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Rational points on varieties and the Brauer-Manin obstruction

Bianca Viray

These notes are in draft form.

Prologue

A central object of interest in arithmetic geometry is the set of k-rational points
on a smooth projective geometrically integral k-variety X, denoted X(k). In these
notes, we focus on the fundamental problem of determining whether X(k) 6= ∅.

If you are handed a variety, e.g., X := V(x3 + 2y3 + 10z3) ⊂ P2, and asked to de-
termine if it has rational points, a natural first step is to try to find some solutions
where the coordinates are small (in other words, solutions of small height). If
you are lucky, you can find a point of small height (try to do so with the example
above!), and you will thereby have proved that the set X(Q) 6= ∅.

In fact, if X(k) 6= ∅, then an approach like this will give a proof! Any point
P ∈ X(k) has a (finite) height H, so searching in the box {x ∈ Pn(k) : H(x) 6 H} is
a finite procedure and will result in you finding the point P.

However, if X(k) = ∅, then this approach will never terminate. So if your
search keeps failing, you cannot tell whether you need to search in a larger
box or whether actually there is no rational point. Searching gives no way of
certifying that there are no k-points. To certify a lack of points, we need an-
other method. These notes focus on one such method that is known as the
Brauer-Manin obstruction.

The goal of these notes There are many excellent references on the Brauer-
Manin obstruction (e.g., [6, 15, 17] just to name a few). We do not endeavor to
improve on (or replicate!) those references here. Rather these notes should be
thought of as a sort of guidebook to the field, giving an overview of the current
landscape, with pointers of where to go should you, the reader, decide you wish
to explore more. Just as travel guidebooks have particular biases (affordability,
nature, good for kids, etc.), so do these notes. They give my perspective on how
the feedback loop of computation and theory currently manifests in the study of
rational points and the Brauer-Manin obstruction.

Notation and conventions Throughout, we will use F to denote an arbitrary
field. We write Fsep for a fixed separable closure, and F for a fixed algebraic clo-
sure containing Fsep. We use GF to denote the absolute Galois group Gal(Fsep/F).
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2 Rational points on varieties and the Brauer-Manin obstruction

We reserve k to denote a number field. We write Ωk for the set of places of k,
and for any v ∈ Ωk we let kv denote the completion. If v ∈ Ωk is nonarchimedean,
then we write Ov ⊂ kv for the valuation ring, mv for the maximal ideal and
Fv := Ov/mv for the residue field. We write Ak :=

∏ ′(kv,Ov) for the adele ring
of k.

We will use X to denote a smooth projective geometrically integral variety over
k. For any extension F/k we write XF for the base change of X to Spec F. We also
will use the conventions X := XF and Xsep := XFsep .

1. Obstructions to the existence of rational points

There is no known general method to determine if the set X(k) is nonempty.1

Instead, we find a set S that 1) contains X(k) and 2) seems to be computable
(at least in some cases). Then, if we can prove that S = ∅, this will imply that
X(k) = ∅. The set S is typically called an obstruction set since, as we discussed,
the emptyness of S obstructs the existence of k-points.

1.1. Local obstructions The simplest obstruction set comes from the embed-
dings of k into one of its completions kv. Precisely, if v is a place of k, then
the embedding k ↪→ kv induces an inclusion X(k) ⊂ X(kv). So if there are no
kv-points on X, then there are also no rational points. In addition, if v is nonar-
chimedean, then Hensel’s lemma implies that there is some n such that X(kv) 6= ∅
if and only if X(Ov/mnv ) 6= ∅. In particular, it is a finite computation to determine
if X(kv) 6= ∅ for nonarchimedean places v (and the same is true for archimedean
places, see [15, Remark 2.6.4])

Exercise 1.1.1. Show that

X := V(x2 + y2 + 7z2) ⊂ P2

has no Q7-points. Conclude that X(Q) = ∅.

We may package these obstructions together using the adèles Ak of k. Just as
above, the embedding k ↪→Ak allows us to view X(k) as a subset of X(Ak), and
one can prove (see [15, Section 2.6.3]) that

X(Ak) =

′∏
v

(X(kv),X(Ov)).

Since, by assumption, X is projective, the valuative criterion for properness im-
plies that the inclusion X(Ov) ⊂ X(kv) is an equality. Hence, X(Ak) =

∏
X(kv).

It turns out that even though X(Ak) encapsulates the infinitely many comple-
tions at once, it is still a finite computation to determine whether X(Ak) 6= ∅.

