Rational points on varieties and the Brauer-Manin obstruction

My work appearing in this talk was predominantly completed on the lands of the Coast Salish, Duwamish, Stillaguamish, and Suquamish nations, & I am reporting on it from the lands of the East Shoshone and Ute nations.

Bianca Viray University of Washington

Given a variety X/\mathbb{Q} , how do we determine $X(\mathbb{Q})$?

Given a variety X/Q, how do we determine X(Q)?

Assume we computed generators for Br/Br_0 and determined that $X(\mathbb{A}_{\mathbb{D}})^{Br} = \emptyset$.

Given a variety X/Q, how do we determine X(Q)?

Assume we computed generators for Br/Br_0 and determined that $X(\mathbb{A}_{\mathbb{D}})^{Br} = \emptyset$.

Assume we computed generators for Br/Br_0 and determined that $X(\mathbb{A}_{\mathbb{Q}})^{Br} = \emptyset$. Now what?

Assume we computed generators for Br/Br_0 and determined that $X(\mathbb{A}_{\mathbb{Q}})^{Br} = \emptyset$. Now what?

 $X \neq X(\mathbb{Q})!$

Assume we computed generators for Br/Br_0 and determined that $X(\mathbb{A}_{\mathbb{Q}})^{\mathrm{Br}} = \emptyset$. Now what?

$X \neq X(\mathbb{Q})!$ Want to extract more arithmetic info from X.

Assume we computed generators for Br/Br_0 and determined that $X(\mathbb{A}_{\mathbb{Q}})^{\mathrm{Br}} = \emptyset$. Now what?

- $X \neq X(\mathbb{Q})!$
- Want to extract more arithmetic info from X. Can we leverage what we know about X/k to study $\{X(L) : L/Q\}$?

Can we leverage what we know about X/k to study $\{X(L) : L/\mathbb{Q}\}$?

Can we leverage what we know about $X(\mathbb{A}_k)^{Br}$ to study $\{X(\mathbb{A}_I)^{\mathrm{Br}}: L/\mathbb{Q}\}$? (From Lecture 2)

Brauer classes want to obstruct adelic points

(From Lecture 2)

How does this principle translate in the context of varying extensions?

Can we leverage what we know about $X(\mathbb{A}_k)^{Br}$ to study $\{X(\mathbb{A}_I)^{\mathrm{Br}}: L/\mathbb{Q}\}$?

Brauer classes want to obstruct adelic points

(From Lecture 2)

Can we leverage what we know about $X(\mathbb{A}_{k})^{\mathrm{Br}}$ to study $\{X(\mathbb{A}_I)^{\mathrm{Br}}: L/\mathbb{Q}\}$?

Brauer classes want to obstruct adelic points

[Liang '22 + CTSSD '87] For all number fields k, \exists Châtelet surface V/k & quadratic ext'n L/k s.t. $\overline{V(k)} = V(\mathbb{A}_k)^{\mathrm{Br}} = V(\mathbb{A}_k) \text{ but } V(\mathbb{A}_L)^{\mathrm{Br}} \subsetneq V(\mathbb{A}_k).$

(From Lecture 2) Brauer classes want to obstruct adelic points

Can we leverage what we know about $X(\mathbb{A}_{k})^{\mathrm{Br}}$ to study $\{X(\mathbb{A}_I)^{\mathrm{Br}}: L/\mathbb{Q}\}$?

[Nakahara, Roven] $X \leftrightarrow V(y^2 - az^2 = p(t)x^2)$

Can we leverage what we know about $X(\mathbb{A}_k)^{Br}$ to study $\{X(\mathbb{A}_I)^{\mathrm{Br}}: L/\mathbb{Q}\}$?

(From Lecture 2) Brauer classes want to obstruct adelic points

"Almost always"

[Nakahara, Roven] $X \leftrightarrow V(y^2 - az^2 = p(t)x^2)$

 $\exists L/k \text{ such that } X(\mathbb{A}_I)^{\mathrm{Br}} \subsetneq X(\mathbb{A}_I).$

(From Lecture 2)

If $\exists v \in \Omega_F$ s.t. v(a) < 0 or F splitting field of p(t)Then $\exists L/k$ such that $X(\mathbb{A}_I)^{\mathrm{Br}} \subsetneq X(\mathbb{A}_I)$.

