_{1} H_{2}$.

Intersections on Shimura curves

Choose optimal $\alpha_{i}: \mathcal{O}_{i} \hookrightarrow R \subset B_{p q}$ indefinite quat. alg. over \mathbf{Q} of conductor $p q$. The R_{1}^{\times}-conjugacy classes $\left[\alpha_{i}\right]$ admit a free action of G_{i}. The q-intersection number

$$
\operatorname{Int}_{q}\left(\alpha_{1}, \alpha_{2}\right):=\sum_{b \in \Gamma_{1} \backslash R_{1}^{\times} / \Gamma_{2}} m_{q} \cdot\left(\alpha_{1} \frown b \alpha_{2} b^{-1}\right) .
$$

is a q-weighted version of the intersection product of the classes $\left[\alpha_{i}\right] \in \mathrm{H}_{1}\left(X_{p q}, \mathbf{Z}\right)$ on $X_{p q}=\mathcal{H}_{\infty} / R_{1}^{\times}$, the Shimura curve associated with $B_{p q}$.

Let $G:=\operatorname{Gal}\left(H_{1} H_{2} / \mathbf{Q}\right) \simeq \operatorname{Gal}\left(H_{1} / \mathbf{Q}\right) \times \operatorname{Gal}\left(H_{2} / \mathbf{Q}\right)=G_{1} \times G_{2}$.

Factorisations

Choose a prime $\mathfrak{q} \mid(q)$ in $H_{1} H_{2}$. Define
$\mathrm{F}_{p, q}:=\sum_{g \in G} \operatorname{ord}_{\mathfrak{q}^{g}}\left(\Theta_{p}^{\times}[F, G]\right) \cdot[g] \in \mathbf{Z}[G]$

Intersections

Choose optimal $\alpha_{i}: \mathcal{O}_{i} \hookrightarrow R$. Define

$$
\mathrm{I}_{p, q}:=\sum_{g=\left(g_{1}, g_{2}\right) \in G} \operatorname{Int}_{q}\left(\alpha_{1}^{g_{1}}, \alpha_{2}^{g_{2}}\right) \cdot[g] \in \mathbf{Z}[G]
$$

Conjecture: $\mathrm{F}_{p, q}=\mathrm{I}_{p, q}$ in $\mathbf{Z}[G] / G$.
Why should we believe this conjecture? Want to test it! Algorithm by James Rickards.
Example. Let $\left(D_{1}, D_{2}\right)=(13,136)$ and $p=7$. We have $\operatorname{Pic}^{+}\left(\mathcal{O}_{2}\right) \simeq C_{4}=\langle s\rangle$.
We recognise $\Theta_{7}^{\times}[F, G]\left(\bmod 7^{300}\right)$ as root of the polynomial (with splitting field $H_{1} H_{2}$)

$$
36673 x^{8}-77740 x^{7}+82758 x^{6}-93080 x^{5}+113387 x^{4}-93080 x^{3}+82758 x^{2}-77740 x+36673
$$

Note: Factorisation of constant coefficient $36673=7 \cdot 13^{2} \cdot 31$.
James Rickards computes that the only non-trivial $\mathrm{I}_{7, q}$ are:

q	$\mathrm{I}_{7, q}$
7	$(1+[t])\left(1-\left[s^{2}\right]\right)$
13	$(1+[t])\left(1-[s]+\left[s^{2}\right]-\left[s^{3}\right]\right)(1+[r])$
31	$(1+[t])\left(1-\left[s^{2}\right]\right)$

What happens for larger primes p ?
Try for instance $p=11$ and $F=\langle 1,3,-3\rangle$ of $D_{1}=13$. We attempt as usual

$$
\text { For } G=\langle 1,4,-4\rangle \quad \operatorname{LLL}\left(\Theta_{11}^{\times}[F, G]\right)=\text { Unconvincing } \ldots \notin \overline{\mathbf{Q}} ?
$$

Suspected 'culprit' is lifting obstruction to $\mathrm{H}^{1}\left(\Gamma, \mathcal{M}^{\times}\right) \rightarrow \mathrm{H}^{1}\left(\Gamma, \mathcal{M}^{\times} / \mathbf{C}_{p}^{\times}\right)$, lives in

$$
\mathrm{H}^{2}\left(\Gamma, \mathbf{C}_{p}^{\times}\right) \simeq \mathrm{H}^{1}\left(\Gamma_{0}(p), \mathbf{C}_{p}^{\times}\right) \simeq\left(\mathbf{C}_{p}^{\times}\right)^{2 g+1} \quad g:=\operatorname{genus}\left(X_{0}(p)\right)
$$

Solution 1: Kill it

For $p=11$ it is killed by Hecke operator $\left(W_{p}-I\right)$. We find that

$$
\Theta_{11}^{\times}\left[F \cdot W_{p}, G\right] / \Theta_{11}^{\times}[F, G]
$$

computed $\left(\bmod 11^{50}\right)$ satisfies

$$
13 x^{4}+12 x^{3}+14 x^{2}+12 x+13
$$

with splitting field $\mathbf{Q}(\sqrt{-1}, \sqrt{-3})$.

