Rational points on varieties and the Brauer-Manin obstruction

Bianca Viray

University of Washington

My work appearing in this talk was predominantly completed on the lands of the Coast Salish, Duwamish, Stillaguamish, and Suquamish nations, \& I am reporting on it from the lands of the East Shoshone and Ute nations.

From Lecture 1

Given a variety X / \mathbb{Q}, how do we determine $X(\mathbb{Q})$?

From Lecture 1

Given a variety X / \mathbb{Q}, how do we determine $X(\mathbb{Q})$?

Assume we computed generators for $\mathrm{Br} / \mathrm{Br}_{0}$ and determined that $X\left(\mathbb{A}_{\mathbb{Q}}\right)^{\mathrm{Br}}=\varnothing$.

From Lecture 1

Given a variety X / \mathbb{Q}, how do we determine $X(\mathbb{Q})$?

Assume we computed generators for $\mathrm{Br} / \mathrm{Br}_{0}$ and determined that $X\left(\mathbb{A}_{\mathbb{Q}}\right)^{\mathrm{Br}}=\varnothing$.

Now what?

Assume we computed generators for $\mathrm{Br} / \mathrm{Br}_{0}$ and determined that $X\left(\mathbb{A}_{\mathbb{Q}}\right)^{\mathrm{Br}}=\varnothing$. Now what?

Assume we computed generators for $\mathrm{Br} / \mathrm{Br}_{0}$ and

determined that $X\left(\mathbb{A}_{\mathbb{Q}}\right)^{\mathrm{Br}}=\varnothing$.

 Now what?$$
X \neq X(\mathbb{Q})!
$$

Assume we computed generators for $\mathrm{Br} / \mathrm{Br}_{0}$ and

determined that $X\left(\mathbb{A}_{\mathbb{Q}}\right)^{\mathrm{Br}}=\varnothing$.

 Now what?$$
X \neq X(\mathbb{Q})!
$$

Want to extract more arithmetic info from X.

Assume we computed generators for $\mathrm{Br} / \mathrm{Br}_{0}$ and determined that $X\left(\mathbb{A}_{\mathbb{Q}}\right)^{\mathrm{Br}}=\varnothing$. Now what?

$$
X \neq X(\mathbb{Q})!
$$

Want to extract more arithmetic info from X. Can we leverage what we know about X / k to study $\{X(L): L / \mathbb{Q}\}$?

Can we leverage what we know about X / k to study $\{X(L): L / \mathbb{Q}\}$?

Can we leverage what we know about $X\left(\mathrm{~A}_{k}\right)^{\mathrm{Br}}$ to study $\left\{X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}}: L / \mathbb{Q}\right\}$?
(From Lecture 2)
Brauer classes want to obstruct adelic points

Can we leverage what we know about $X\left(\mathrm{~A}_{k}\right)^{\mathrm{Br}}$ to study $\left\{X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}}: L / \mathbb{Q}\right\}$?

(From Lecture 2)

Brauer classes want to obstruct adelic points

> How does this principle translate in the context of varying extensions?

Can we leverage what we know about $X\left(\mathrm{~A}_{k}\right)^{\mathrm{Br}}$ to

$$
\text { study }\left\{X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}}: L / \mathbb{Q}\right\} ?
$$

(From Lecture 2)

Brauer classes want to obstruct adelic points

[Liang '22 + CTSSD '87] For all number fields k, \exists Châtelet surface $V / k \&$ quadratic ext'n L / k s.t. $\overline{V(k)}=V\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}=V\left(\mathrm{~A}_{k}\right)$ but $V\left(\mathrm{~A}_{L}\right)^{\mathrm{Br}} \subsetneq V\left(\mathbb{A}_{k}\right)$.

Can we leverage what we know about $X\left(\mathrm{~A}_{k}\right)^{\mathrm{Br}}$ to study $\left\{X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}}: L / \mathbb{Q}\right\}$?
(From Lecture 2)
Brauer classes want to obstruct adelic points
[Nakahara, Roven] $X \leadsto V\left(y^{2}-a z^{2}=p(t) x^{2}\right)$

Can we leverage what we know about $X\left(\mathrm{~A}_{k}\right)^{\mathrm{Br}}$ to study $\left\{X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}}: L / \mathbb{Q}\right\}$?
(From Lecture 2)

Brauer classes want to obstruct adelic points

[Nakahara, Roven] $X \leadsto V\left(y^{2}-a z^{2}=p(t) x^{2}\right)$
"Almost always"
$\exists L / k$ such that $X\left(\mathrm{~A}_{L}\right)^{\mathrm{Br}} \subsetneq X\left(\mathrm{~A}_{L}\right)$.