Can we leverage what we know about $X(\mathbb{A}_{k})^{\mathrm{Br}}$ to study $\{X(\mathbb{A}_I)^{\mathrm{Br}}: L/\mathbb{Q}\}$?

Brauer classes want to obstruct adelic points

[Nakahara, Roven] $X \leftrightarrow V(y^2 - az^2 = p(t)x^2)$

 $a \notin F_v^{\times 2} \& X_F$ has bad red. mod v

(From Lecture 2)

Brauer classes want to obstruct adelic points

Need to ask for less control

Can we leverage what we know about $X(\mathbb{A}_k)^{Br}$ to study $\{X(\mathbb{A}_I)^{\mathrm{Br}}: L/\mathbb{Q}\}$?

(From Lecture 2) Brauer classes want to obstruct adelic points

Need to ask for less control

(From Lecture 2) Brauer classes want to obstruct adelic points

Need to ask for less control

Can we leverage what we know about $X(\mathbb{A}_k)^{Br}$ to study{ $L/\mathbb{Q} : X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset$ }?

Can we leverage what we know about $X(\mathbb{A}_k)^{Br}$ to study{ $L/\mathbb{Q} : X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset$ }?

Lemma [obs. by Wittenberg; in Creutz, Viray] Given X/k, K/k ext'n of # fields, $B \subset \operatorname{Br} X_{k}$. Then $X(\mathbb{A}_k)^{\operatorname{Cor}(B)} \subset X(\mathbb{A}_k)^B$.

Can we leverage what we know about $X(\mathbb{A}_k)^{\mathrm{Br}}$ to study $\{L/\mathbb{Q}: X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset\}$?

Lemma [obs. by Wittenberg; in Creutz, Viray] Given X/k, K/k ext'n of # fields, $B \subset \operatorname{Br} X_K$. Then $X(\mathbb{A}_k)^{\operatorname{Cor}(B)} \subset X(\mathbb{A}_k)^B$. In particular, 1. $X(\mathbb{A}_k)^{\mathrm{Br}} \neq \emptyset \Rightarrow X(\mathbb{A}_K)^{\mathrm{Br}} \neq \emptyset$, and

2. $X(\mathbb{A}_k) \subset X(\mathbb{A}_K)^{\operatorname{Res}(\operatorname{Br} X_k[[K:k]])}$

Can we leverage what we know about $X(\mathbb{A}_{k})^{Br}$ to study $\{L/\mathbb{Q} : X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset\}$?

$\underline{\text{Lemma}\,X(\mathbb{A}_k)^{\text{Cor}(B)} \subset X(\mathbb{A}_K)^B}$

Let $\alpha \in \operatorname{Br} X_K$.

 $\Rightarrow \sum \operatorname{inv}_{v}(x_{v}^{*}\operatorname{Cor}(\alpha)) = \sum \operatorname{inv}_{v}\operatorname{Cor}(y^{*}\alpha) = \sum \sum \operatorname{inv}_{w}y_{w}^{*}\alpha.$ ${\mathcal W}$ V

$\underline{\text{Lemma}\,X(\mathbb{A}_k)^{\text{Cor}(B)} \subset X(\mathbb{A}_K)^B}$

 $\underline{\text{Lemma}} X(\mathbb{A}_k)^{\text{Cor}(B)} \subset X(\mathbb{A}_K)^B$

Corollary If $X(\mathbb{A}_k)^{\mathrm{Br}} \neq \emptyset$, then $\{L/\mathbb{Q}: X(\mathbb{A}_I)^{\mathrm{Br}} = \emptyset\} = \{L/\mathbb{Q}\}\$

Lemma $X(\mathbb{A}_k)^{\operatorname{Cor}(B)} \subset X(\mathbb{A}_k)^B$

Corollary If $X(\mathbb{A}_k)^{\mathrm{Br}} \neq \emptyset$, then $\{L/\mathbb{Q}: X(\mathbb{A}_I)^{\mathrm{Br}} = \emptyset\} = \{L/\mathbb{Q}\}\$

Case of interest: $X(\mathbb{A}_k)^{\mathrm{Br}} = \emptyset$

Over which extensions *must* the Brauer-Manin obstruction persist?

