Rigid cocycles
 \& Real quadratic singular moduli (Part II)

PCMI Summer School 2022
Jan Vonk (Leiden University)

Last time: Discussed quadratic forms $\langle a, b, c\rangle:=a X^{2}+b X Y+c Y^{2} \in \mathbf{Z}[X, Y]$

Collection of all $\mathrm{SL}_{2}(\mathbf{Z})$-orbits:

Let \mathcal{F}_{D} be the set of primitive forms (with $a>0$ if $D<0$) of discriminant $D:=b^{2}-4 a c$. For any non-square discriminant D, there is a bijection

$$
\begin{array}{ccc}
\mathcal{F}_{D} / \mathrm{SL}_{2}(\mathbf{Z}) & \longrightarrow & \operatorname{Pic}^{+}\left(\mathbf{Z}\left[\frac{D+\sqrt{D}}{2}\right]\right) \\
\langle a, b, c\rangle & \longmapsto & {\left[\left(a, \frac{-b+\sqrt{D}}{2}\right)\right]}
\end{array}
$$

One single $\mathrm{SL}_{2}(\mathbf{Z})$-orbit:

For $\langle a, b, c\rangle$ defined reducedness: When $D<0$, by

$$
|b| \leq a \leq c
$$

$b \geq 0$ if either equality holds.
When $D>0$, by
nearly reduced if $a c<0$
reduced if $a c<0$ and $b>|a+c|$.

Picture: Hatcher "Topology of numbers"

Additive cocycles

Consider $\mathbf{C}(z)=$ additive group of rational functions on $\mathbf{P}^{1}(\mathbf{C})$.
It is a left $\mathrm{GL}_{2}(\mathbf{Q})$-module for weight two action:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot f(z):=(a d-b c)(-c z+a)^{-2} f\left(\frac{d z-b}{-c z+a}\right)
$$

Consider rational cocycles := elements of $Z^{1}\left(\mathrm{SL}_{2}(\mathbf{Z}), \mathbf{C}(z)\right)$

$$
\begin{gathered}
:=\operatorname{maps} \varphi: \mathrm{SL}_{2}(\mathbf{Z}) \rightarrow \mathbf{C}(z) \text { such that for all } \gamma_{1}, \gamma_{2} \in \mathrm{SL}_{2}(\mathbf{Z}) \\
\varphi\left(\gamma_{1} \gamma_{2}\right)=\varphi\left(\gamma_{1}\right)+\gamma_{1} \cdot \varphi\left(\gamma_{2}\right)
\end{gathered}
$$

Toy example. Choose cusp $c=(r, s) \in \mathbf{P}^{1}(\mathbf{Q})$, and define

$$
\begin{aligned}
p_{c}: \quad \mathrm{SL}_{2}(\mathbf{Z}) & \longrightarrow \mathbf{C}(z), \quad \text { where } L(c):=\frac{s}{s z-r} . \\
\gamma & \longmapsto(c)-L(\gamma c), \quad \text {. }
\end{aligned}
$$

It is a cocycle, depends on c only up to coboundary. Why is it a cocycle?

- Direct calculation
(2) Recall that Eisenstein series $E_{2}(z)$ of weight two satisfies

$$
E_{2}(z) \mid(\gamma-1) \doteq p_{\infty}\left(\gamma^{-1}\right)
$$

(3) An (invariant) modular symbol is a map $m: \mathbf{P}^{\mathbf{1}}(\mathbf{Q}) \times \mathbf{P}^{\mathbf{1}}(\mathbf{Q}) \longrightarrow M$ (where $M=$ left $\mathrm{SL}_{2}(\mathbf{Z})$-module) such that

$$
\begin{array}{llrl}
m\{r, s\} & = & -m\{s, r\} \\
m\{r, t\} & = & m\{r, s\}+m\{s, t\} & \gamma \cdot m\{r, s\}=m\{\gamma r, \gamma s\}
\end{array}
$$

For any cusp c, the map $\gamma \mapsto m\{c, \gamma c\}$ is a cocycle.

