Rigid cocycles & Real quadratic singular moduli (Part II)

PCMI Summer School 2022 Jan Vonk (Leiden University) **Last time:** Discussed quadratic forms $\langle a, b, c \rangle := aX^2 + bXY + cY^2 \in \mathbf{Z}[X, Y]$

Collection of all $SL_2(\mathbf{Z})$ -orbits:

Let \mathcal{F}_D be the set of primitive forms (with a > 0 if D < 0) of discriminant $D := b^2 - 4ac$. For any non-square discriminant D, there is a bijection

$$\mathcal{F}_D/\operatorname{SL}_2(\mathbf{Z}) \longrightarrow \operatorname{Pic}^+\left(\mathbf{Z}\left[\frac{D+\sqrt{D}}{2}\right]\right)$$

 $\langle a,b,c\rangle \longmapsto \left[\left(a,\frac{-b+\sqrt{D}}{2}\right)\right]$

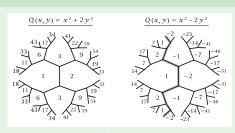
One single $SL_2(\mathbf{Z})$ -orbit:

For $\langle a, b, c \rangle$ defined reducedness: When D < 0, by

$$|b| \le a \le c$$
, $b \ge 0$ if either equality holds.

When D > 0, by

nearly reduced if ac < 0 **reduced** if ac < 0 and b > |a + c|.



Picture: Hatcher "Topology of numbers"

Additive cocycles

Consider C(z) = additive group of rational functions on $P^1(C)$.

It is a left $GL_2(\mathbf{Q})$ -module for weight two action:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot f(z) \ := \ (ad-bc)(-cz+a)^{-2}f\left(\frac{dz-b}{-cz+a}\right)$$

Consider rational cocycles := elements of Z^1 (SL₂(**Z**), **C**(z)) := maps $\varphi : \text{SL}_2(\mathbf{Z}) \to \mathbf{C}(z)$ such that for all $\gamma_1, \gamma_2 \in \text{SL}_2(\mathbf{Z})$ $\varphi(\gamma_1 \gamma_2) = \varphi(\gamma_1) + \gamma_1 \cdot \varphi(\gamma_2)$.

Toy example. Choose cusp $c = (r, s) \in \mathbf{P}^1(\mathbf{Q})$, and define

$$\begin{array}{cccc} p_c : & \operatorname{SL}_2(\mathbf{Z}) & \longrightarrow & \mathbf{C}(z), \\ \gamma & \longmapsto & \mathit{L}(c) - \mathit{L}(\gamma c), \end{array} \qquad \text{where } \mathit{L}(c) := \frac{s}{sz - r}.$$

It is a cocycle, depends on c only up to coboundary. Why is it a cocycle?

- Direct calculation
- ② Recall that Eisenstein series $E_2(z)$ of weight two satisfies

$$E_2(z) \mid (\gamma - 1) \stackrel{\cdot}{=} p_{\infty}(\gamma^{-1})$$

• An (invariant) modular symbol is a map $m : \mathbf{P}^1(\mathbf{Q}) \times \mathbf{P}^1(\mathbf{Q}) \longrightarrow M$ (where $M = \text{left SL}_2(\mathbf{Z})$ -module) such that

$$\begin{array}{lll} m\{r,s\} & = & -m\{s,r\} \\ m\{r,t\} & = & m\{r,s\} + m\{s,t\} \end{array} \qquad \begin{array}{ll} \gamma \cdot m\{r,s\} = m\{\gamma r,\gamma s\} \\ \end{array}$$

For any cusp c, the map $\gamma \mapsto m\{c, \gamma c\}$ is a cocycle.

Knopp cocycle

More interesting examples were constructed by Knopp (1978).