1In fact, it may be an undecidable problem! This question of decidability is known as Hilbert’s tenth
problem; see [14] for more details.



Bianca Viray 3

Proposition 1.1.2 (c.f. [15, Thm. 7.7.2]). Let X be a smooth projective geometrically
integral variety over a number field k. Then the set of places where X fails to have kv-
points is finite.

Proof. Since X is smooth and geometrically integral, then by slicing with suf-
ficiently general hyperplanes, we may obtain a smooth, geometrically integral
curve C ⊂ X. By generic smoothness, C necessarily has good reduction away
from a finite set of places (see [15, Section 3.2] for more details). Furthermore,
the Hasse-Weil bounds [15, Cor. 7.2.1] imply that, for any place of good reduc-
tion with #Fv sufficiently large, the reduction C mod v is guaranteed to have a
smooth Fv-point. Hensel’s lemma [15, 3.5.63] then implies that C, and hence X,
has Qv points for such v. Thus we have proved that X(kv) 6= ∅ for all v outside
the following subset

{v|∞}∪ {C mod v singular}∪ {#Fv < N} ,

where N is some positive integer given by the Hasse-Weil boards. Since this set
is finite, we have proved the desired result. �

Exercise 1.1.3. Note: For this problem, the following specific consequence of
Hensel’s Lemma will be useful. If p be a prime and u ∈ Z×p , then

u ∈ Z×2
p ⇔

{
u mod p ∈ F×2

p if p 6= 2

u ≡ 1 (mod 8) if p = 2

(1) Let p be an odd prime and let a,b, c ∈ Z − pZ. Show that {ax2 : x ∈ Fp}

and {c− by2 : y ∈ Fp} both have cardinality p+1
2 and therefore that the

sets contain a common value. Use this to show that

X := V(ax2 + by2 + cz2) ⊂ P2

has a Qp-point.
(2) Determine whether X := V(5x2 + 7y2 − 3z2) ⊂ P2 has AQ-points.
(3) Let a,b, c ∈ Z be squarefree, pairwise relatively prime integers. Prove

that X := V(ax2 + by2 + cz2) has AQ-points if and only if a,b, c are not
all the same sign and ax2 + by2 + cz2 has solutions in Z/8abcZ such that
for every p|8abc, at least two of the coordinates are nonzero modulo p.

1.1.1. The local-to-global principle

Definition 1.1.4. A class of varieties C satisfies the local-to-global principle (ab-
breviated LGP) if, for all X ∈ C,

X(Ak) 6= ∅ ⇔ X(k) 6= ∅.

Examples 1.1.5.
(1) Quadrics, in any number of variables, satisfy the local-to-global principle

by the Hasse-Minkowski theorem.



4 Rational points on varieties and the Brauer-Manin obstruction

(2) Severi-Brauer varieties, i.e., varieties that are geometrically isomorphic to
projective space, satisfy the local-to-global principle by the Albert-Brauer-
Hasse-Noether theorem.

Note that two classes of varieties given above are all geometrically very close
to projective space. That is not just due to limitations in our methods to prove
that the loca-to-global principle holds (even though these statements are generally
quite difficult to prove). It is because more complicated varieties often can fail the
local-to-global principle!

The first counterexample to the local-to-global principle dates back to the
1940’s and is due to Lind and Reichardt.

Theorem 1.1.6 ([11,16]). Let C ⊂ P3 be the smooth projective genus 1 curve defined by
the two quadrics 2y2 = w2 − 17z2 and wz = x2. Then

C(AQ) 6= ∅ and C(Q) = ∅.

To prove that C has no rational points despite the presence of the adelic points,
we need a refined obstruction set, i.e., an intermediate set S that sits between the
set of rational points and the set of adelic points.

1.2. An introduction to the Brauer-Manin obstruction The goal of this section is
to define the Brauer-Manin set X(Ak)

Br, and show that it is a refined obstruction
set, i.e., that we have the following containments:

X(k) ⊂ X(Ak)
Br ⊂ X(Ak).

To do so, we must first introduce the Brauer group.

1.2.1. The Brauer group of a field ([8],[6, Chap. 1],[13, Chap. 4])
Let F be a field.

Definition 1.2.1.

(1) A central simple algebra over F (abbreviated CSA/F) is a finite dimen-
sional F-algebra A whose center is exactly F and that has no nontrivial
two-sided ideals.

(2) Two central simple algebras A,B over F are said to be Brauer equivalent
if there exist positive integers n,m such that A⊗Mm(F) ' B⊗Mn(F).

