Problem Set 2: Proving the QSVT

July 25, 2023

Problem 1 (When will my reflection show who I am inside?). QSVT achieves polynomials by interspersing phase operators with signal rotation operators. However, these rotation operators may look different in the literature. Consider two potential operators, $W(x), R(x)$, with the following matrix forms:

$$
W(x)=\left[\begin{array}{cc}
a & i \sqrt{1-a^{2}} \tag{1}\\
i \sqrt{1-a^{2}} & a
\end{array}\right] \quad R(x)=\left[\begin{array}{cc}
a & \sqrt{1-a^{2}} \\
\sqrt{1-a^{2}} & -a
\end{array}\right]
$$

Where W is the rotation operator while R is the reflection operator. We can define two different kinds of QSP, $\mathbf{Q S P}_{W}(\Phi, x)$ and $\mathbf{Q S P}_{R}(\Phi, x)$ for these two different operators. For example,

$$
\mathbf{Q S P}_{W}(\Phi, x):=\left(\prod_{j=1}^{n} e^{\mathrm{i} \phi_{j} \sigma_{z}} W(x)\right) e^{\mathrm{i} \phi_{0} \sigma_{z}}
$$

Suppose we have some series of phases $\Phi=\left(\phi_{0}, \ldots, \phi_{n}\right)$ such that $\mathbf{Q S P}_{W}(\Phi, x)$ forms a desired polynomial $p(x)$. Can we find a Φ^{\prime} such that $\mathbf{Q S P}_{R}\left(\Phi^{\prime}, x\right)$ performs the same polynomial? If so, find a formula for Φ^{\prime} in terms of Φ; if not, prove why.

Problem 2 (Perfectly balanced, as all things should be). The Chebyshev polynomials of the first and second kind are functions such that, for all $z \in \mathbb{C}$,

$$
\begin{aligned}
& T_{n}\left(\frac{1}{2}\left(z+z^{-1}\right)\right)=\frac{1}{2}\left(z^{n}+z^{-n}\right) \\
& U_{n}\left(\frac{1}{2}\left(z+z^{-1}\right)\right)=\left(z^{n+1}-z^{-(n+1)}\right) /\left(z-z^{-1}\right)
\end{aligned}
$$

Prove that T_{n} and U_{n} are polynomials. Then, prove that

$$
\begin{equation*}
T_{n}(x)^{2}+\left(1-x^{2}\right) U_{n}(x)^{2}=1 \tag{2}
\end{equation*}
$$

Just a little more and we have a proof that these can be used in QSP/QSVT!
Problem 3 (They're the same picture!). Return to [BCCKS17, Lemma 3.6]. What are the angles of the phase operators? What are the polynomials that are being computed with these phase operators? (A recursive definition is fine.)
Problem 4 (Block-encodings for any matrix). Given a matrix $A \in \mathbb{C}^{d \times d}$ such that $\|A\| \leq 1$, show there exists a unitary $U \in \mathbb{C}^{2 d \times 2 d}$ such that U is a block-encoding of A :

$$
U=\left(\begin{array}{ll}
A & \cdot \\
\cdot & \cdot
\end{array}\right)
$$

Prove that $2 d$ is tight, i.e., there is some matrix A such that any unitary with A as a submatrix must be size at least $2 d \times 2 d$. Note: this is true for non-square A as well, but the argument might get more annoying.

Problem 5 (It's just a phase). In our QSVT algorithm, we needed to apply gates of the form $e^{\mathrm{i} \phi(2 \Pi-I)}$, where $\Pi=\left(|0\rangle^{\otimes a}\left\langle\left. 0\right|^{\otimes a}\right) \otimes I\right.$. How do you implement these?