Can we leverage what we know about $X\left(\mathrm{~A}_{k}\right)^{\mathrm{Br}}$ to

$$
\text { study }\left\{X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}}: L / \mathbb{Q}\right\} ?
$$

(From Lecture 2)

Brauer classes want to obstruct adelic points

[Nakahara, Roven] $X \leadsto V\left(y^{2}-a z^{2}=p(t) x^{2}\right)$ If $\exists v \in \Omega_{F}$ s.t. $v(a)<0$ or
F splititing field opp(t) $a \notin F_{v}^{\times 2} \& X_{F}$ has bad red. $\bmod v$ Then $\exists L / k$ such that $X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \subsetneq X\left(\mathbb{A}_{L}\right)$.

Can we leverage what we know about $X\left(\mathrm{~A}_{k}\right)^{\mathrm{Br}}$ to study $\left\{X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}}: L / \mathbb{Q}\right\}$?

(From Lecture 2)

Brauer classes want to obstruct adelic points
Need to ask for less control

Can we leverage what we know about $X\left(\mathrm{~A}_{k}\right)^{\mathrm{Br}}$ to

 study $\left\{X\left(\mathbb{A}_{L}\right){ }^{\mathrm{Br}}: L / Q\right]$?
(From Lecture 2)

Brauer classes want to obstruct adelic points

Need to ask for less control

Can we leverage what we know about $X\left(\mathrm{~A}_{k}\right)^{\mathrm{Br}}$ to

 study $\left\{\mathrm{X}\left(\mathbb{A}_{L}\right)^{\mathrm{Br}}: L / Q 2\right\}$?
(From Lecture 2)

Brauer classes want to obstruct adelic points

Need to ask for less control

Can we leverage what we know about $X\left(\mathrm{~A}_{k}\right)^{\mathrm{Br}}$ to

$$
\text { study }\left\{L / \mathbb{Q}: X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing\right\} ?
$$

Can we leverage what we know about $X\left(\mathrm{~A}_{k}\right)^{\mathrm{Br}}$ to
study $\left\{L / \mathbb{Q}: X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing\right\}$?

Can we leverage what we know about $X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}$ to study $\left\{L / \mathbb{Q}: X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing\right\}$?

Lemma [obs. by Wittenberg; in Creutz, Viray] Given $X / k, K / k$ ext'n of $\#$ fields, $B \subset \operatorname{Br} X_{K}$. Then $X\left(\mathbb{A}_{k}\right)^{\operatorname{Cor}(B)} \subset X\left(\mathbb{A}_{K}\right)^{B}$.

Can we leverage what we know about $X\left(\mathrm{~A}_{k}\right)^{\mathrm{Br}}$ to $\operatorname{study}\left\{L / \mathbb{Q}: X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing\right\}$?

Lemma [obs. by Wittenberg; in Creutz, Viray] Given $X / k, K / k$ ext'n of $\#$ fields, $B \subset \operatorname{Br} X_{K}$. Then $X\left(\mathbb{A}_{k}\right)^{\operatorname{Cor}(B)} \subset X\left(\mathbb{A}_{K}\right)^{B}$. In particular,

1. $X\left(\mathrm{~A}_{k}\right)^{\mathrm{Br}} \neq \varnothing \Rightarrow X\left(\mathrm{~A}_{K}\right)^{\mathrm{Br}} \neq \varnothing$, and
2. $X\left(\mathbb{A}_{k}\right) \subset X\left(\mathbb{A}_{K}\right)^{\operatorname{Res}\left(\operatorname{Br} X_{k}[[K: k]]\right)}$

Lemma $X\left(\mathbb{A}_{k}\right)^{\operatorname{Cor}(B)} \subset X\left(\mathbb{A}_{K}\right)^{B}$

Lemma $X\left(\mathbb{A}_{k}\right)^{\operatorname{Cor}(B)} \subset X\left(\mathbb{A}_{K}\right)^{B}$

Let $\alpha \in \operatorname{Br} X_{K}$.