Theorem 1.2.2 ([8, Prop. 2.4.8 and Thm. 4.4.7]). Let F be a field. The set of Brauer
equivalences classes of central simple algebras over F forms a torsion abelian group under
tensor product, where the identity element is the class of Mn(F); this group is isomorphic
to H2(GF, (Fsep)×).

Definition 1.2.3. The group from Theorem 1.2.2 is known as the Brauer group of F
and is denoted Br F.

Example 1.2.4. Assume that F has characteristic different from 2 and let a,b ∈ F×.
Then the quaternion algebra

Aa,b := F⊗ F · i⊗ F · j⊗ F · ij, i2 = a, j2 = b, ji = −ij
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is a CSA/F. It has order dividing 2 in BrF [8, Cor. 1.5.3].

Exercise 1.2.5. Let F be a field of characteristic different from 2 and let a,b ∈ F×.
Prove that Aa,b ' M2(F) if and only if there is some x,y, z ∈ F, not all zero,

such that ax2 +by2 = z2. Conclude that (a,b) := [Aa,b] ∈ Br F is trivial if and only
if the conic Ca,b : ax2 + by2 = z2 has an F-rational point, and that Ca,b(F) 6= ∅ if
and only if a ∈ N(k(

√
b)×). (By symmetry this is equivalent to b ∈ N(k(

√
a)×)).

Note: One can also show that Aa,b ⊕k Aa,c ' M2(Aa,bc), (see [8, Lemma 1.5.2])
which implies that in Br F, we have (a,b)(a, c) = (a,bc).

The above example is a special case of a general correspondence. To any central
simple algebra over F, one can associate a Severi-Brauer variety, and vice versa [8,
Section 5.2].

Our interest in the Brauer group stems from the fact that, over global fields,
it encodes the abelian reciprocity laws. This is encapsulated by the fundamental
exact sequence of global class field theory.

Theorem 1.2.6 ([15, Thms. 1.5.34 and 1.5.36]). Let k be a number field. For each place
v, there is an injective homomorphism

invv : Brkv → Q/Z,

that is an isomorphism for nonarchimedan v. For archimedean v, the image is 1
2 Z/Z if

kv = R and 0 if kv = C. Furthermore, these isomorphisms fit together in the following
short exact sequence

(1.2.7) 0→ Brk→ ⊕v Brkv
∑
v invv−−−−−→ Q/Z→ 0.

Remark 1.2.7.1. When working with explicit computations, one has to take care
that the maps invv are defined in a globally compatible way. An arbitrary collec-
tion of isomorphisms φv : Brkv → Q/Z for nonarchimedean v will not necessar-
ily give an exact sequence as in (1.2.7). See [6, Definition 13.1.7] for a definition
of invv. The explicit examples in these notes will restrict to 2-torsion elements to
avoid this subtlety.

Example 1.2.8. Let a,b ∈ k× and let v be a place of k. Using Example 1.2.4,
one can check that Aa,b ∈ Brkv is nontrivial if and only if the Hilbert symbol
(a,b)v = −1. Thus, the fact

∑
v invv(Aa,b) = 0 is exactly the product law∏

v

(a,b)v = 1,

which is also equivalent to quadratic reciprocity.

1.2.2. The Brauer group of a variety The notion of the Brauer group of a field
can be generalized to the Brauer group of a scheme using étale cohomology.
Namely, we can define BrX := H2

et(X, Gm).2

For our purposes, the following properties will be particularly useful.

2There are several ways to extend the definition of the Brauer group from a field to a scheme. This
definition is sometimes called the cohomological Brauer group, since, in general, it is not necessarily
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Theorem 1.2.9.

(1) For any field F we have Br F = Br Spec F.
(2) The Brauer group is functorial, i.e., if there is a morphism of varieties f : X→ Y,

then we have a homomorphism f∗ : Br Y → BrX.
(3) If X is a smooth geometrically integral variety over a field F of characteristic

0, then the inclusion of the generic point ι : Spec k(X) → X gives an injective
homomorphism ι∗ : BrX ↪→ Br k(X).[6, Thm. 3.5.5]

(4) The Brauer group is a birational invariant of smooth projective varieties, i.e., if
f : X 99K Y is a birational map between two smooth projective varieties, then
f∗ : Br k(Y)→ Br k(X) sends Br Y isomorphically to BrX. [6, Cor. 6.2.11]

(5) If X is a smooth projective variety and let U ⊂ X be an open subset such that
codim(X \U) > 2, then BrX = BrU. [6, Thm. 3.7.6]

1.2.3. The Brauer-Manin set In this section, we will show how the Brauer group
of a variety X carves out a subset of X(Ak) that contains the k-rational points.
This subset was introduced by Manin [12] and is known as the Brauer-Manin set.