Solution 2: Cherish it

Modulo the obstructions of analytic cocycles, get

$$
\begin{aligned}
& \mathrm{H}^{1}\left(\Gamma, \mathcal{A}^{\times} / \mathbf{C}_{p}^{\times}\right) \longrightarrow \Lambda \\
& \cap \\
& \mathrm{H}^{1}\left(\Gamma, \mathcal{M}^{\times} / \mathbf{C}_{p}^{\times}\right) \longrightarrow \mathrm{H}^{2}\left(\Gamma, \mathbf{C}_{p}^{\times}\right) \longrightarrow \frac{\mathbf{c}_{p}^{\times}}{\langle p\rangle} \times J_{0}(p)^{2}
\end{aligned}
$$

Have

$$
J_{0}(11): y^{2}+y=x^{3}-x^{2}-10 x-20
$$

Obstruction of $\Theta_{\digamma}^{\times}$equals $(\alpha, P, 0) \bmod 11^{100}$, where

$$
\left\{\begin{array}{lr}
121 \alpha^{2}+206 \alpha+121=0, & \alpha \in \mathbf{Q}(\sqrt{-7}), \\
P=\left(\frac{-3-\sqrt{-7}}{2}, \frac{-3-\sqrt{-7}}{2}\right) & \in J_{0}(11) .
\end{array}\right.
$$

The analytic argument of Zagier

Motivation

What about traces of CM singular moduli? Zagier (2002) makes modular generating series, and relates it to the theory of Borcherds products, which provide a morphism

$$
\Psi_{\text {Bor }}: M_{1 / 2}^{+,!}\left(\Gamma_{0}(4)\right) \longrightarrow \mathrm{H}^{0}\left(\mathrm{SL}_{2}(\mathbf{Z}), \mathcal{M}_{\infty}^{\times}\right)
$$

Our belief in the existence of RM analogues of the analytic arguments in Gross-Zagier is strengthened by construction (Darmon-V. 2022) of a similar morphism

$$
\Psi_{\text {Rig }}: \mathcal{M}_{1 / 2}^{+,!}\left(\Gamma_{0}(4 p)\right) \longrightarrow \mathrm{H}^{1}\left(\Gamma, \mathcal{M}^{\times}\right)
$$

Consider Hasse diagram:

Zagier (1983) then computes the Fourier expansion of
(0) its diagonal restriction $E_{s}(z, z)$ (vanishes at $s=0$)
(2) its analytic first order derivative with respect to s
(3) its holomorphic projection, contained in $\mathcal{M}_{2}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)=\{0\}$.

The first Fourier coefficient is of the form

$$
\log \operatorname{Nm}\left(j\left(\tau_{1}\right)-j\left(\tau_{2}\right)\right)+\sum_{q} \operatorname{Int}_{q} \cdot \log (q) .
$$

The analytic argument (p-adic version)

Prove that $\Theta_{p}^{\times}[F, G]$ is algebraic, when $F=\langle 0,1,0\rangle$ is degenerate.
Relate $\log _{p} \Theta_{p}^{\times}[F, G] \longleftrightarrow$ Fourier coefficients of p-adic family through $E(\psi)$ over $\mathbf{Q}\left(\sqrt{D_{G}}\right)$ $\longleftrightarrow p$-adic deformations of Galois representation $\rho=1 \oplus \psi$.

[Darmon-Pozzi-V. 2021] Diagonal restrictions of p-adic Eisenstein families
[Darmon-Pozzi-V. 2022] On the RM values of the Dedekind-Rademacher cocycle
Using an idea of Hecke-Klingen-Siegel, this proof also yields algorithm to compute p-adic Gross-Stark units, developed further by Håvard Damm-Johnsen (Thesis 2024).

Example

Let $K=\mathbf{Q}(\sqrt{136})$ with $\mathrm{Cl}^{+}(K) \simeq \mathbf{Z} / 4 \mathbf{Z}$, and $p=19$ inert in K. For $F=\langle 0,1,0\rangle$ and G of discriminant 136, Håvard computes (in less than 3 seconds) that up to precision 19^{50} we have

$$
\Theta_{19}^{\times}[F, G] \text { satisfies } 361 x^{4}+508 x^{3}+310 x^{2}+508 x+361=0
$$

which generates the narrow Hilbert class field over K.

Future directions

What are some promising avenues?
(Computational: Many challenges lie ahead!

- Systematic computations in all cases (ramified, non-coprime, split, ...)
[Darmon-V. 2021] RM singular moduli for $\mathrm{SL}_{2}(\mathbf{Z}[1 / p])$, where p is inert.
[Darmon-V. 2022] Stark-Heegner points for $\mathrm{SL}_{2}(\mathbf{Z}[1 / p])$, where p is inert.
[Guitart-Masdeu-Xarles 2021] Quaternion orders over totally real fields.
- Orthogonal group $O(3,1)$ by Darmon-Lipnowski-Gehrmann (forthcoming).

Other orthogonal groups / general construction?

- Factorisations of quaternionic / orthogonal invariants?
(2) Theoretical: Two great mysteries remain, corresponding to
- (Analytic) How far can analytic arguments with p-adic families be pushed, relying on deformations of Artin representations? Can one construct p-adic Borcherds lifts?
[Darmon-Pozzi-V. 2021] Diagonal restrictions of p-adic Eisenstein families
[Darmon-Pozzi-V. 2022] On the RM values of the Dedekind-Rademacher cocycle
[Darmon-V. 2022] Real quadratic Borcherds products
- (Geometric) What is the geometric meaning of RM singular moduli?

