Problem Set 1: The Block-Encoding

July 24, 2023

Problem 1 (Block-encodings: tensor products). Let U and V be Q-block encodings of A and B, respectively. Show how to get a Q-block-encoding of $A \otimes B$.

Problem 2 (Extensibility properties). Prove Corollary 1.8 of the lecture notes. Specifically, show that the two extensibility properties allow us to convert a Q-block encoding of A to a $d Q$-block encoding of $p^{(\mathrm{SV})}(A)$.
Problem 3 (Extensibility properties do not suffice). Let $p(x)=\sum_{k=0}^{d} a_{k} x^{k}$ be a polynomial whose coefficients satisfy $\sum\left|a_{k}\right| \leq 1$. Show that $p(x)$ cannot approximate $\sin (100 x)$ for any choice of d. That is, show that there is some $x \in[-1,1]$ such that

$$
|p(x)-\sin (100 x)| \geq 0.01
$$

Problem 4 (Oblivious amplitude amplification). QSVT is a unifying technique which includes many major quantum algorithms, including amplitude amplification [MRTC21]. In this problem, we show that Oblivious Amplitude Amplification (OAA), as described in [BCCKS17, Lemma 3.6], can be written in our block-encoding framework.
Identify the block-encoding within the aforementioned unitary. What polynomial would effect the same transformation as described in [BCCKS17, Lemma 3.6]?

Remark 1.1. [Ral20] describes how to get block-encodings of density matrices and observables, and applies QSVT to estimate physical quantities like expectations of Gibbs states. [BCCKS17] further discusses Hamiltonian simulation, placing it in the context of the more general problem of understanding the "fractional query model", "discrete query model", and "continuous query model". [LC19] is the original qubitization paper.

References

[BCCKS17] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma. "Exponential improvement in precision for simulating sparse hamiltonians". In: Forum of Mathematics, Sigma 5 (2017), e8. DOI: 10.1017/fms.2017.2. arXiv: 1312.1414 [quant-ph] (page 1).
[LC19] Guang Hao Low and Isaac L. Chuang. "Hamiltonian simulation by qubitization". In: Quantum 3 (July 2019), p. 163. DOI: 10.22331/q-2019-07-12-163 (page 1).
[MRTC21] John M. Martyn, Zane M. Rossi, Andrew K. Tan, and Isaac L. Chuang. "Grand unification of quantum algorithms". In: PRX Quantum 2 (4 Dec. 2021), p. 040203. DOI: 10.1103/PRXQuantum. 2.040203 (page 1).
[Ral20] Patrick Rall. "Quantum algorithms for estimating physical quantities using block encodings". In: Physical Review A 102.2 (Aug. 2020), p. 022408. DOI: 10.1103/physreva. 102.022408. arXiv: 2004.06832 [quant-ph] (page 1).