Lemma $X\left(\mathbb{A}_{k}\right)^{\operatorname{Cor}(B)} \subset X\left(\mathbb{A}_{K}\right)^{B}$

Let $\alpha \in \operatorname{Br} X_{K}$.

$$
\begin{gathered}
X_{K} \\
\stackrel{y}{x} \\
X \\
\leftarrow \quad \operatorname{Spec} k_{v}
\end{gathered}
$$

Lemma $X\left(\mathbb{A}_{k}\right)^{\operatorname{Cor}(B)} \subset X\left(\mathbb{A}_{K}\right)^{B}$

Let $\alpha \in \operatorname{Br} X_{K}$.

$$
\begin{gathered}
X_{K} \longleftarrow \operatorname{Spec} K \otimes k_{v} \\
\mid \\
X \longleftarrow x \\
\operatorname{Spec} k_{v}
\end{gathered}
$$

Lemma $X\left(\mathbb{A}_{k}\right)^{\operatorname{Cor}(B)} \subset X\left(\mathbb{A}_{K}\right)^{B}$

Let $\alpha \in \operatorname{Br} X_{K}$.

$$
X_{K} \longleftarrow y \operatorname{Spec} K \otimes k_{v}
$$

$$
\stackrel{\downarrow}{\perp} \stackrel{{ }_{x}}{\Perp} \operatorname{Spec} k_{v}
$$

Lemma $X\left(\mathbb{A}_{k}\right)^{\operatorname{Cor}(B)} \subset X\left(\mathbb{A}_{K}\right)^{B}$

Let $\alpha \in \operatorname{Br} X_{K}$.

$$
X_{K} \longleftarrow \frac{y}{\longleftarrow} \operatorname{Spec} K \otimes k_{v}
$$

$$
\text { Then } \operatorname{Cor}\left(y^{*} \alpha\right)=x^{*} \operatorname{Cor}(\alpha) \quad X \quad \underset{x}{ } \operatorname{Spec} k_{v}
$$

$\Rightarrow \sum_{v} \operatorname{inv}_{v}\left(x_{v}^{*} \operatorname{Cor}(\alpha)\right)=\sum_{v} \operatorname{inv}_{v} \operatorname{Cor}\left(y^{*} \alpha\right)=\sum_{v} \sum_{w} \operatorname{inv}_{w} y_{w}^{*} \alpha$.

Lemma $X\left(\mathbb{A}_{k}\right)^{\operatorname{Cor}(B)} \subset X\left(\mathbb{A}_{K}\right)^{B}$

Lemma $X\left(\mathbb{A}_{k}\right)^{\operatorname{Cor}(B)} \subset X\left(\mathbb{A}_{K}\right)^{B}$

Corollary If $X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}} \neq \varnothing$, then

$$
\left\{L / \mathbb{Q}: X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}}=\varnothing\right\}=\{L / \mathbb{Q}\}
$$

Lemma $X\left(\mathbb{A}_{k}\right)^{\operatorname{Cor}(B)} \subset X\left(\mathbb{A}_{K}\right)^{B}$

Corollary If $X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}} \neq \varnothing$, then

$$
\left\{L / \mathbb{Q}: X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}}=\varnothing\right\}=\{L / \mathbb{Q}\}
$$

Case of interest: $X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}=\varnothing$

Case of interest: $X\left(\mathrm{~A}_{k}\right)^{\mathrm{Br}}=\varnothing$

Over which extensions must the Brauer-Manin obstruction persist?

Over which extensions must the Brauer-Manin obstruction vanish?

Case of interest: $X\left(\mathrm{~A}_{k}\right)^{\mathrm{Br}}=\varnothing$

Over which extensions must the Brauer-Manin obstruction persist?

Over which extensions must the Brauer-Manin obstruction vanish?

Over which extensions must the Brauer-Manin obstruction vanish?

Lemma $X\left(\mathbb{A}_{k}\right) \subset X\left(\mathbb{A}_{K}\right)^{\operatorname{Res}\left(\operatorname{Br} X_{k}[[K: k]]\right)}$

Over which extensions must the Brauer-Manin obstruction vanish?