Over which extensions *must* the Brauer-Manin obstruction vanish?

Over which extensions *must* the Brauer-Manin obstruction persist?

Over which extensions must the Brauer-Manin obstruction vanish?

Over which extensions *must* the **Brauer-Manin obstruction vanish?**

Lemma $X(\mathbb{A}_k) \subset X(\mathbb{A}_K)^{\operatorname{Res}(\operatorname{Br} X_k[[K:k]])}$

Over which extensions *must* the Brauer-Manin obstruction vanish?

Lemma $X(\mathbb{A}_k) \subset X(\mathbb{A}_K)^{\operatorname{Res}(\operatorname{Br} X_k[[K:k]])}$

If $X(\mathbb{A}_k) \neq \emptyset \& \operatorname{Res}(\operatorname{Br} X_k[[K:k]])$ captures the Brauer-Manin obstruction, then $X(\mathbb{A}_{K})^{\mathrm{Br}} \neq \emptyset$.

Over which extensions *must* the Brauer-Manin obstruction vanish?

If $X(\mathbb{A}_k) \neq \emptyset \& \operatorname{Res}(\operatorname{Br} X_k[[K:k]]) \text{ captures } \Rightarrow X(\mathbb{A}_K)^{\operatorname{Br}} \neq \emptyset.$

Over which extensions *must* the Brauer-Manin obstruction vanish?

Example Corollary:

Let $\pi: X \to \mathbb{P}_k^n$ be a locally soluble conic bundle. Then $\exists K/k$ finite s.t. \forall even degree L/k linearly disjoint from K, $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset.$

If $X(\mathbb{A}_k) \neq \emptyset \& \operatorname{Res}(\operatorname{Br} X_k[[K:k]])$ captures $\Rightarrow X(\mathbb{A}_K)^{\operatorname{Br}} \neq \emptyset$.
Over which extensions *must* the Brauer-Manin obstruction vanish?

Example Corollary: Let X be a locally soluble cubic surface. Then $\exists K/k$ finite s.t. $\forall L/k$ linearly disjoint from $K\&3 \mid [L:k]$, $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset.$

If $X(\mathbb{A}_k) \neq \emptyset \& \operatorname{Res}(\operatorname{Br} X_k[[K:k]])$ captures $\Rightarrow X(\mathbb{A}_K)^{\operatorname{Br}} \neq \emptyset$.

Over which extensions *must* the Brauer-Manin obstruction vanish?

Example Corollary:

Let X be a locally soluble quartic del Pezzo. Then $\exists K/k$ finite s.t. $\forall L/k$ linearly disjoint from K&2 [L:k], $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset.$

If $X(\mathbb{A}_k) \neq \emptyset \& \operatorname{Res}(\operatorname{Br} X_k[[K:k]])$ captures $\Rightarrow X(\mathbb{A}_K)^{\operatorname{Br}} \neq \emptyset$.

Example Corollary:

Over which extensions *must* the Brauer-Manin obstruction vanish?

If $X(\mathbb{A}_k) \neq \emptyset \& \operatorname{Res}(\operatorname{Br} X_k[[K:k]]) \text{ captures } \Rightarrow X(\mathbb{A}_K)^{\operatorname{Br}} \neq \emptyset.$

Let X be a locally soluble [type of variety]. Then $\exists K/k$ finite s.t. $\forall L/k$ linearly disjoint from $K\&M \mid [L:k]$, $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset.$

Over which extensions *must* the Brauer-Manin obstruction vanish?

