Problem Set 5: The Power of Classical July 27, 2023

Problem 1 ([CGLLTW22, Lemma 4.9]). Given $SQ(A) \in \mathbb{C}^{m \times n}$ and $\varepsilon \in (0, 1]$, we can form importance sampling sketches $S \in \mathbb{R}^{r \times m}$ and $T^{\dagger} \in \mathbb{R}^{c \times n}$ in $\mathcal{O}(rc \operatorname{sq}(A))$ time. Let σ_i and $\hat{\sigma}_i$ denote the singular values of A and SAT, respectively (where $\hat{\sigma}_i = 0$ for $i > \min(r, c)$). How big does our sketch $(r \times c)$ need to be for the following property to hold with probability 0.9?

$$\left(\sum_{i=1}^{\min(m,n)} (\hat{\sigma}_i^2 - \sigma_i^2)^2\right)^{1/2} \le \varepsilon \|A\|_{\mathrm{F}}^2.$$
 (*)

Problem 2 ([CGLLTW22, Corollary 6.12]). We now show that the previous problem implies a dequantization of QPCA [LMR14]. Given a matrix $SQ(X) \in \mathbb{C}^{m \times n}$ such that $X^{\dagger}X$ has top k eigenvalues $\{\lambda_i\}_{i=1}^k$, along with a lower bound ν such that $\lambda_1, \ldots, \lambda_k \geq \nu$, compute eigenvalue estimates $\{\lambda_i\}_{i=1}^k$ such that, with probability 0.9,

$$\sum_{i=1}^{k} |\hat{\lambda}_i - \lambda_i| \le \varepsilon \operatorname{tr}(X^{\dagger}X).$$
(1)

What is the runtime of this classical algorithm?

Bonus: how would you design a quantum algorithm to solve this task? Suppose we are given a state prep unitary that prepares a purification of $\rho = X^{\dagger}X$ (i.e. the vectorized version of X), which implies both the ability to prepare ρ and a 1-block encoding of ρ .

Problem 3 ([Van11; GL22]). Suppose we are given a classical description of an *n*-qubit product state $|\psi\rangle$ and a description of $H = \frac{1}{k} \sum_{i=1}^{k} \lambda_a E_a$, where $\lambda_a \in [-1, 1]$ and E_a are Pauli matrices. Show how to estimate $\langle \psi | H^k | \psi \rangle$ to ε error in poly $(n, s^k, 1/\varepsilon)$ time.

Bonus: prove you can still perform the above estimate if $|\psi\rangle$ is a matrix product state with polynomial bond dimension, meaning that, for some $2n \text{ poly}(n) \times \text{poly}(n)$ matrices $A_i[0], A_i[1], \psi_{b_1 \cdots b_n} = \text{tr}(A_1[b_1] \cdots A_n[b_n])$. Here, $b_1 \cdots b_n$ are bits.

References

[CGLLTW22] Nai-Hui Chia, András Pal Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang. "Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning". In: Journal of the ACM 69.5 (Oct. 2022), pp. 1–72. DOI: 10.1145/3549524. arXiv: 1910.06151 [cs.DS] (page 1).