For any extension F/k, the functoriality of the Brauer group (Theorem 1.2.9(2))
gives a pairing

BrX×X(F)→ Br F, (α, x) 7→ x∗α := 〈α, x〉,

where we view the point x ∈ X(F) as a map x : Spec F→ X.
If X is projective, then X(Ak) =

∏
v X(kv) and so we may apply these pairings

componentwise to obtain a pairing

BrX×X(Ak)→
∏
v

Brkv.

Using integral models and properties of Brauer groups of local fields, one can
show that the image of this pairing actually lands in ⊕v Brkv, i.e., that for every
α ∈ BrX there exists a finite set Sα ⊂ Ωk such that 〈α,−〉 : X(kv) → Brkv is
identically 0 for all v /∈ Sα[15, Prop. 8.2.1]. Therefore, we have the following
commutative diagram.

BrX×X(k) BrX×X(Ak)

Brk ⊕v Brkv

Recall from Theorem 1.2.6, the bottom vertical arrow fits into an exact sequence,
so we may extend our diagram as follows.

BrX×X(k) BrX×X(Ak)

0 Brk ⊕v Brkv Q/Z 0

φ∑
invv

equal to other generalizations. However, in the context that we will work in (smooth varieties over a
field of characteristic 0), all of the generalization coincide, so we will simply refer to this as the Brauer
group.
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Observe that since the bottom row is a complex and the diagram commutes, then
the induced map BrX×X(k)→ Q/Z is identically 0. In particular, for all α ∈ BrX,
the set X(k) is contained in the set of adelic points orthogonal to α, i.e.,

X(k) ⊂ X(Ak)
α := {(xv) ∈ X(Ak) : 〈α, (xv)〉 = 0}.

Taking the intersection X(Ak)
α for all α, we obtain the Brauer-Manin set

(1.2.10) X(Ak)
Br :=

⋂
α∈BrX

X(Ak)
α = {(xv) ∈ X(Ak) : 〈α, (xv)〉 = 0 ∀α ∈ BrX} .

Exercise 1.2.11. Let X be a smooth projective geometrically integral variety over
a number field k and let π denote the structure morphism π : X→ Speck.

(1) Let α0 ∈ Brk. Show that X(Ak)
π∗α0 = X(Ak).

(2) Let α,β ∈ BrX. Show that

X(Ak)
α ∩X(Ak)

β =
⋂

γ∈〈α,β〉
X(Ak)

γ

These exercises show that the Brauer-Manin set depends only on the quotient
BrX/ im(π∗ : Brk → BrX). We write Br0 X := im(π∗ : Brk → BrX) and refer to
elements in Br0 X as constant Brauer classes.

2. Computing the Brauer-Manin obstruction

Now we have successfully defined a refined obstruction set, the Brauer-Manin
set

X(k) ⊂ X(Ak)
Br ⊂ X(Ak),

but we have yet to see whether this is useful. Utility has a theoretical component
and a practical or computational component.

(1) [Theory] Do there exist varieties where X(Ak)
Br = ∅ yet X(Ak) 6= ∅?

(2) [Practice/Computation] Can we compute the Brauer-Manin set?

The answer to the first question is a resounding YES! In fact, there are many
such examples. When Manin introduced this obstruction, he showed that sev-
eral of the known failures of the local-to-global principle could be explained by
the Brauer-Manin obstruction. Since then several more examples have been con-
structed, which together lead to the expectation that if a class of variety can have
nontrivial Brauer group, it is likely that there exists such a variety with a Brauer-
Manin obstruction to the existence of rational points.3

The answer to the second question is more mixed. On the one hand, the
Brauer-Manin set has been computed in several examples, and for some classes of
varieties, it is more or less standard to do so (e.g., conic bundles over P1 [6, Prop.
11.3.4]). On the other hand, there is no general effectivity result for the Brauer-
Manin set, nor is there an approach that is known to work in full generality.