Example Corollary:

Let X be a locally soluble [type of variety]. Then $\exists K/k$ finite s.t. $\forall L/k$ linearly disjoint from $K\&M \mid [L:k]$, $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset.$

Are these results surprising?

If $X(\mathbb{A}_k) \neq \emptyset \& \operatorname{Res}(\operatorname{Br} X_k[[K:k]]) \text{ captures } \Rightarrow X(\mathbb{A}_K)^{\operatorname{Br}} \neq \emptyset.$

Example Corollary: Let $\pi: X \to \mathbb{P}_k^n$ be a locally soluble conic bundle. Then $\exists K/k$ finite s.t. \forall even degree L/k linearly disjoint from K, $X(\mathbb{A}_L)^{\operatorname{Br}} \neq \emptyset$.

Example Corollary:

Let $t \in \mathbb{P}^n(k)$. Then X_t is a conic over k.

Let $\pi: X \to \mathbb{P}_k^n$ be a locally soluble conic bundle. Then $\exists K/k$ finite s.t. \forall even degree L/k linearly disjoint from K, $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset.$

Example Corollary:

Let $t \in \mathbb{P}^n(k)$. Then X_t is a conic over k.

If $X(\mathbb{A}_k) \neq \emptyset$, then can find points over $\sqrt{10^{k}}$ even degree extensions approximating any finite set of local conditions.

Let $\pi: X \to \mathbb{P}_k^n$ be a locally soluble conic bundle. Then $\exists K/k$ finite s.t. \forall even degree L/k linearly disjoint from K, $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset.$

Example Corollary: Let $\pi: X \to \mathbb{P}_k^n$ be a locally soluble quartic del Pezzo. Then $\exists K/k$ finite s.t. $\forall L/k$ linearly disjoint from $K\& 2 \mid [L:k]$, $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset.$

Example Corollary: Let $\pi: X \to \mathbb{P}_k^n$ be a locally soluble quartic del Pezzo. Then $\exists K/k$ finite s.t. $\forall L/k$ linearly disjoint from $K\&2 \mid [L:k]$, $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset.$

In general, no construction of quadratic points.

Example Corollary: Let $\pi: X \to \mathbb{P}_k^n$ be a locally soluble quartic del Pezzo. Then $\exists K/k$ finite s.t. $\forall L/k$ linearly disjoint from $K\& 2 \mid [L:k]$, $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset.$

In general, no construction of quadratic points. However, if $X(\mathbb{A}_k) \neq \emptyset$, then, over an odd deg ext'n K/k, X_K is birational to a double cover of \mathbb{P}^2 .

Example Corollary:

Over which extensions *must* the Brauer-Manin obstruction vanish?

 $X(\mathbb{A}_k) \neq \emptyset \& X(\mathbb{A}_K)^{\mathrm{Br}} = X(\mathbb{A}_K)^{\mathrm{Res}(\mathrm{Br} X_k[[K:k]])} \Rightarrow X(\mathbb{A}_K)^{\mathrm{Br}} \neq \emptyset$

Let X be a locally soluble [type of variety]. Then $\exists K/k$ finite s.t. $\forall L/k$ linearly disjoint from $K\&M \mid [L:k]$, $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset.$

Example Corollary:

What if $X(\mathbb{A}_k) = \emptyset$?

Over which extensions *must* the Brauer-Manin obstruction vanish?

 $X(\mathbb{A}_k) \neq \emptyset \& X(\mathbb{A}_K)^{\mathrm{Br}} = X(\mathbb{A}_K)^{\mathrm{Res}(\mathrm{Br} X_k[[K:k]])} \Rightarrow X(\mathbb{A}_K)^{\mathrm{Br}} \neq \emptyset$

Let X be a locally soluble [type of variety]. Then $\exists K/k$ finite s.t. $\forall L/k$ linearly disjoint from $K\&M \mid [L:k]$, $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset.$

What if $X(\mathbb{A}_k) = \emptyset$?

To show $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset$, need to construct a point!

To show $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset$, need to construct a point!

