
5 Quantum-inspired algorithms: sketching and beyond
Recall our definitions of oversampling and query access.

Definition 4.4. We have ϕ-oversampling and query access to a vector v ∈ Cn, SQϕ(v), if:

1. we can query for entries of v, Q(v), and;

2. we have sampling and query access to an “entry-wise upper bound” vector ṽ, SQ(ṽ),
where ∥ṽ∥2 = ϕ∥v∥2 and |ṽ(i)| ≥ |v(i)| for all indices i ∈ [n].

Let sqϕ(v) denote the time cost of any query.

Intuitively speaking, estimators that use Dv can also use Dṽ via rejection sampling at the
expense of a factor ϕ increase in the number of utilized samples. From this observation we
can prove that oversampling access implies an approximate version of the usual sampling
access:

Lemma 4.5. Suppose we are given SQϕ(v) and some δ ∈ (0, 1]. Denote sq(v) :=
ϕ sqϕ(v) log

1
δ
. We can sample from Dv with probability ≥ 1 − δ in O(sq(v)) time. We

can also estimate ∥v∥ to ν multiplicative error for ν ∈ (0, 1] with probability ≥ 1− δ in
O(1

ν2
sq(v)) time.

Lemma 4.6 (Linear combinations, Proposition 4.3 of [Tan19]). Given SQφt
(vt) ∈ Cn and

λt ∈ C for all t ∈ [τ], we have SQϕ(
∑τ

t=1 λtvt) for ϕ = τ
∑

φt∥λtvt∥2
∥
∑

λtvt∥2 and sqϕ(
∑

λtvt) =∑τ
t=1 sq(vt) (after paying O(

∑τ
t=1 sqφt

(vt)) one-time pre-processing cost to query for
norms).

5.1 Oversampling and query access to matrices

Definition 5.1 (Oversampling and query access to a matrix). For a matrix A ∈ Cm×n,
we have SQ(A) if we have SQ(A(i, ·)) for all i ∈ [m] and SQ(a) for a ∈ Rm the vector of
row norms (a(i) :=∥A(i, ·)∥).

We have SQϕ(A) if we have Q(A) and SQ(Ã) for Ã ∈ Cm×n satisfying ∥Ã∥2F = ϕ∥A∥2F and
|Ã(i, j)|2 ≥ |A(i, j)|2 for all (i, j) ∈ [m]× [n].

Let sqϕ(A) denote the cost of every query. We omit subscripts if ϕ = 1.

Lemma 5.2. Given vectors SQφu
(u) ∈ Cm and SQφv

(v) ∈ Cn, we have SQϕ(A) for their
outer product A := uv† with ϕ = φuφv and sqϕ(A) = sqφu

(u) + sqφv
(v).

Proof. We can query an entry A(i, j) = u(i)v(j)† by querying once from u and v. Our
choice of upper bound is Ã = ũṽ†. Clearly, this is an upper bound on uv† and ∥Ã∥2F =
∥ũ∥2∥ṽ∥2 = φuφv∥A∥2F. We have SQ(Ã) in the following manner: Ã(i, ·) = ũ(i)ṽ†, so we
have SQ(Ã(i, ·)) from SQ(ṽ) after querying for ũ(i), and ã = ∥ṽ∥2ũ, so we have SQ(ã)
from SQ(ũ) after querying for ∥ṽ∥.

Using the same ideas as in Lemma 4.6, we can extend sampling and query access of input
matrices to linear combinations of those matrices.

1

Lemma 5.3. Given SQφ(t)(A(t)) ∈ Cm×n and λt ∈ C for all t ∈ [τ], we have SQϕ(A) ∈
Cm×n for A :=

∑τ
t=1 λtA

(t) with ϕ = τ
∑τ

t=1 φ
(t)∥λtA(t)∥2F
∥A∥2F

and sqϕ(A) =
∑τ

t=1 sqφ(t)(A(t))

(after paying O(
∑τ

t=1 sqφ(t)(A(t))) one-time pre-processing cost).

5.2 Sketching to estimate matrix products

We now introduce the workhorse of our algorithms: the matrix sketch. Using sampling
and query access, we can generate these sketches efficiently, and these allow one to reduce
the dimensionality of a problem, up to some approximation. Most of the results presented
in this section are known in the classical sketching literature.

Definition 5.4. For a distribution p ∈ Rm, we say that a matrix S ∈ Rs×m is sampled
according to p if each row of S is independently chosen to be ei/

√
s · p(i) with probability

p(i), where ei is the vector that is one in the ith position and zero elsewhere.

We call S an importance sampling sketch for A ∈ Cm×n if it is sampled according to
A’s row norms a, and we call S a ϕ-oversampled importance sampling sketch if it is
sampled according to the bounding row norms from SQϕ(A), ã (or, more generally, from
a ϕ-oversampled importance sampling distribution of a).