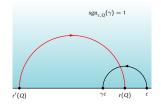
Choose $c \in \mathbf{P}^1(\mathbf{Q})$ a cusp, and $F \in \mathcal{F}_D$ with D > 0 non-square. Define

$$kn_{c,F}: \operatorname{SL}_2(\mathbf{Z}) \longrightarrow \mathbf{C}(z)$$

$$\gamma \longmapsto \sum_{Q \sim F} \frac{\operatorname{sgn}_{c,Q}(\gamma)}{z - r(Q)}$$

where $r(\langle a, b, c \rangle) = \frac{-b + \sqrt{D}}{2a}$ is the first root and

$$\mathrm{sgn}_{c,Q}(\gamma) = \left\{ \begin{array}{ll} -1 & \text{if } Q(c) < 0 < Q(\gamma c) \\ 1 & \text{if } Q(c) > 0 > Q(\gamma c) \\ 0 & \text{otherwise} \end{array} \right.$$



One checks that it is well-defined and

- kn_{c,F} is a cocycle.
- Its cohomology class $[kn_{c,F}] \in H^1(SL_2(\mathbf{Z}), \mathbf{C}(z))$ is independent of the choice of cusp c.

Natural choice of cusp is $c=\infty=(1,0)$, get a parabolic cocycle kn_F determined by

$$kn_F(T) = 0,$$
 $kn_F(S) = \sum_{Q \in \Sigma_E} \frac{\operatorname{sgn} Q(\infty)}{z - r(Q)},$ where $\Sigma_F := \{\langle a, b, c \rangle \sim F : ac < 0\}$

Knopp cocycle

Example
$$F = \langle 1, 1, -1 \rangle$$
, discriminant $D = 5$

We have
$$\Sigma_F = \{\langle -1, 1, 1 \rangle, \langle -1, -1, 1 \rangle, \langle 1, -1, -1 \rangle, \langle 1, 1, -1 \rangle\}$$
 and

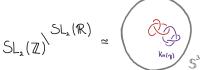
$$kn_F(S) = (z^2 - z - 1)^{-1} + (z^2 + z - 1)^{-1}.$$

Satisfies the identities

$$(1+S) \cdot kn_F(S) = 0,$$

$$(1+(ST)+(ST)^2) \cdot kn_F(S) = 0.$$

Application: Inspiration comes from linking numbers of modular geodesics.



If $\gamma \in SL_2(\mathbf{Z})$ is hyperbolic, get associated knot

$$\begin{array}{ccc} \operatorname{Knot}(\gamma) & \hookrightarrow & \operatorname{SL}_2(\mathbf{Z}) \backslash \operatorname{SL}_2(\mathbf{R}) \\ t & \mapsto & \operatorname{SL}_2(\mathbf{Z}) g\left(\begin{smallmatrix} e^t \\ e^{-t} \end{smallmatrix}\right), & \text{where } g^{-1} \gamma g = \operatorname{diagonal} \end{array}$$

- Linking Knot(γ) and trefoil \leftrightarrow Dedekind-Rademacher cocycle (Ghys)
- Linking Knot(γ_1) and Knot(γ_2) \leftrightarrow Knopp cocycle (Duke-Imamoğlu-Tóth) In both cases, one *integrates* cocycles for $SL_2(\mathbf{Z})$.

Multiplicative cocycles

Consider $C(z)^{\times}$:= multiplicative group of non-zero rational functions on $P^{1}(C)$.

It is a left $GL_2(\mathbf{Q})$ -module for weight zero action:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot f(z) := f\left(\frac{dz - b}{-cz + a}\right)$$

There is a morphism of $GL_2(\mathbf{Q})$ -modules

dlog:
$$\mathbf{C}(z)^{\times} \longrightarrow \mathbf{C}(z)$$
; $f(z) \longmapsto \left(\frac{d}{dz}f(z)\right) \cdot f(z)^{-1}$

whose kernel is $\mathbf{C}^{\times} \subset \mathbf{C}(z)^{\times}$. Note that both p_c and $kn_{c,F}$ are valued in the image of $\mathrm{dlog}: \mathbf{C}(z)^{\times}/\mathbf{C}^{\times} \hookrightarrow \mathbf{C}(z),$

and therefore lift formally to multiplicative cocycles (modulo scalars!)

