Before you begin, recall the definitions of sampling and query access for vectors and matrices (SQ(v), SQ(A)) and oversampling and query access (SQ_v(\phi(v)), SQ_\phi(A)) [CGLLTW22, Definition 3.2]. Below, time complexities are in the word RAM model: basically, assume that reading input numbers, and performing operations on those numbers, cost \(O(1) \).

Problem 1 (Errare humanum est...). Suppose we have \(SQ_\phi(u), SQ_\phi(v) \) for vectors \(u, v \). Show that we have \(SQ_\phi(A) \) for \(A := uv^\dagger \) and \(\phi = \phi_u \phi_v \) with cost \(\text{sq}_\phi(A) = \text{sq}_{\phi_u}(u) + \text{sq}_{\phi_v}(v) \).

Problem 2 (...sed perseverare (non?) diabolicum.). Suppose we are given a matrix \(A \in \mathbb{C}^{m \times m} \) with at most \(s \) non-zero entries per row, and suppose all entries are bounded by \(c \). We are given this matrix as a list of non-zero entries \((i, j, A(i, j))\). Show how to perform \(SQ_\phi(A) \) queries for \(\phi = c^2 \frac{sm}{\|A\|_F} \) with \(\text{sq}_\phi(A) = s \).\(^1\) This means that we can run “dequantized” algorithms on sparse matrices with condition number \(\kappa \); why doesn’t this imply that QSVT admits no exponential speedup for sparse matrices?

Problem 3 (The alias method [Vos91]). Let \(p = (p_1, \ldots, p_m) \) be a set of probabilities, so \(p_i \geq 0 \) and \(\sum p_i = 1 \). Suppose also that all of the \(p_i \)'s are described in binary with \(O(1) \) bits.

1. Suppose we are given a uniformly random number \(x \in [0,1] \) as a stream of random bits. Show how to sample \(i \in [m] \) such that \(\Pr[\text{sample } i] = p_i \) in \(O(m) \) operations.

2. Suppose we are given \(p = (p_1, \ldots, p_m) \) in the following form: we get a list of \(m \) probability distributions \(d_1, \ldots, d_m \) such that \(\frac{1}{m}(d_1 + \cdots + d_m) = p \) and every \(d_i \) is supported on at most two outcomes. Show that we can sample \(i \in [m] \) according to \(p \) in \(O(1) \) time.

3. Prove that we can convert any distribution \(p \) into the form described above. Prove that we can do this in \(O(m) \) time.\(^2\)

References

\(^1\)Hint: We immediately have query access to \(A \). What’s a good upper bound that’s easy to sample from?

\(^2\)This implies that, if we get time to pre-process, we can get a data structure such that we can respond to \(SQ(v) \) queries in \(O(1) \) time (in the word RAM access model).