If $X(\mathbb{A}_k) = \emptyset$, have fewer known points to start with.

To show $X(\mathbb{A}_I)^{Br} \neq \emptyset$, need to construct a point!

If $X(\mathbb{A}_k) = \emptyset$, have fewer known points to start with.

Also, computing Br is still hard!

To show $X(\mathbb{A}_I)^{Br} \neq \emptyset$, need to construct a point!

If $X(\mathbb{A}_k) = \emptyset$, have fewer known points to start with.

Also, computing Br is still hard! (Assume we solved this, at least over k)

To show $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset$, need to construct a point!

If $X(\mathbb{A}_k) = \emptyset$, have fewer known points to start with.

What if $X(\mathbb{A}_k) = \emptyset$?

Thm Roven Let $\pi: X \to \mathbb{P}^1$ be a conic bundle. Then $\forall L/k$ quadratic $X(\mathbb{A}_I)^{\operatorname{Res}_{L/k}(\operatorname{Br} X)} \neq \emptyset \Leftrightarrow X(\mathbb{A}_I) \neq \emptyset.$

Thm Roven Let $\pi: X \to \mathbb{P}^1$ be a conic bundle. Then $\forall L/k$ quadratic $X(\mathbb{A}_I)^{\operatorname{Res}_{L/k}(\operatorname{Br} X)} \neq \emptyset \Leftrightarrow X(\mathbb{A}_I) \neq \emptyset.$ Thm Roven Let $\pi: X \to \mathbb{P}^1$ be a Châtelet surface. Then $\forall L/k$ even degree $X(\mathbb{A}_I)^{\operatorname{Res}_{L/k}(\operatorname{Br} X)} \neq \emptyset \Leftrightarrow X(\mathbb{A}_I) \neq \emptyset.$

Thm Roven Let $\pi: X \to \mathbb{P}^1$ be a conic bundle. Then $\exists K/k$ finite s.t. $\forall L/k$ quadratic and linearly disjoint from K, $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset \Leftrightarrow X(\mathbb{A}_I) \neq \emptyset.$ Thm Roven Let $\pi: X \to \mathbb{P}^1$ be a Châtelet surface. Then $\exists K/k$ finite s.t. $\forall L/k \text{ even degree and linearly disjoint from } K$ $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset \Leftrightarrow X(\mathbb{A}_I) \neq \emptyset.$

Thm Roven Let $\pi: X \to \mathbb{P}^1$ be a conic bundle. Then $\exists K/k$ finite s.t. $\forall L/k$ quadratic and linearly disjoint from K, $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset \Leftrightarrow X(\mathbb{A}_I) \neq \emptyset.$ Thm Roven Let $\pi: X \to \mathbb{P}^1$ be a Châtelet surface. Then $\exists K/k$ finite s.t. $\forall L/k$ even degree and linearly disjoint from K $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset \Leftrightarrow X(\mathbb{A}_I) \neq \emptyset.$

Thm Roven Let $\pi: X \to \mathbb{P}^1$ be a conic bundle. Then $\exists K/k$ finite s.t. $\forall L/k$ quadratic and linearly disjoint from K, $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset \Leftrightarrow X(\mathbb{A}_I) \neq \emptyset.$ Thm Roven Let $\pi: X \to \mathbb{P}^1$ be a Châtelet surface. Then $\exists K/k$ finite s.t. $\forall L/k$ even degree and linearly disjoint from K $X(L) \neq \emptyset \Leftrightarrow X(\mathbb{A}_I) \neq \emptyset.$

X/k quartic del Pezzo, i.e., $X = V(Q_0, Q_\infty) \subset \mathbb{P}^4$

X/k quartic del Pezzo, i.e., $X = V(Q_0, Q_\infty) \subset \mathbb{P}^4$ Thm Creutz, Viray Let X/k be a quartic del Pezzo. Then

X/k quartic del Pezzo, i.e., $X = V(Q_0, Q_\infty) \subset \mathbb{P}^4$ Thm Creutz, Viray Let X/k be a quartic del Pezzo. Then 1. $\forall v$, there exists quadratic L_w/k_v s.t. $X(L_w) \neq \emptyset$.