Lemma $\ldots . . X\left(\mathbb{A}_{k}\right) \subset X\left(\mathbb{A}_{K}\right)^{\operatorname{Res}\left(\operatorname{Br} X_{k}[[K: k]]\right)}$

If $X\left(\mathbb{A}_{k}\right) \neq \varnothing \& \operatorname{Res}\left(\operatorname{Br} X_{k}[[K: k]]\right)$ captures the Brauer-Manin obstruction, then $X\left(\mathbb{A}_{K}\right)^{\mathrm{Br}} \neq \varnothing$.

Over which extensions must the Brauer-Manin obstruction vanish?

If $X\left(\mathrm{~A}_{k}\right) \neq \varnothing \& \operatorname{Res}\left(\operatorname{Br} X_{k}[[K: k]]\right)$ captures $\Rightarrow X\left(\mathrm{~A}_{K}\right)^{\mathrm{Br}} \neq \varnothing$.

Over which extensions must the Brauer-Manin obstruction vanish?

If $X\left(\mathrm{~A}_{k}\right) \neq \varnothing \& \operatorname{Res}\left(\operatorname{Br} X_{k}[[K: k]]\right)$ captures $\Rightarrow X\left(\mathrm{~A}_{K}\right)^{\mathrm{Br}} \neq \varnothing$.

Example Corollary:

Let $\pi: X \rightarrow \mathbb{P}_{k}^{n}$ be a locally soluble conic bundle. Then
$\exists K / k$ finite s.t. \forall even degree L / k linearly disjoint from K,

$$
X\left(\mathrm{~A}_{L}\right)^{\mathrm{Br}} \neq \varnothing .
$$

Over which extensions must the Brauer-Manin obstruction vanish?

If $X\left(\mathrm{~A}_{k}\right) \neq \varnothing \& \operatorname{Res}\left(\operatorname{Br} X_{k}[[K: k]]\right)$ captures $\Rightarrow X\left(\mathrm{~A}_{K}\right)^{\mathrm{Br}} \neq \varnothing$.

Example Corollary:

Let X be a locally soluble cubic surface. Then $\exists K / k$ finite s.t. $\forall L / k$ linearly disjoint from $K \& 3 \mid[L: k]$,

$$
X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing .
$$

Over which extensions must the Brauer-Manin obstruction vanish?

If $X\left(\mathrm{~A}_{k}\right) \neq \varnothing \& \operatorname{Res}\left(\operatorname{Br} X_{k}[[K: k]]\right)$ captures $\Rightarrow X\left(\mathrm{~A}_{K}\right)^{\mathrm{Br}} \neq \varnothing$.

Example Corollary:

Let X be a locally soluble quartic del Pezzo. Then $\exists K / k$ finite s.t. $\forall L / k$ linearly disjoint from $K \& 2 \mid[L: k]$,

$$
X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing .
$$

Over which extensions must the Brauer-Manin obstruction vanish?

If $X\left(\mathrm{~A}_{k}\right) \neq \varnothing \& \operatorname{Res}\left(\operatorname{Br} X_{k}[[K: k]]\right)$ captures $\Rightarrow X\left(\mathrm{~A}_{K}\right)^{\mathrm{Br}} \neq \varnothing$.

Example Corollary:

Let X be a locally soluble [type of variety]. Then $\exists K / k$ finite s.t. $\forall L / k$ linearly disjoint from $K \& M \mid[L: k]$,

$$
X\left(\mathrm{~A}_{L}\right)^{\mathrm{Br}} \neq \varnothing .
$$

Over which extensions must the Brauer-Manin obstruction vanish?

If $X\left(\mathrm{~A}_{k}\right) \neq \varnothing \& \operatorname{Res}\left(\operatorname{Br} X_{k}[[K: k]]\right)$ captures $\Rightarrow X\left(\mathrm{~A}_{K}\right)^{\mathrm{Br}} \neq \varnothing$.

Example Corollary:

Let X be a locally soluble [type of variety]. Then $\exists K / k$ finite s.t. $\forall L / k$ linearly disjoint from $K \& M \mid[L: k]$,

$$
X\left(\mathrm{~A}_{L}\right)^{\mathrm{Br}} \neq \varnothing .
$$

Are these results surprising?

Example Corollary:

Let $\pi: X \rightarrow \mathbb{P}_{k}^{n}$ be a locally soluble conic bundle.
Then $\exists K / k$ finite s.t. \forall even degree L / k linearly disjoint from K,

$$
X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing
$$

Example Corollary:

Let $\pi: X \rightarrow \mathbb{P}_{k}^{n}$ be a locally soluble conic bundle.
Then $\exists K / k$ finite s.t. \forall even degree L / k linearly disjoint from K, $X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing$.

