
USS: Introduction to mathematical cryptography
Tuesday July 19 problems

1. (a) Let n = 100. What is the size of n? What is the size of n in bits?

(b) Let n = 10, 000. What is the size of n? What is the size of n in bits?

(c) Let n = 1024. What is the size of n? What is the size of n in bits?

(d) What is

lim
n→∞

blog10 nc+ 1

blog2 nc+ 1
?

(e) Can you explain the remark in the notes that says that for our purposes we can
use either notion of size (in digits or in bits) interchangeably?

2. (a) Let f(k) = k3 + 5k2 − k + 10. Show that f ∼ k3.

(b) Let f(k) = k3 + 5k2 − k + 10. Show that f � k4.

(c) Let f(k) = k3 + 5k2 − k + 10. Show that f � k.

(d) Show that log k � ka for any positive number a.

(e) Let f(k) =
√

2k + k2 + k. Give a simple function g such that f ∼ g.

3. Let G = 〈g〉 be a cyclic group and consider the following algorithm to compute gn:
First compute g2 = g ·g, then g3 = g2 ·g, then g4 = g3 ·g, and so on, until one computes
gn. In this manner, each operation is a group multiplication, and we count one group
multiplication as one step.

(a) How many steps does it take to compute gn?

(b) Is this algorithm fast (the number of steps grows polynomially) or slow (the num-
ber of steps grows exponentially)? Remember that to determine if an algorithm
is fast or slow, we must consider the number of steps as a function of the size of
n.

4. Let n be a positive integer, and consider the following algorithm to find a factor of n:
First check if n is divisible by 2, then check if n is divisible by 3, then check if n is
divisible by 5, and so on, checking each prime number in turn, ending when a prime
factor is found. (Assume you have the complete list of prime numbers handy.) In this
manner, each operation is a division, and we will count one division as one step.

If n is even, this algorithm always takes exactly one step, so this algorithm can be
pretty fast, there’s no doubt about that! Because of this, in this problem we will be
interested in getting an upper bound on how many steps it takes to factor n with
this algorithm in the worst-case scenario. This is like when we were computing the
number of steps for schoolbook multiplication and assumed that there were carries in
absolutely every position possible.



(a) We will first give an upper bound on the worst-case scenario for this algorithm
by considering an algorithm that always takes even more steps to find a factor for
n: First check if n is divisible by 2, then check if n is divisible by 3, then check
if n is divisible by 4, and so on, checking each integer in turn, and not skipping
ahead to the next prime number. What is the worst-case scenario for the number
of steps for this algorithm? In other words, after how many divisions are you
guaranteed to find a factor for n?

(b) Now suppose that you know that there are usually about x
log x

prime numbers
that are less than any given integer x. What is the worst-case scenario for the
number of steps for our original algorithm, which only attempts division by prime
numbers?

(c) Is this algorithm fast (the number of steps grows polynomially) or slow (the num-
ber of steps grows exponentially)? Remember that to determine if an algorithm
is fast or slow, we must consider the number of steps as a function of the size of
n.

5. A function f : N→ N is negligible if f � 1
p(k)

for every polynomial p(k).

(a) Is f(k) = e−k negligible?

(b) Is f(k) = e−
√
k negligible?

(c) Is f(k) = 1
k3+1

negligible?


