# Problem Set 5: The Power of Classical 

July 27, 2023

Problem 1 ([CGLLTW22, Lemma 4.9]). Given $\operatorname{SQ}(A) \in \mathbb{C}^{m \times n}$ and $\varepsilon \in(0,1]$, we can form importance sampling sketches $S \in \mathbb{R}^{r \times m}$ and $T^{\dagger} \in \mathbb{R}^{c \times n}$ in $\mathcal{O}(r c \mathbf{s q}(A))$ time. Let $\sigma_{i}$ and $\hat{\sigma}_{i}$ denote the singular values of $A$ and $S A T$, respectively (where $\hat{\sigma}_{i}=0$ for $i>\min (r, c))$. How big does our sketch $(r \times c)$ need to be for the following property to hold with probability 0.9 ?

$$
\left(\sum_{i=1}^{\min (m, n)}\left(\hat{\sigma}_{i}^{2}-\sigma_{i}^{2}\right)^{2}\right)^{1 / 2} \leq \varepsilon\|A\|_{\mathrm{F}}^{2}
$$

Problem 2 ([CGLLTW22, Corollary 6.12]). We now show that the previous problem implies a dequantization of QPCA [LMR14]. Given a matrix $\mathrm{SQ}(X) \in \mathbb{C}^{m \times n}$ such that $X^{\dagger} X$ has top $k$ eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{k}$, along with a lower bound $\nu$ such that $\lambda_{1}, \ldots, \lambda_{k} \geq \nu$, compute eigenvalue estimates $\left\{\hat{\lambda}_{i}\right\}_{i=1}^{k}$ such that, with probability 0.9 ,

$$
\begin{equation*}
\sum_{i=1}^{k}\left|\hat{\lambda}_{i}-\lambda_{i}\right| \leq \varepsilon \operatorname{tr}\left(X^{\dagger} X\right) \tag{1}
\end{equation*}
$$

What is the runtime of this classical algorithm?
Bonus: how would you design a quantum algorithm to solve this task? Suppose we are given a state prep unitary that prepares a purification of $\rho=X^{\dagger} X$ (i.e. the vectorized version of $X$ ), which implies both the ability to prepare $\rho$ and a 1-block encoding of $\rho$.

Problem 3 ([Van11; GL22]). Suppose we are given a classical description of an $n$-qubit product state $|\psi\rangle$ and a description of $H=\frac{1}{k} \sum_{i=1}^{k} \lambda_{a} E_{a}$, where $\lambda_{a} \in[-1,1]$ and $E_{a}$ are Pauli matrices. Show how to estimate $\langle\psi| H^{k}|\psi\rangle$ to $\varepsilon$ error in poly $\left(n, s^{k}, 1 / \varepsilon\right)$ time.
Bonus: prove you can still perform the above estimate if $|\psi\rangle$ is a matrix product state with polynomial bond dimension, meaning that, for some $2 n \operatorname{poly}(n) \times \operatorname{poly}(n)$ matrices $A_{i}[0], A_{i}[1], \psi_{b_{1} \cdots b_{n}}=\operatorname{tr}\left(A_{1}\left[b_{1}\right] \cdots A_{n}\left[b_{n}\right]\right)$. Here, $b_{1} \cdots b_{n}$ are bits.

## References

[CGLLTW22] Nai-Hui Chia, András Pal Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang. "Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning". In: Journal of the ACM 69.5 (Oct. 2022), pp. 1-72. DOI: 10.1145/3549524. arXiv: 1910.06151 [cs.DS] (page 1).