Let $t \in \mathbb{P}^{n}(k)$. Then X_{t} is a conic over k.

Example Corollary:

Let $\pi: X \rightarrow \mathbb{P}_{k}^{n}$ be a locally soluble conic bundle.
Then $\exists K / k$ finite s.t. \forall even degree L / k linearly disjoint from K, $X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing$.

Let $t \in \mathbb{P}^{n}(k)$. Then X_{t} is a conic over k.

If $X\left(\mathrm{~A}_{k}\right) \neq \varnothing$, then can find points over even degree extensions approximating any finite set of local conditions.

Example Corollary:

Let $\pi: X \rightarrow \mathbb{P}_{k}^{n}$ be a locally soluble quartic del Pezzo. Then $\exists K / k$ finite s.t. $\forall L / k$ linearly disjoint from $K \& 2 \mid[L: k]$,

$$
X\left(\mathrm{~A}_{L}\right)^{\mathrm{Br}} \neq \varnothing .
$$

Example Corollary:

Let $\pi: X \rightarrow \mathbb{P}_{k}^{n}$ be a locally soluble quartic del Pezzo. Then $\exists K / k$ finite s.t. $\forall L / k$ linearly disjoint from $K \& 2 \mid[L: k]$,

$$
X\left(\mathrm{~A}_{L}\right)^{\mathrm{Br}} \neq \varnothing .
$$

In general, no construction of quadratic points.

Example Corollary:

Let $\pi: X \rightarrow \mathbb{P}_{k}^{n}$ be a locally soluble quartic del Pezzo. Then $\exists K / k$ finite s.t. $\forall L / k$ linearly disjoint from $K \& 2 \mid[L: k]$,

$$
X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing
$$

In general, no construction of quadratic points. However, if $X\left(\mathbb{A}_{k}\right) \neq \varnothing$, then, over an odd deg ext'n K / k, X_{K} is birational to a double cover of \mathbb{P}^{2}.

Over which extensions must the Brauer-Manin obstruction vanish?

$$
X\left(\mathbb{A}_{k}\right) \neq \varnothing \& X\left(\mathbb{A}_{K}\right)^{\mathrm{Br}}=X\left(\mathbb{A}_{K}\right)^{\operatorname{Res}\left(\mathrm{Br} X_{k}[[K: k]]\right)} \Rightarrow X\left(\mathbb{A}_{K}\right)^{\mathrm{Br}} \neq \varnothing
$$

Example Corollary:

Let X be a locally soluble [type of variety]. Then $\exists K / k$ finite s.t. $\forall L / k$ linearly disjoint from $K \& M \mid[L: k]$,

$$
X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing
$$

Over which extensions must the Brauer-Manin obstruction vanish?

$$
X\left(\mathbb{A}_{k}\right) \neq \varnothing \& X\left(\mathbb{A}_{K}\right)^{\mathrm{Br}}=X\left(\mathbb{A}_{K}\right)^{\operatorname{Res}\left(\operatorname{Br} X_{k}[[K: k]]\right)} \Rightarrow X\left(\mathbb{A}_{K}\right)^{\mathrm{Br}} \neq \varnothing
$$

Example Corollary:

Let X be a locally soluble [type of variety]. Then $\exists K / k$ finite s.t. $\forall L / k$ linearly disioint from $K \& M \mid[L: k]$,

$$
X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing
$$

$$
\text { What if } X\left(\mathbb{A}_{k}\right)=\varnothing \text { ? }
$$

What if $X\left(\mathbb{A}_{k}\right)=\varnothing$?

What if $X\left(\mathbb{A}_{k}\right)=\varnothing$?

To show $X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing$, need to construct a point!

What if $X\left(\mathbb{A}_{k}\right)=\varnothing$?

To show $X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing$, need to construct a point!

If $X\left(\mathbb{A}_{k}\right)=\varnothing$, have fewer known points to start with.

What if $X\left(\mathbb{A}_{k}\right)=\varnothing$?

To show $X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing$, need to construct a point!
If $X\left(\mathbb{A}_{k}\right)=\varnothing$, have fewer known points to start with.

Also, computing Br is still hard!