Knopp cocycle

More interesting examples were constructed by Knopp (1978).
Choose $c \in \mathbf{P}^{1}(\mathbf{Q})$ a cusp, and $F \in \mathcal{F}_{D}$ with $D>0$ non-square. Define

$$
\begin{aligned}
k n_{c, F}: \quad \mathrm{SL}_{2}(\mathbf{Z}) & \longrightarrow \mathbf{C}(z) \\
\gamma & \longmapsto \sum_{Q \sim F} \frac{\operatorname{sgn}_{c, Q}(\gamma)}{z-r(Q)}
\end{aligned}
$$

where $r(\langle a, b, c\rangle)=\frac{-b+\sqrt{D}}{2 a}$ is the first root and

$$
\operatorname{sgn}_{c, Q}(\gamma)=\left\{\begin{aligned}
-1 & \text { if } Q(c)<0<Q(\gamma c) \\
1 & \text { if } Q(c)>0>Q(\gamma c) \\
0 & \text { otherwise }
\end{aligned}\right.
$$

One checks that it is well-defined and

- $k n_{c, F}$ is a cocycle.
- Its cohomology class $\left[k n_{c, F}\right] \in \mathrm{H}^{1}\left(\mathrm{SL}_{2}(\mathbf{Z}), \mathbf{C}(z)\right)$ is independent of the choice of cusp c. Natural choice of cusp is $c=\infty=(1,0)$, get a parabolic cocycle $k n_{F}$ determined by

$$
k n_{F}(T)=0, \quad k n_{F}(S)=\sum_{Q \in \Sigma_{F}} \frac{\operatorname{sgn} Q(\infty)}{z-r(Q)}, \quad \text { where } \Sigma_{F}:=\{\langle a, b, c\rangle \sim F: a c<0\}
$$

Knopp cocycle

Example $F=\langle 1,1,-1\rangle$, discriminant $D=5$

We have $\Sigma_{F}=\{\langle-1,1,1\rangle,\langle-1,-1,1\rangle,\langle 1,-1,-1\rangle,\langle 1,1,-1\rangle\}$ and

$$
k n_{F}(S)=\left(z^{2}-z-1\right)^{-1}+\left(z^{2}+z-1\right)^{-1}
$$

Satisfies the identities

$$
\begin{array}{r}
(1+S) \cdot k n_{F}(S)=0 \\
\left(1+(S T)+(S T)^{2}\right) \cdot k n_{F}(S)=0
\end{array}
$$

Application: Inspiration comes from linking numbers of modular geodesics.

If $\gamma \in \mathrm{SL}_{2}(\mathbf{Z})$ is hyperbolic, get associated knot

$$
\begin{array}{cll}
\operatorname{Knot}(\gamma) & \hookrightarrow & \mathrm{SL}_{2}(\mathbf{Z}) \backslash \mathrm{SL}_{2}(\mathbf{R}) \\
t & \mapsto & \mathrm{SL}_{2}(\mathbf{Z}) g\binom{e^{t}}{e^{-t}}, \quad \text { where } g^{-1} \gamma g=\text { diagonal }
\end{array}
$$

- Linking $\operatorname{Knot}(\gamma)$ and trefoil \leftrightarrow Dedekind-Rademacher cocycle (Ghys)
- Linking $\operatorname{Knot}\left(\gamma_{1}\right)$ and $\operatorname{Knot}\left(\gamma_{2}\right) \leftrightarrow$ Knopp cocycle (Duke-Imamoḡlu-Tóth)

In both cases, one integrates cocycles for $\mathrm{SL}_{2}(\mathbf{Z})$.

Multiplicative cocycles

Consider $\mathbf{C}(z)^{\times}$:= multiplicative group of non-zero rational functions on $\mathbf{P}^{1}(\mathbf{C})$.
It is a left $\mathrm{GL}_{2}(\mathbf{Q})$-module for weight zero action:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot f(z):=f\left(\frac{d z-b}{-c z+a}\right)
$$