X/k quartic del Pezzo, i.e., $X = V(Q_0, Q_m) \subset \mathbb{P}^4$ Thm [Creutz, Viray] Let X/k be a quartic del Pezzo. Then $\forall v$, there exists quadratic L_w/k_v s.t. $X(L_w) \neq \emptyset$. 2. If all rank 4 quadrics containing X are defined /k, then \exists quadratic L/k s.t. $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset$.

Thm Creutz, Viray Let X/k be a quartic del Pezzo. Then 1. $\forall v$, there exists quadratic L_w/k_v s.t. $X(L_w) \neq \emptyset$. 2. If [...], then \exists quadratic L/k s.t. $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset$.

Thm Creutz, Viray Let X/k be a quartic del Pezzo. Then 1. $\forall v$, there exists quadratic L_w/k_v s.t. $X(L_w) \neq \emptyset$. 2. If [...], then \exists quadratic L/k s.t. $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset$.

Does there always exist quadratic L/k with $X(L) \neq \emptyset$?

Thm Creutz, Viray Let X/k be a quartic del Pezzo. Then 1. $\forall v$, there exists quadratic L_w/k_v s.t. $X(L_w) \neq \emptyset$. 2. If [...], then \exists quadratic L/k s.t. $X(\mathbb{A}_I)^{\mathrm{Br}} \neq \emptyset$.

Does there always exist quadratic L/k with $X(L) \neq \emptyset$? Does there exist a family of varieties where Br/Br_0 is 2 -torsion but there is a member with no quadratic points?

Over which extensions *must* the Brauer-Manin obstruction persist?

Over which extensions *must* the Brauer-Manin obstruction vanish?

Case of interest: $X(\mathbb{A}_k)^{Br} = \emptyset$

Over which extensions *must* the Brauer-Manin obstruction persist?

Over which extensions *must* the Brauer-Manin obstruction vanish?

Over which extensions *must* the Brauer-Manin obstruction **persist**?

I.e., when does $X(\mathbb{A}_k)^{\mathrm{Br}} = \emptyset \Rightarrow X(\mathbb{A}_L)^{\mathrm{Br}} = \emptyset$?

I.e., when does $X(\mathbb{A}_k)^{B}$

Example: $Q \subset \mathbb{P}^n$ quadric, $\operatorname{Br} Q = \operatorname{Br}_0 Q$, Springer's theorem: $Q(F) = \emptyset \Rightarrow Q(F') = \emptyset \forall F'/F \text{ odd degree}$

Over which extensions *must* the Brauer-Manin obstruction persist?

$$B^{r} = \emptyset \Rightarrow X(\mathbb{A}_{L})^{\mathrm{Br}} = \emptyset?$$
Over which extensions *must* the Brauer-Manin obstruction **persist**?

Example: $X = V(Q_0, Q_\infty) \subset \mathbb{P}^4$ quartic del Pezzo Springer's theorem + Amer, Brumer theorem: $X(F) = \emptyset \Rightarrow X(F') = \emptyset \forall F'/F$ odd degree

Over which extensions *must* the Brauer-Manin obstruction persist?

Springer's theorem + Amer, Brumer theorem:

 $\operatorname{Does} X(\mathbb{A}_k)^{\operatorname{Br}} = \emptyset \Rightarrow X(\mathbb{A}_I)^{\operatorname{Br}} = \emptyset \text{ for } L/k \text{ odd}?$

Example: $X = V(Q_0, Q_\infty) \subset \mathbb{P}^4$ quartic del Pezzo

 $X(F) = \emptyset \Rightarrow X(F') = \emptyset \forall F'/F \text{ odd degree}$

Over which extensions *must* the Brauer-Manin obstruction persist?