What if $X\left(\mathbb{A}_{k}\right)=\varnothing$?

To show $X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing$, need to construct a point!
If $X\left(\mathbb{A}_{k}\right)=\varnothing$, have fewer known points to start with.
Also, computing Br is still hard!
(Assume we solved this, at least over k)

What if $X\left(\mathbb{A}_{k}\right)=\varnothing$?

To show $X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing$, need to construct a point!

If $X\left(\mathbb{A}_{k}\right)=\varnothing$, have fewer known points to start with.

What if $X\left(\mathbb{A}_{k}\right)=\varnothing$?

What if $X\left(\mathbb{A}_{k}\right)=\varnothing$?

Thm [Roven]

Let $\pi: X \rightarrow \mathbb{P}^{1}$ be a conic bundle. Then
$\forall L / k$ quadratic
$X\left(\mathbb{A}_{L}\right)^{\operatorname{Res}_{L k}(\operatorname{BrX})} \neq \varnothing \Leftrightarrow X\left(\mathbb{A}_{L}\right) \neq \varnothing$.

What if $X\left(\mathbb{A}_{k}\right)=\varnothing$?

Thm [Roven]

Let $\pi: X \rightarrow \mathbb{P}^{1}$ be a conic bundle. Then
$\forall L / k$ quadratic

$$
X\left(\mathbb{A}_{L}\right)^{\operatorname{Res}_{L k}(\operatorname{BrX})} \neq \varnothing \Leftrightarrow X\left(\mathbb{A}_{L}\right) \neq \varnothing .
$$

Thm [Roven]
Let $\pi: X \rightarrow \mathbb{P}^{1}$ be a Châtelet surface. Then $\forall L / k$ even degree

$$
X\left(\mathbb{A}_{L}\right)^{\operatorname{Res}_{L k}(\operatorname{BrX})} \neq \varnothing \Leftrightarrow X\left(\mathbb{A}_{L}\right) \neq \varnothing .
$$

What if $X\left(\mathbb{A}_{k}\right)=\varnothing$?

Thm [Roven]

Let $\pi: X \rightarrow \mathbb{P}^{1}$ be a conic bundle. Then $\exists K / k$ finite s.t. $\forall L / k$ quadratic and linearly disjoint from K,

$$
X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing \Leftrightarrow X\left(\mathbb{A}_{L}\right) \neq \varnothing
$$

Thm [Roven]
Let $\pi: X \rightarrow \mathbb{P}^{1}$ be a Châtelet surface. Then $\exists K / k$ finite s.t.
$\forall L / k$ even degree and linearly disjoint from K

$$
X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing \Leftrightarrow X\left(\mathbb{A}_{L}\right) \neq \varnothing .
$$

What if $X\left(\mathbb{A}_{k}\right)=\varnothing$?

Thm [Roven]

Let $\pi: X \rightarrow \mathbb{P}^{1}$ be a conic bundle. Then $\exists K / k$ finite s.t. $\forall L / k$ quadratic and linearly disjoint from K,

$$
X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing \Leftrightarrow X\left(\mathbb{A}_{L}\right) \neq \varnothing .
$$

Thm [Roven]
Let $\pi: X \rightarrow \mathbb{P}^{1}$ be a Châtelet surface. Then $\exists K / k$ finite s.t. $\forall L / k$ even degree and linearly disioint from K

$$
X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing \Leftrightarrow X\left(\mathbb{A}_{L}\right) \neq \varnothing .
$$

What if $X\left(\mathbb{A}_{k}\right)=\varnothing$?

Thm [Roven]

Let $\pi: X \rightarrow \mathbb{P}^{1}$ be a conic bundle. Then $\exists K / k$ finite s.t. $\forall L / k$ quadratic and linearly disjoint from K,

$$
X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing \Leftrightarrow X\left(\mathbb{A}_{L}\right) \neq \varnothing
$$

Thm [Roven]
Let $\pi: X \rightarrow \mathbb{P}^{1}$ be a Châtelet surface. Then $\exists K / k$ finite s.t. $\forall L / k$ even degree and linearly disioint from K

$$
X(L) \neq \varnothing \Leftrightarrow X\left(\mathbb{A}_{L}\right) \neq \varnothing .
$$

What if $X\left(\mathbb{A}_{k}\right)=\varnothing$?