There is a morphism of $\mathrm{GL}_{2}(\mathbf{Q})$-modules

$$
\operatorname{dlog}: \mathbf{C}(z)^{\times} \longrightarrow \mathbf{C}(z) ; f(z) \longmapsto\left(\frac{d}{d z} f(z)\right) \cdot f(z)^{-1}
$$

whose kernel is $\mathbf{C}^{\times} \subset \mathbf{C}(z)^{\times}$. Note that both p_{c} and $k n_{c, F}$ are valued in the image of

$$
\operatorname{dlog}: \mathbf{C}(z)^{\times} / \mathbf{C}^{\times} \hookrightarrow \mathbf{C}(z)
$$

and therefore lift formally to multiplicative cocycles (modulo scalars!)
$\left.\begin{array}{llll}\text { Toy cocycle lift: } & \gamma & \longmapsto & z-(\gamma \infty) \\ \text { Knopp cocycle lift: } & \gamma & \longmapsto & \prod_{Q \sim F}(z-r(Q))^{\operatorname{sgn} Q(\gamma \infty)}\end{array}\right\} \quad \in Z_{\text {par }}^{1}\left(\operatorname{SL}_{2}(\mathbf{Z}), \frac{\mathbf{C}(z)^{\times}}{\mathbf{C}^{\times}}\right)$
\mathbf{Q} : Can we get rid of scalar ambiguity, and lift them to cocycles in $Z^{1}\left(\operatorname{SL}_{2}(\mathbf{Z}), \mathbf{C}(z)^{\times}\right)$?
Lemma: The projection map is an isomorphism:

$$
12 Z_{f}^{1}\left(\mathrm{SL}_{2}(\mathbf{Z}), \mathbf{C}(z)^{\times}\right) \xrightarrow{\sim} 12 Z_{\text {par }}^{1}\left(\mathrm{SL}_{2}(\mathbf{Z}), \mathbf{C}(z)^{\times} / \mathbf{C}^{\times}\right)
$$

Denote p^{\times}and $k n_{F}^{\times} \in Z_{f}^{1}\left(\operatorname{SL}_{2}(\mathbf{Z}), \mathbf{C}(z)^{\times}\right)$for the unique lifts of 12th power of p and $k n_{F}$.

Values of cocycles

We will now evaluate multiplicative cocycles at non-split indefinite forms G.

- Let $G \in \mathcal{F}_{D}$ with $D>0$ non-square, then its stabiliser in $\mathrm{SL}_{2}(\mathbf{Z})$ is generated modulo torsion by the automorph of G defined by

$$
\operatorname{Stab}(G)= \pm\left\langle\gamma_{G}\right\rangle \leq \mathrm{SL}_{2}(\mathbf{Z}), \quad \gamma_{G}:=\left(\begin{array}{cc}
\frac{t-b u}{2} & -c u \\
a u & \frac{t+b u}{2}
\end{array}\right), \quad \begin{gathered}
\text { where } t, u>0 \text { min } \\
\text { such that } t^{2}-D u^{2}=4 .
\end{gathered}
$$

Computed efficiently using reduction algorithm.

- Given a multiplicative cocycle $\varphi \in Z^{1}\left(\operatorname{SL}_{2}(\mathbf{Z}), \mathbf{C}(z)^{\times}\right)$its value is defined by

$$
\varphi[G]:=\varphi\left(\gamma_{G}\right)(r(G)) \in \mathbf{P}^{1}(\mathbf{C})
$$

This value only depends on the $\mathrm{SL}_{2}(\mathbf{Z})$-orbit of G. For our examples, we have (exercises)

$$
\begin{aligned}
p^{\times}[G] & =\varepsilon_{D}^{12} \\
k n_{F}^{\times}[G] & \in \mathbf{Q}\left(\sqrt{D_{1}}, \sqrt{D_{2}}\right)
\end{aligned}
$$

Summary. We went through the following motions:
(1) Construct 'interesting' $\mathrm{SL}_{2}(\mathbf{Z})$ cocycles valued in the additive group $\mathbf{C}(z)$.
(2) Lift them to $\mathrm{SL}_{2}(\mathbf{Z})$ cocycles valued in the multiplicative group $\mathbf{C}(z)^{\times}$.
(0) Evaluate them at indefinite forms $G \in \mathcal{F}_{D}$ with $D>0$ non-square to get numbers.