Toy cocycle lift:
$$\gamma \longmapsto z - (\gamma \infty)$$

Knopp cocycle lift: $\gamma \longmapsto \prod_{Q \sim F} (z - r(Q))^{\operatorname{sgn} Q(\gamma \infty)}$ $\in Z^1_{\operatorname{par}}\left(\operatorname{SL}_2(\mathbf{Z}), \frac{\mathbf{C}(z)^{\times}}{\mathbf{C}^{\times}}\right)$

 \mathbf{Q} : Can we get rid of scalar ambiguity, and lift them to cocycles in Z^1 ($\mathrm{SL}_2(\mathbf{Z}), \mathbf{C}(z)^{\times}$)?

Lemma: The projection map is an isomorphism:

$$12Z_f^1\left(\operatorname{SL}_2(\boldsymbol{Z}),\boldsymbol{C}(z)^{\times}\right) \stackrel{\sim}{\longrightarrow} 12Z_{\operatorname{par}}^1\left(\operatorname{SL}_2(\boldsymbol{Z}),\boldsymbol{C}(z)^{\times}/\boldsymbol{C}^{\times}\right).$$

Denote p^{\times} and $kn_F^{\times} \in Z_f^1(\mathrm{SL}_2(\mathbf{Z}), \mathbf{C}(z)^{\times})$ for the unique lifts of 12th power of p and kn_F .

Values of cocycles

We will now *evaluate* multiplicative cocycles at non-split indefinite forms *G*.

• Let $G \in \mathcal{F}_D$ with D > 0 non-square, then its stabiliser in $SL_2(\mathbf{Z})$ is generated modulo torsion by the *automorph* of G defined by

$$\operatorname{Stab}(G) = \pm \langle \gamma_G \rangle \leq \operatorname{SL}_2(\mathbf{Z}), \qquad \gamma_G := \begin{pmatrix} \frac{t - bu}{2} & -cu \\ au & \frac{t + bu}{2} \end{pmatrix}, \quad \text{where } t, u > 0 \text{ min,} \\ \text{such that } t^2 - Du^2 = 4.$$

Computed efficiently using reduction algorithm.

• Given a multiplicative cocycle $\varphi \in Z^1(\operatorname{SL}_2(\mathbf{Z}), \mathbf{C}(z)^{\times})$ its value is defined by

$$\varphi[G] := \varphi(\gamma_G)(r(G)) \in \mathbf{P}^1(\mathbf{C}).$$

This value only depends on the $SL_2(\mathbf{Z})$ -orbit of G. For our examples, we have (exercises)

$$p^{\times}[G] = \varepsilon_D^{12}$$

 $kn_F^{\times}[G] \in \mathbf{Q}(\sqrt{D_1}, \sqrt{D_2})$

Summary. We went through the following motions:

- **①** Construct 'interesting' $SL_2(\mathbf{Z})$ cocycles valued in the additive group $\mathbf{C}(z)$.
- 2 Lift them to $SL_2(\mathbf{Z})$ cocycles valued in the multiplicative group $\mathbf{C}(z)^{\times}$.
- **3** Evaluate them at indefinite forms $G \in \mathcal{F}_D$ with D > 0 non-square to get *numbers*.

Rigid cocycles

Preview: Will see that specific p-adic limits of the values of multiplicative Knopp cocycles converge to quantities that mimic Gross-Zagier's differences of singular moduli. Replace

$$\begin{array}{ccc} \operatorname{SL}_2(\boldsymbol{Z}) & \circlearrowleft & \boldsymbol{C}(z)^\times \\ \text{by} & \Gamma := \operatorname{SL}_2(\boldsymbol{Z}[1/p]) & \circlearrowleft & \mathcal{M}^\times \end{array}$$

where \mathcal{M}^{\times} := non-zero meromorphic functions on the *p*-adic upper half plane \mathcal{H}_p .