X / k quartic del Pezzo, i.e., $X=V\left(Q_{0}, Q_{\infty}\right) \subset \mathbb{P}^{4}$

What if $X\left(\mathbb{A}_{k}\right)=\varnothing$?

X / k quartic del Pezzo, i.e., $X=V\left(Q_{0}, Q_{\infty}\right) \subset \mathbb{P}^{4}$
Thm [Creutz, Viray]
Let X / k be a quartic del Pezzo. Then

What if $X\left(\mathbb{A}_{k}\right)=\varnothing$?

X / k quartic del Pezzo, i.e., $X=V\left(Q_{0}, Q_{\infty}\right) \subset \mathbb{P}^{4}$
Thm [Creutz, Viray]
Let X / k be a quartic del Pezzo. Then

1. $\forall v$, there exists quadratic L_{w} / k_{v} s.t. $X\left(L_{w}\right) \neq \varnothing$.

What if $X\left(\mathbb{A}_{k}\right)=\varnothing$?

X / k quartic del Pezzo, i.e., $X=V\left(Q_{0}, Q_{\infty}\right) \subset \mathbb{P}^{4}$
Thm [Creutz, Viray]
Let X / k be a quartic del Pezzo. Then

1. $\quad \forall v$, there exists quadratic L_{w} / k_{v} s.t. $X\left(L_{w}\right) \neq \varnothing$.
2. If all rank 4 quadrics containing X are defined $/ k$, then \exists quadratic L / k s.t. $X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing$.

Thm [Creutz, Viray]

 Let X / k be a quartic del Pezzo. Then 1. $\forall v$, there exists quadratic L_{w} / k_{v} s.t. $X\left(L_{w}\right) \neq \varnothing$. 2. If $[\ldots]$, then \exists quadratic L / k s.t. $X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing$.
Thm [Creutz, Viray]

 Let X / k be a quartic del Pezzo. Then1. $\forall v$, there exists quadratic L_{w} / k_{v} s.t. $X\left(L_{w}\right) \neq \varnothing$. 2. If $[\ldots]$, then \exists quadratic L / k s.t. $X\left(\mathrm{~A}_{L}\right)^{\mathrm{Br}} \neq \varnothing$.

Does there always exist quadratic L / k with $X(L) \neq \varnothing$?

Thm [Creutz, Viray]

 Let X / k be a quartic del Pezzo. Then1. $\forall v$, there exists quadratic L_{w} / k_{v} s.t. $X\left(L_{w}\right) \neq \varnothing$.
2. If $[\ldots]$, then \exists quadratic L / k s.t. $X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \neq \varnothing$.

Does there always exist quadratic L / k with $X(L) \neq \varnothing$?
Does there exist a family of varieties where $\mathrm{Br} / \mathrm{Br}_{0}$ is 2 -torsion but there is a member with no quadratic points?

Case of interest: $X\left(\mathrm{~A}_{k}\right)^{\mathrm{Br}}=\varnothing$

Over which extensions must the Brauer-Manin obstruction persist?

Over which extensions must the Brauer-Manin obstruction vanish?

Case of interest: $X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}=\varnothing$

Over which extensions must the Brauer-Manin obstruction persist?

Over which extensions must the Brauer-Manin obstruction vanish?

Over which extensions must the Brauer-Manin obstruction persist?

$$
\text { I.e., when does } X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}=\varnothing \Rightarrow X\left(\mathrm{~A}_{L}\right)^{\mathrm{Br}}=\varnothing \text { ? }
$$

Over which extensions must the Brauer-Manin obstruction persist?

$$
\text { I.e., when } \operatorname{does} X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}=\varnothing \Rightarrow X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}}=\varnothing \text { ? }
$$

Example: $Q \subset \mathbb{P}^{n}$ quadric, $\operatorname{Br} Q=\operatorname{Br}_{0} Q$,
Springer's theorem:

$$
Q(F)=\varnothing \Rightarrow Q\left(F^{\prime}\right)=\varnothing \forall F^{\prime} / F \text { odd degree }
$$

Over which extensions must the Brauer-Manin obstruction persist?

Example: $X=V\left(Q_{0}, Q_{\infty}\right) \subset \mathbb{P}^{4}$ quartic del Pezzo
Springer's theorem + Amer, Brumer theorem:

$$
X(F)=\varnothing \Rightarrow X\left(F^{\prime}\right)=\varnothing \forall F^{\prime} / F \text { odd degree }
$$

Over which extensions must the Brauer-Manin obstruction persist?