Rigid cocycles

Preview: Will see that specific p-adic limits of the values of multiplicative Knopp cocycles converge to quantities that mimic Gross-Zagier's differences of singular moduli. Replace

$$
\text { by } \quad \begin{array}{rlll}
& \mathrm{SL}_{2}(\mathbf{Z}) & \subset & \mathbf{C}(z)^{\times} \\
\mathrm{SL}_{2}(\mathbf{Z}[1 / p]) & \subset & \mathcal{M}^{\times}
\end{array}
$$

where \mathcal{M}^{\times}:= non-zero meromorphic functions on the p-adic upper half plane \mathcal{H}_{p}.
The p-adic upper half plane \mathcal{H}_{p}
Define p-adic upper half plane $\mathcal{H}_{p}:=\lim _{n \rightarrow \infty} \mathcal{H}_{p}^{\leq n}$ where

$$
\left.\begin{array}{rl}
\mathcal{H}_{p}^{\leq n} & :=\left\{\left(z_{1}, z_{2}\right) \text { prim. : } \begin{array}{c}
\left|s z_{1}+r z_{2}\right|_{p} \geq p^{-n} \\
\\
\\
\\
\end{array}(r, s) \in \mathbf{P}^{1}(\mathbf{Q})\right. \text { prim. }
\end{array}\right\}
$$

It is a rigid analytic space with $\mathcal{H}_{p}\left(\mathbf{C}_{p}\right)=\mathbf{P}^{1}\left(\mathbf{C}_{p}\right) \backslash \mathbf{P}^{1}\left(\mathbf{Q}_{p}\right)$.
Note: Contains $r(G)$ for $G \in \mathcal{F}_{D}$ with $\left(\frac{D}{p}\right)=-1$.

Picture: Marc Masdeu
$\mathcal{M}:=$ uniform limits of rational functions on the affinoid covering $\left\{\mathcal{H}_{p}^{\leq n}: n \geq 1\right\}$.

Rigid cocycles

Go through the same motions as in the case of rational cocycles, inspired by Knopp cocycles.
Let $\Gamma:=\operatorname{SL}_{2}(\mathbf{Z}[1 / p])$ and $c=\infty \in \mathbf{P}^{1}(\mathbf{Q})$. Choose $F \in \mathcal{F}_{D}$ with $D>0$ and $\left(\frac{D}{p}\right)=-1$.
(1) Step 1: Construct interesting additive cocycle

$$
\gamma \longmapsto \sum_{Q \in F \cdot \Gamma} \frac{\operatorname{sgn}_{c, Q}(\gamma)}{z-r(Q)} \quad \in Z^{1}(\Gamma, \mathcal{M}) .
$$

(3) Step 2: Define multiplicative lifts

$$
\gamma \longmapsto \prod_{Q \in F \cdot \Gamma}(z-r(Q))^{\operatorname{sgn}_{c, Q}(\gamma)} \quad \in Z^{1}\left(\Gamma, \mathcal{M}^{\times} / \mathbf{C}_{p}^{\times}\right) .
$$

Can never lift to a Γ-cocycle valued in \mathcal{M}^{\times}. Such is life!
(- Step 3: Define the value at $G \in \mathcal{F}_{D}$ with $D>0$ and $\left(\frac{D}{p}\right)=-1$ by

- Restrict multiplicative cocycle (modulo scalars) to $\mathrm{SL}_{2}(\mathbf{Z})$ and lift its 12 th power uniquely to

$$
\Theta_{F}^{\times} \in Z_{\mathrm{par}}^{1}\left(\mathrm{SL}_{2}(\mathbf{Z}), \mathcal{M}^{\times}\right) .
$$

- Evaluate at G using automorph $\gamma_{G} \in \operatorname{SL}_{2}(\mathbf{Z})$, setting

$$
\Theta_{F}^{\times}[G]:=\Theta_{F}^{\times}\left(\gamma_{G}\right)(r(G)) \in \mathbf{P}^{1}\left(\mathbf{C}_{p}\right)
$$

(Darmon-V. 2021) algorithm for $\Theta_{F}^{\times}[G] \bmod p^{m}$ which is polynomial time in precision m.

Plot twist

First ever experiment

When $p=3$ we compute for $F=\langle 1,1,-1\rangle \quad$ disc 5

$$
G=\langle 1,8,-4\rangle \quad \text { disc } 80
$$

the RM value of the 3 -adic rigid cocycle associated to F at G, and find

$$
\Theta_{F}^{\times}[G] \equiv \frac{24 \sqrt{-1}-7}{25} \quad\left(\bmod 3^{200}\right) .
$$

Next time: Investigate these p-adic invariants experimentally, in the style of Gross-Zagier.