3Unless there is an “obvious” reason why not, e.g., the varieties always have a rational point, like in
the case of del Pezzo surfaces of degree 1.
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The best effectivity results to date are due to Kresch and Tschinkel [9, 10]. They
prove that if PicX is torsion free, then the algebraic Brauer-Manin set X(Ak)

Br1 is
effectively computable. The algebraic Brauer-Manin set is, by definition, the set of
adelic points orthogonal to those Brauer classes that become trivial after passage
to the algebraic closure; this is often larger than the Brauer-Manin set. Kresch
and Tschinkel can improve their results for surfaces. In that case (and still under
the assumption that PicX is torsion-free), they prove that for any positive integer
n, there is an effectively computable set Xn such that

X(Ak)
Br ⊂ Xn ⊂ X(Ak)

BrX[n].

In particular, if there exists an effective bound on the exponent of BrX/Br0 X, then
this would imply that the Brauer-Manin set is effectively computable for surfaces
with torsion-free geometric Picard group.

Despite the lack of general tools for computing the Brauer-Manin obstruction,
there is a general framework that is often helpful in computing the group struc-
ture of BrX/Br0 X as an abstract torsion abelian group.

2.1. The Hochschild-Serre spectral sequence and a filtration of the Brauer group
We will leverage the Hochschild-Serre spectral sequence in étale cohomology (ap-
plied to the Galois cover X→ X and the sheaf Gm):

(2.1.1) Hp
(
Gk,Hqet(X, Gm)

)
⇒ H

p+q
et (X, Gm).

to give a filtration of the Brauer group. The exact sequence of low degree terms
(see [15, Prop. 6.7.1]) is

0→ PicX→ (PicX)Gk → Brk→ ker
(
BrX→ BrX

)
→ H1(Gk, PicX)→ 0;

(here we use the assumption that k is a number field and so H3(Gk,k×) = 0 [15,
Remark 6.7.10] to obtain the rightmost 0). Using the definition of Br0 X, we obtain
a short exact sequence

(2.1.2) 0→ Br0 X→ Br1 X := ker
(
BrX→ BrX

)
→ H1(Gk, PicX)→ 0.

The subgroup Br1X is called the algebraic Brauer group of X, and the quotient
BrX/BrX is called the transcendental Brauer group of X.

The transcendental Brauer group can also be studied using the Hochschild-
Serre spectral sequence. Indeed, the higher degree terms yield the following
exact sequence (again using the assumption that k is a number field and so
H3(Gk,k×) = 0) [6, 5.24]

(2.1.3) 0→ BrX
Br1 X

→
(
BrX

)Gk → H2(Gk, PicX).

Thus, if we have a good enough understanding of PicX and BrX as Galois mod-
ules, we can leverage (2.1.2) and (2.1.3) to compute the Brauer group modulo
constants. (See [6, Section 5.4] for more details on these approaches.)
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2.2. Extended example of computing the Brauer-Manin obstruction Let X ⊂
P4 be given by the vanishing of the following two quadrics

st− x2 + 5y2, (s+ t)(s+ 2t) − x2 + 5z2.

This variety was first studied by Birch and Swinnerton-Dyer [1].

(1) Note that an intersection of quadrics in P3 is a genus 1 curve, and any
smooth genus 1 curve over a finite field F has an F-point. Prove that
X ∩ V(z) is smooth modulo p for all p 6= 2, 5. Use this to prove that
X(Qp) 6= ∅ for all p 6= 2, 5.

(2) Building on the previous part, show that X(AQ) 6= ∅.

(3) Using Exercise 1.2.5, show that (5, st ) and (5, s+ts+2t ) are trivial in Br k(X).

(4) Using the previous part and the remark at the end of Exercise 1.2.5 show
that, in Br k(X)

A :=

(
5,
s+ t

s

)
=

(
5,
s+ 2t
s

)
=

(
5,
s+ t

t

)
=

(
5,
s+ 2t
t

)
.

Additionally show that for every point P ∈ X− V(s, t), there is an open
set P ∈ UP ⊂ X− V(s, t) such that at least one of s+ts , s+tt , s+2t

s , s+2t
t is

regular and invertible on U.
Note: Since V(s, t) ⊂ X is codimension 2 in X, this together with the purity
theorem (see [15, Thm. 6.8.3]) allows us to conclude that A ∈ BrX.

(5) Show that X(AQ)
A = ∅ and hence X(AQ)

Br = ∅. (Sketch: First show that
for all p 6= 5 and Pp ∈ X(Qp), at least one of s+ts , s+tt , s+2t

s , s+2t
t is a

p-adic unit at Pp. Then, noting that Qp(
√

5)/Qp is unramified for p 6= 5,
use Problem (1.2.5) to deduce that A(Pp) = 0 ∈ Br Qp. Lastly, show that
A(P5) 6= 0 ∈ Br Q5 for all P5 ∈ X(Q5.)
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