The *p*-adic upper half plane \mathcal{H}_p

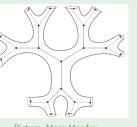
Define *p*-adic upper half plane $\mathcal{H}_p := \lim_{n \to \infty} \mathcal{H}_p^{\leq n}$ where

$$\mathcal{H}_p^{\leq n} := \left\{ (z_1, z_2) \text{ prim.} : \begin{array}{l} |sz_1 + rz_2|_p \geq p^{-n} \\ \forall (r, s) \in \mathbf{P}^1(\mathbf{Q}) \text{ prim.} \end{array} \right\}$$

$$\subset \mathbf{P}^1_{[z_1:z_2]}(\mathbf{C}_p)$$

It is a rigid analytic space with $\mathcal{H}_p(\mathbf{C}_p) = \mathbf{P}^1(\mathbf{C}_p) \setminus \mathbf{P}^1(\mathbf{Q}_p)$.

Note: Contains
$$r(G)$$
 for $G \in \mathcal{F}_D$ with $\left(\frac{D}{p}\right) = -1$.



Picture: Marc Masdeu

 $\mathcal{M}:=$ uniform limits of rational functions on the affinoid covering $\left\{\mathcal{H}_p^{\leq n}:n\geq 1\right\}$.

Rigid cocycles

Go through the same motions as in the case of rational cocycles, inspired by Knopp cocycles.

Let
$$\Gamma := \operatorname{SL}_2(\mathbf{Z}[1/p])$$
 and $c = \infty \in \mathbf{P}^1(\mathbf{Q})$. Choose $F \in \mathcal{F}_D$ with $D > 0$ and $\left(\frac{D}{p}\right) = -1$.

Step 1: Construct interesting additive cocycle

$$\gamma \longmapsto \sum_{Q \in F, \Gamma} \frac{\operatorname{sgn}_{c,Q}(\gamma)}{z - r(Q)} \in Z^{1}(\Gamma, \mathcal{M}).$$

Step 2: Define multiplicative lifts

$$\gamma \longmapsto \prod_{Q \in F \cdot \Gamma} (z - r(Q))^{\operatorname{sgn}_{c,Q}(\gamma)} \in Z^{1}(\Gamma, \mathcal{M}^{\times}/\mathbf{C}_{p}^{\times}).$$

Can **never** lift to a Γ -cocycle valued in \mathcal{M}^{\times} . Such is life!

- **Step 3:** Define the value at $G \in \mathcal{F}_D$ with D > 0 and $\left(\frac{D}{p}\right) = -1$ by
 - Restrict multiplicative cocycle (modulo scalars) to $SL_2(\mathbf{Z})$ and lift its 12th power uniquely to $\Theta_F^\times \in \mathcal{Z}_{par}^1(SL_2(\mathbf{Z}), \mathcal{M}^\times)$.
 - Evaluate at G using automorph $\gamma_G \in \operatorname{SL}_2(\mathbf{Z})$, setting

$$\Theta_F^{\times}[G] := \Theta_F^{\times}(\gamma_G)(r(G)) \in \mathbf{P}^1(\mathbf{C}_p).$$

(Darmon-V. 2021) algorithm for $\Theta_F^{\times}[G]$ mod p^m which is polynomial time in precision m.

Plot twist

First ever experiment

When
$$p=3$$
 we compute for $F=\langle 1,1,-1\rangle$ disc 5
 $G=\langle 1,8,-4\rangle$ disc 80

the RM value of the 3-adic rigid cocycle associated to F at G, and find

$$\Theta_F^{\times}[G] \equiv \frac{24\sqrt{-1}-7}{25} \pmod{3^{200}}.$$

Next time: Investigate these *p*-adic invariants experimentally, in the style of Gross–Zagier.