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[Nakahara, Roven] X «» V(v — az® = p(t)x?)
If dv € Qrstv(a) < Qor

a & F** & X, has bad red. mod v
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|.emma [ obs. by Wittenberg; in Creutz, Viray]|
Given X/k, K/ k extnof # fields, B C Br X.

Then X(Ak)COr(B) C X(A K)B . In particular,
1. X(Ak)Br *+ O = X(AK)Br + @, and
). X( Ak) C X( AK)RGS(Ber[[K:k]])
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Then dK/ktinites.t. V even degree L/ k linearly disjoint from K,

X(A,)"" + @.

etz € P"(k). Then X is a conic over k.

It X(A,) # &, then can find points over
\ﬂ\m even degree extensions approximating

any finite set of local conditions.
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X is birational to a double cover of P2,



Over which extensions must the
Brauer-Manin obstruction vanish?

X(Ak) + & &X(AK)Br — X(AK)RES(Ber[[K:k]]) :X(AK)BI‘ + O

[.et X be alocally soluble [type of variety]. Then dK/k
finite s.t. V L/ k linearly disjoint from K & M | [L : k],

X(A)" # @.



Over which extensions must the
Brauer-Manin obstruction vanish?

X(Ak) + & &X(AK)Br — X(AK)RES(Ber[[K:k]]) :X(AK)BI‘ + O

[.et X be alocally soluble [type of variety]. Then dK/k
finite s.t. V L/ k linearly disjoint from K & M | [L : k],

X(A)" # @.



Whatit X(A,) = &7



To show X(A L)Br #+ @, need to construct a point!



To show X(A L)Br #+ @, need to construct a point!

It X(A,) = &, have fewer known points to start with.



Whatit X(A,) = @7

To show X(A L)Br #+ @, need to construct a point!

It X(A,) = &, have fewer known points to start with.

Also, computing Br is still hard!



Whatit X(A,) = @7

To show X(A L)Br #+ @, need to construct a point!

It X(A,) = &, have fewer known points to start with.

Also, computing Br is still hard!



To show X(A L)Br #+ @, need to construct a point!

It X(A,) = &, have fewer known points to start with.






Whatit X(A,) = &7



Thm | Roven|
Letz: X — P!beaconicbundle. Then
V L/k quadratic
X( AL)ReSL/k(BrX) + O X( AL) + .



Thm | Roven|
et z: X — P! beaconicbundle. Then
V L/k quadratic
X( AL)ReSL/k(BrX) + O X( AL) + .
Thm | Roven|
Letz: X — P!beaChatelet surface. Then
VL/kecven degree

X( AL)RGSL/k(BrX) + O X( AL) -+ .




Thm | Roven]
Letz: X — Plbeaconicbundle. Then
V L/k quadratic and

XA + o X(A)) # .

Thm | Roven]|
Letz: X — PlbeaChatelet surface. Then
VL/kevendegree and

XA + o XA, + 3.

S.L.

S.L.



Thm | Roven]
Letzz: X — P!beaconicbundle. Then 3K/k finite s.t.

V L/k quadratic and linearly disjoint from K,
S X(Ap) # O.
Thm | Roven]|

Letz: X — P!beaChatelet surface. Then 3 K/k finite s.t.
V L/k cven degree and linearly disjoint from K

S X(Ap) # O.



Thm | Roven]
Letzz: X — P!beaconicbundle. Then 3K/k finite s.t.

V L/k quadratic and linearly disjoint from K,
XA + o X(A)) # .
Thm | Roven]|

Letz: X — P!beaChatelet surface. Then 3 K/k finite s.t.
V L/k cven degree and linearly disjoint from K

S X(Ay) # .



X/k quartic del Pezzo, ie, X = V(Q,, Q) C p4



X/k quartic del Pezzo, ie, X = V(Q,, Q) C p4

Thm |Creutz, Viray]
|.et X/ kbe a quartic del Pezzo. Then



X/k quartic del Pezzo, ie, X = V(Q,, Q) C p4

Thm |Creutz, Viray]
|.et X/ kbe a quartic del Pezzo. Then
. Vv, thereexists quadratic L /k, s.t. X(L,) # &.



X/k quartic del Pezzo, ie, X = V(Q,, Q) C p4
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|.et X/kbe a quartic del Pezzo. Then
. Vv, thereexistsquadraticL /k s.t. X(L,) # O.
2. If|...], then 4 quadratic L/ks.t. X(A L)Br += @ .

Does there always exist quadratic L/kwith X(L) # @7

Does there exist a family of varieties where Br/Bris 2
-torsion but there is a member with no quadratic points?
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[xample: X = V(Q,, O,,) C P* quartic del Pezzo
Springer’s theorem + Amer, Brumer theorem:

X(F)=@ = X(F') =@ VF'/Fodddegree

D()esX(Ak)Br = => X(AL)Br = @ for L/kodd?
Yes! By [Colliot-Thélene, Coray '79 |+ | Swinnerton-Dyer '99]
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Over which extensions must the
Brauer-Manin obstruction persist?

[Example: X cubic surface

Thm |Coray 76| F'local field
X(F) =@ = X(F) = @ VF/Fwith3 } [F': F].

Thm |Rivera, Viray; to appear]
X(A)P" =@ = X(A,)® = @for3 } [L: k.
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Today’s summary

“Arithmetic of X” includes understanding X(L) as L ranges over
all finite ext'ns of k.

Results to date maybe suggest that
it's “easy” to have X(A L)Br G X(A;), but X(A L)Br = @is “hard”.

BUT results are thus far limited to geometrically rational surfaces.

Let’s explore!



