
Introduction to mathematical cryptography
PCMI 2022 Undergraduate Summer School

Christelle Vincent

July 18, 2022

Contents

1 Computational complexity 1
1.1 How to measure complexity . 1
1.2 Easy and hard problems . 5

1 Computational complexity

As mentioned in the first lecture, the fundamental ideal behind cryptography is that there
are operations that are easy to do but hard to undo. In this section we make this notion
more precise.

1.1 How to measure complexity

In mathematics, an algorithm is a finite sequence of instructions or computations that,
when performed, yield a result. For example, you might have learned to multiply integers
in school by applying the so-called “schoolbook algorithm” for multiplication. Notice that
here the algorithm is not just “multiplying two integers” but the specific process by which
the answer to the multiplication problem is obtained. This might seem surprising, but there
are other algorithms to multiply integers that have completely different steps to reach the
same answer!1

Given a specific algorithm, the computational complexity of that algorithm is how
much resources it takes to accomplish the computation. The word “resources” is purposefully
vague here: In this course we will almost exclusively talk about either time complexity or
arithmetic complexity, which counts either how much time it takes for the algorithm to

1If you are interested, you can look up the Karatsuba algorithm or the family of Toom-Cook algorithms,
which are a generalization of the Karatsuba algorithm.

1

complete, or how many arithmetic operations must be performed to complete the algorithm.
Another quantity that is often of interest is the amount of memory or storage necessary to
perform a computation, but that will not come up for us except possibly in passing.

In the case of our example, the schoolbook algorithm for multiplication (or “schoolbook
multiplication” for short), it’s perhaps most natural to consider the arithmetic complexity
of the algorithm, by which here we mean the total number of additions and multiplications
necessary to perform the computation. For example, to compute 15× 6, we would:

1. Multiply 5× 6 = 30, then

2. multiply 1× 6 = 6, then

3. add 6 + 3 = 9,

using 3 operations to obtain the answer 90.
Pretty quickly, it becomes clear that even if we always apply the schoolbook multiplication

algorithm perfectly, the number of steps necessary to perform the computation depends on
the specific numbers that we are multiplying. Numbers with more digits take a lot more
steps to multiply, but even two pairs of numbers with factors of the same size might not take
exactly the same number of steps because of carries which introduce extra additions (here,
by a “carry” I mean the addition in the problem 15 × 6, where the 3 tens from the units
multiplication get added to the 6 tens from the tens multiplication). Since the number of
arithmetic steps we need to perform depends on the numbers being multiplied, what could
we possibly mean by the complexity of the whole algorithm?

After more experimentation with various numbers, we might notice that the main factor
that influences the number of steps in a multiplication problem is the size of the numbers
being multiplied. By this we mean that while adding the carries does introduce some ex-
tra operations here and there, “most” of the operations we perform are multiplications, so
integers with the same numbers of digits require roughly the same number of operations to
multiply.

This will turn out to be the case for the majority of the algorithms we talk about, so we
will, from now on, always count the number of arithmetic steps of an algorithm as a function
of the size of the input integers.

Definition 1.1. Let n be a positive integer. Then its size k is the number of digits in its
decimal expansion. This is given by the expression

k = blog10 nc+ 1,

where b·c is the floor function. Often computing books use instead the number of bits in the
binary expansion of the integer, which is given by the formula

blog2 nc+ 1.

We will see that for our purposes we can use either notion of size interchangeably.

2

To see exactly how the number of steps in the schoolbook multiplication algorithm de-
pends on the size of the integers being multiplied, let’s consider multiplication of two five-digit
integers. The image below shows what we mean:

Let’s count the operations, noting the ones that would be done for any five-digit multi-
plication, and the ones that only occur sometimes:

• There are always twenty-five multiplications, as each digit must multiply each digit.

• There are also always at least sixteen additions in the column additions at the bottom.

• Carries during multiplications can add up to 5 additions for each of the four positions,
so up to twenty additions.

• The column additions at the bottom could have up to thirteen additional additions.

In total there are therefore 41 operations that must always be performed, and up to 33
additional additions depending on carries. Therefore if f(5) is the number of steps it takes
to multiply two five-digit integers using schoolbook multiplication, we have

41 ≤ f(5) ≤ 74.