Springer's theorem + Amer, Brumer theorem:

 $\operatorname{Does} X(\mathbb{A}_k)^{\operatorname{Br}} = \emptyset \Rightarrow X(\mathbb{A}_I)^{\operatorname{Br}} = \emptyset \text{ for } L/k \text{ odd}?$

Yes! By [Colliot-Thélène, Coray '79]+ [Swinnerton-Dyer '99]

Example: $X = V(Q_0, Q_\infty) \subset \mathbb{P}^4$ quartic del Pezzo

 $X(F) = \emptyset \Rightarrow X(F') = \emptyset \forall F'/F \text{ odd degree}$

Example: X cubic surface Cassels, Swinnerton-Dyer conjecture

Over which extensions *must* the Brauer-Manin obstruction persist?

$X(F) = \emptyset \Rightarrow X(F') = \emptyset \forall F'/F \text{ with } 3 \nmid [F' : F].$

Example: X cubic surface Cassels, Swinnerton-Dyer conjecture $X(F) = \emptyset \Rightarrow X(F') = \emptyset \forall F'/F \text{ with } 3 \nmid [F':F].$ $\operatorname{Does} X(\mathbb{A}_k)^{\operatorname{Br}} = \emptyset \Rightarrow X(\mathbb{A}_I)^{\operatorname{Br}} = \emptyset \text{ for } 3 \nmid [L:k]?$

Over which extensions *must* the Brauer-Manin obstruction persist?

Over which extensions *must* the Brauer-Manin obstruction persist?

$\operatorname{Does} X(\mathbb{A}_k)^{\operatorname{Br}} = \emptyset \Rightarrow X(\mathbb{A}_I)^{\operatorname{Br}} = \emptyset \text{ for } 3 \nmid [L:k]?$

Example: X cubic surface Thm [Coray '76] Flocal field $X(F) = \emptyset \Rightarrow X(F') = \emptyset \forall F'/F \text{ with } 3 \nmid [F':F].$ $\operatorname{Does} X(\mathbb{A}_k)^{\operatorname{Br}} = \emptyset \Rightarrow X(\mathbb{A}_I)^{\operatorname{Br}} = \emptyset \text{ for } 3 \nmid [L:k]?$

Over which extensions *must* the Brauer-Manin obstruction persist?

Example: X cubic surface Thm [Coray '76] F local field

Thm [Rivera, Viray; to appear] $X(\mathbb{A}_k)^{\mathrm{Br}} = \emptyset \Rightarrow X(\mathbb{A}_I)^{\mathrm{Br}} = \emptyset \text{ for } 3 \nmid [L:k].$

Over which extensions *must* the Brauer-Manin obstruction persist?

$X(F) = \emptyset \Rightarrow X(F') = \emptyset \forall F'/F \text{ with } 3 \nmid [F':F].$

"Arithmetic of X" includes understanding X(L) as L ranges over all finite ext'ns of k.

- "Arithmetic of X" includes understanding X(L) as L ranges over all finite ext'ns of k.
- Results to date *maybe* suggest that it's "easy" to have $X(\mathbb{A}_I)^{\mathrm{Br}} \subseteq X(\mathbb{A}_I)$, but $X(\mathbb{A}_I)^{\mathrm{Br}} = \emptyset$ is "hard".

- "Arithmetic of X" includes understanding X(L) as L ranges over all finite ext'ns of k.
- Results to date *maybe* suggest that it's "easy" to have $X(\mathbb{A}_I)^{\mathrm{Br}} \subseteq X(\mathbb{A}_I)$, but $X(\mathbb{A}_I)^{\mathrm{Br}} = \emptyset$ is "hard".
- BUT results are thus far limited to geometrically rational surfaces.

Results to date *maybe* suggest that it's "easy" to have $X(\mathbb{A}_I)^{\mathrm{Br}} \subseteq X(\mathbb{A}_I)$, but $X(\mathbb{A}_I)^{\mathrm{Br}} = \emptyset$ is "hard".

"Arithmetic of X" includes understanding X(L) as L ranges over all finite ext'ns of k.

BUT results are thus far limited to geometrically rational surfaces. Let's explore!

