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My work appearing in this talk was predominantly completed on the lands of the  
Coast Salish, Duwamish, Stillaguamish, and Suquamish nations, & I am 

reporting on it from the lands of the East Shoshone and Ute nations.
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How does this principle 
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 finite s.t.   linearly disjoint from  & , 
. 

π : X → ℙn
k

∃K/k ∀ L/k K 2 ∣ [L : k]
X(𝔸L)Br ≠ ∅

In general, no construction of quadratic points.
However, if , then, over an odd deg ext’n , 

 is birational to a double cover of .
X(𝔸k) ≠ ∅ K/k

XK ℙ2
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 quartic del Pezzo, i.e., X/k X = V(Q0, Q∞) ⊂ ℙ4

Thm [Creutz, Viray]
Let  be a quartic del Pezzo.  ThenX/k
1. , there exists quadratic  s.t. .∀v Lw/kv X(Lw) ≠ ∅
2. If all rank  quadrics containing  are defined / , 
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4 X k
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Thm [Creutz, Viray] 
Let  be a quartic del Pezzo.  Then 
1. , there exists quadratic  s.t. . 
2. If […], then  quadratic  s.t. 

X/k
∀v Lw/kv X(Lw) ≠ ∅

∃ L/k X(𝔸L)Br ≠ ∅ .

Does there always exist quadratic  with L/k X(L) ≠ ∅?
Does there exist a family of varieties where  is 
-torsion but there is a member with no quadratic points?

Br/Br0 2
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Springer’s theorem:  

 odd degree
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Example:  quartic del Pezzo 
Springer’s theorem + Amer, Brumer theorem:  

 odd degree

X = V(Q0, Q∞) ⊂ ℙ4

X(F) = ∅ ⇒ X(F′ ) = ∅ ∀F′ /F

Does  for  odd?X(𝔸k)Br = ∅ ⇒ X(𝔸L)Br = ∅ L/k
Yes! By [Colliot-Thélène, Coray ’79]+ [Swinnerton-Dyer ’99]



Over which extensions must the  
Brauer-Manin obstruction persist?

Example: X cubic surface 
Cassels, Swinnerton-Dyer conjecture 

 with .X(F) = ∅ ⇒ X(F′ ) = ∅ ∀F′ /F 3 ∤ [F′ : F]



Over which extensions must the  
Brauer-Manin obstruction persist?

Example: X cubic surface 
Cassels, Swinnerton-Dyer conjecture 

 with .X(F) = ∅ ⇒ X(F′ ) = ∅ ∀F′ /F 3 ∤ [F′ : F]

Does  for ?X(𝔸k)Br = ∅ ⇒ X(𝔸L)Br = ∅ 3 ∤ [L : k]



Over which extensions must the  
Brauer-Manin obstruction persist?

Does  for ?X(𝔸k)Br = ∅ ⇒ X(𝔸L)Br = ∅ 3 ∤ [L : k]



Over which extensions must the  
Brauer-Manin obstruction persist?

Example: X cubic surface 
Thm [Coray ‘76]  local field 

 with .
F

X(F) = ∅ ⇒ X(F′ ) = ∅ ∀F′ /F 3 ∤ [F′ : F]

Does  for ?X(𝔸k)Br = ∅ ⇒ X(𝔸L)Br = ∅ 3 ∤ [L : k]
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Example: X cubic surface 
Thm [Coray ‘76]  local field 

 with .
F

X(F) = ∅ ⇒ X(F′ ) = ∅ ∀F′ /F 3 ∤ [F′ : F]

Thm [Rivera, Viray; to appear] 
 for .X(𝔸k)Br = ∅ ⇒ X(𝔸L)Br = ∅ 3 ∤ [L : k]
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Today’s summary

“Arithmetic of ” includes understanding  as  ranges over 
all finite ext’ns of .

X X(L) L
k

 Results to date maybe suggest that  
it’s “easy” to have , but  is “hard”.X(𝔸L)Br ⊊ X(𝔸L) X(𝔸L)Br = ∅

 BUT results are thus far limited to geometrically rational surfaces.
Let’s explore!