3

Compare this to multiplying two six-digit integers, when there are 61 operations that
must always be performed, and up to 46 additional additions depending on carries. In
general, if f(k) is the number of steps that it takes to multiply two integers each with k
digits using schoolbook multiplication, then we have

2k2 − 2k + 1 ≤ f(k) ≤ 3k2 − 1,

where

2k2 − 2k + 1 = k2 +
k(k − 1)

2
+

(k − 1)(k − 2)

2

and

3k2 − 1 = k2 +
k(k − 1)

2
+

(k − 1)(k − 2)

2
+ k(k − 1) + k + 2(k − 1).

Therefore one can say that multiplying two k-digit integers using schoolbook multiplication
takes at least k2 steps, but no more than 3k2 steps.

This is already pretty neat, but we do even say a bit more. This is because when k is very
large, the difference between k2 and 3k2 remains the same (one number is 3 times as big as
the other). That’s a “cost” that’s built into our algorithm and which doesn’t depend on the
size of the numbers we are multiplying, and therefore we don’t always want to keep track of
it. It’s a lot easier to remember that schoolbook multiplication takes “about” k2 steps, since
that’s the number that will give you a sense of how long a multiplication problem will take.

To formalize what we mean by “about” k2 steps, we need some notation. First we need
a notion for a function that eventually becomes smaller than a multiple of another function:

Definition 1.2. Let f and g be two functions taking as input positive integers, and out-
putting positive integers. We will write this as f, g : N→ N. We write that

f � g

if there are positive constants c and C such that

f(k) ≤ cg(k) for all k ≥ C.

The expression “f � g” is read “f is less than less than g.”

We will also need a notion for a function that eventually becomes bigger than a multiple
of another function:

Definition 1.3. Let f, g : N→ N. We write that

f � g

if there are positive constants c and C such that

f(k) ≥ cg(k) for all k ≥ C.

The expression “f � g” is read “f is greater than greater than g.”

4

These two notions together allow us to define when two functions are eventually “about
the same magnitude:”

Definition 1.4. Let f, g : N→ N. We write that

f ∼ g

if we have that
f � g and f � g.

The expression “f ∼ g” is read “f is of the order of g.”

There is often an easy way to determine if f ∼ g:

Proposition 1.5. Let f, g : N→ N. Then if the limit

lim
k→∞

f(k)

g(k)

exists and is nonzero, f ∼ g.

Now with this notation, we can say that if f is the number of steps it takes to multiply
two k-digit integers, then f ∼ k2. Accordingly, we usually say that schoolbook multiplication
can be accomplished in “quadratic time” since the number of steps f is of the order of a
quadratic polynomial.

1.2 Easy and hard problems

Now that we have a way to express about how many steps it takes to perform a computation,
we can talk about “easy” and “hard” problems. First, again here we must make precise that
we cannot really talk about the complexity of solving a problem without having an algorithm
in mind for solving that problem. However, we commonly will say that a problem is “easy”
or “hard” depending on the number of steps it takes to solve the problem using the most
efficient known algorithm.

In addition, here all of our problems are solved by algorithms, we assume that we can
accomplish all the steps, so an “easy” problem is simply one that we can solve quickly, and
a “hard” problem is one that takes an unreasonable amount of time to solve.

More precisely:

Definition 1.6. Let f : N → N. We say that f grows polynomially if there are positive
constants a and b such that

ka � f(k)� kb.

If the number of steps in an algorithm, when given as a function of the size of the inputs to
the algorithm, grows polynomially, then we say that this algorithm is fast.
If a problem can be solved by a known fast algorithm, then we say that this problem is easy.

At the other end of the spectrum we have:

5

Definition 1.7. Let f : N → N. We say that f grows exponentially if there are positive
constants a and b such that

eak � f(k)� ebk.

If the number of steps in an algorithm, when given as a function of the size of the inputs to
the algorithm, grows exponentially, then we say that this algorithm is slow.
If the most-efficient known algorithm to solve a problem is slow, then we say that this
problem is hard.

We will see that there is also an intermediate “speed” at which certain problems can be
solved:

Definition 1.8. Let f : N→ N. We say that f grows subexponentially if for every positive
constants a (no matter how big) and b (no matter how small) we have

ka � f(k)� ebk.

In other words, f is “larger” than any polynomial, but “smaller” than any exponential
function.
If the most-efficient known algorithm to solve a problem has a number of steps that grows
subexponentially, we usually still think of the problem as hard, but we must keep in mind
that it is not exponentially hard.

6

	Computational complexity
	How to measure complexity
	Easy and hard problems