Example: $X=V\left(Q_{0}, Q_{\infty}\right) \subset \mathbb{P}^{4}$ quartic del Pezzo Springer's theorem + Amer, Brumer theorem:

$$
X(F)=\varnothing \Rightarrow X\left(F^{\prime}\right)=\varnothing \forall F^{\prime} / F \text { odd degree }
$$

Does $X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}=\varnothing \Rightarrow X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}}=\varnothing$ for L / k odd?

Over which extensions must the Brauer-Manin obstruction persist?

Example: $X=V\left(Q_{0}, Q_{\infty}\right) \subset \mathbb{P}^{4}$ quartic del Pezzo
Springer's theorem + Amer, Brumer theorem:

$$
X(F)=\varnothing \Rightarrow X\left(F^{\prime}\right)=\varnothing \forall F^{\prime} / F \text { odd degree }
$$

Does $X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}=\varnothing \Rightarrow X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}}=\varnothing$ for L / k odd?
Yes! By [Colliot-Thélène, Coray '79]+ [Swinnerton-Dyer '99]

Over which extensions must the Brauer-Manin obstruction persist?

Example: X cubic surface
Cassels, Swinnerton-Dyer conjecture

$$
X(F)=\varnothing \Rightarrow X\left(F^{\prime}\right)=\varnothing \forall F^{\prime} / F \text { with } 3+\left[F^{\prime}: F\right] .
$$

Over which extensions must the Brauer-Manin obstruction persist?

Example: X cubic surface
Cassels, Swinnerton-Dyer conjecture $X(F)=\varnothing \Rightarrow X\left(F^{\prime}\right)=\varnothing \forall F^{\prime} / F$ with $3+\left[F^{\prime}: F\right]$.

Does $X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}=\varnothing \Rightarrow X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}}=\varnothing$ for $3 \nmid[L: k]$?

Over which extensions must the Brauer-Manin obstruction persist?

$\operatorname{Does} X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}=\varnothing \Rightarrow X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}}=\varnothing$ for $3 \nmid[L: k]$?

Over which extensions must the Brauer-Manin obstruction persist?

Example: X cubic surface

Thm [Coray "76] F local field

$$
X(F)=\varnothing \Rightarrow X\left(F^{\prime}\right)=\varnothing \forall F^{\prime} / F \text { with } 3+\left[F^{\prime}: F\right] .
$$

Does $X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}=\varnothing \Rightarrow X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}}=\varnothing$ for $3 \nmid[L: k]$?

Over which extensions must the Brauer-Manin obstruction persist?

Example: X cubic surface

Thm [Coray "76] F local field

$$
X(F)=\varnothing \Rightarrow X\left(F^{\prime}\right)=\varnothing \forall F^{\prime} / F \text { with } 3+\left[F^{\prime}: F\right] .
$$

Thm [Rivera, Viray; to appear]

$$
X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}}=\varnothing \Rightarrow X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}}=\varnothing \text { for } 3+[L: k] .
$$

Today's summary

"Arithmetic of X " includes understanding $X(L)$ as L ranges over all finite ext'ns of k.

Today's summary

"Arithmetic of X " includes understanding $X(L)$ as L ranges over all finite ext'ns of k.

Results to date maybe suggest that
it's "easy" to have $X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \subsetneq X\left(\mathbb{A}_{L}\right)$, but $X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}}=\varnothing$ is "hard".

Today's summary

"Arithmetic of X " includes understanding $X(L)$ as L ranges over all finite ext'ns of k.

Results to date maybe suggest that
it's "easy" to have $X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \subsetneq X\left(\mathbb{A}_{L}\right)$, but $X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}}=\varnothing$ is "hard".

BUT results are thus far limited to geometrically rational surfaces.

Today's summary

"Arithmetic of X " includes understanding $X(L)$ as L ranges over all finite ext'ns of k.

Results to date maybe suggest that
it's "easy" to have $X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}} \subsetneq X\left(\mathbb{A}_{L}\right)$, but $X\left(\mathbb{A}_{L}\right)^{\mathrm{Br}}=\varnothing$ is "hard".

BUT results are thus far limited to geometrically rational surfaces.

> Let's explore!