One should think of S as a description of how to sketch A down to SA. In the standard
algorithm setting, computing an importance sampling sketch requires reading all of A,
since we need to sample from Da. If we have SQϕ(A), though, we can efficiently create a
ϕ-oversampling sketch S in O(s sqϕ(A)) time: for each row of S, we pull a sample from ã,
and then compute

√
ã(i). After finding this sketch S, we have an implicit description of

SA: it is a normalized multiset of rows of A, so we can describe it with the row indices
and corresponding normalization, (i1, c1), . . . , (is, cs).

Further, we can chain sketches using the lemma below, which shows that from SQϕ(A),
we have SQ≤2ϕ((SA)

†), under a mild assumption on the size of the sketch S. This can be
used to find a sketch T † of (SA)†. The resulting expression SAT is small enough that we
can compute functions of it in time independent of dimension, and so will be key for us.
When we discuss sketching A down to SAT , we are referring to the below lemma for the
method of sampling T .

Lemma 5.5. Consider SQφ(A) ∈ Cm×n and S ∈ Rr×m sampled according to ã, described
as pairs (i1, c1), . . . , (ir, cr). If r ≥ 2φ2 ln 2

δ
, then with probability ≥ 1−δ, we have SQϕ(SA)

and SQϕ((SA)
†) for some ϕ satisfying ϕ ≤ 2φ. If φ = 1, then for all r, we have SQ(SA)

and SQ((SA)†).

The runtimes for SQϕ(SA) are sq(SA) = sq(A). The runtimes for SQϕ((SA)
†) are

sq((SA)†) = r sq(A).

Proof. We will only prove this for φ = 1. We have SQ(SA). Because the rows of SA
are rescaled rows of A, we have SQ access to them from SQ access to A. Because
∥SA∥2F = ∥A∥2F and ∥[SA](i, ·)∥2 = ∥A∥2F/r, we have SQ access to the vector of row norms
of SA (pulling samples simply by pulling samples from the uniform distribution).

We have SQ((SA)†). (This proof is similar to one from [FKV04].) Since the rows of (SA)†
are length r, we can respond to SQ queries to them by reading all entries of the row and
performing some linear-time computation. ∥(SA)†∥2F = ∥A∥2F, so we can respond to a

2

norm query by querying the norm of A. Finally, we can sample according to the row
norms of (SA)† by first querying an index i ∈ [r] uniformly at random, then outputting
the index j ∈ [n] sampled from [SA](i, ·) (which we can sample from because it is a row of
A). The distribution of the samples output by this procedure is correct: the probability
of outputting j is

1

r

r∑
i=1

|[SA](i, j)|2

∥[SA](i, ·)∥2
=

r∑
i=1

|[SA](i, j)|2

∥SA∥2F
=

∥[SA](·, j)∥2

∥SA∥2F
.

We will show below that SA can be used in place of A in matrix products. We begin
with a fundamental observation: given sampling and query access to a matrix A, we can
approximate the matrix product A†B by a sum of rank-one outer products. We formalize
this with two variance bounds, which we can use together with Chebyshev’s inequality.

Lemma 5.6 (Asymmetric matrix multiplication to Frobenius norm error, [DKM06]).
Consider X ∈ Cm×n, Y ∈ Cm×p, and take S ∈ Rr×m to be sampled according to p ∈ Rm a
ϕ-oversampled importance sampling distribution from X or Y . Then,

E[∥X†S†SY−X†Y ∥2F] ≤
ϕ

r
∥X∥2F∥Y ∥2F and E

[r∑
i=1

∥[SX](i, ·)∥2∥[SY](i, ·)∥2
]
≤ ϕ

r
∥X∥2F∥Y ∥2F.

Proof. To show the first equation, we use that E[∥X†S†SY −X†Y ∥2F] is a sum of variances,
one for each entry (i, j), since E[X†S†SY −XY] is zero in every entry. Furthermore, for
every entry (i, j), the matrix expression is the sum of r independent, mean-zero terms,
one for each row of S:

[X†S†SY −XY](i, j) =
r∑

s=1

(
[SX](s, i)†[SY](s, j)− 1

r
[X†Y](i, j)

)
.

So, we can use standard properties of variances1 to conclude that

E[∥X†S†SY−X†Y ∥2F] = r·E[∥[SX](1, ·)†[SY](1, ·)−1
r
X†Y ∥2F] ≤ r·E[∥[SX](1, ·)†[SY](1, ·)∥2F]

= r

m∑
i=1

p(i)
∥X(i, ·)†Y (i, ·)∥2F

r2p(i)2
=

1

r

m∑
i=1

∥X(i, ·)∥2∥Y (i, ·)∥2

p(i)
≤ ϕ

r
∥X∥2F∥Y ∥2F.

The second other inequality follows by the same computation:

E
[r∑

i=1

∥[SX](i, ·)∥2∥[SY](i, ·)∥2
]
= r · E[∥[SX](1, ·)∥2∥[SY](1, ·)∥2] ≤ ϕ

s
∥X∥2F∥Y ∥2F.

The above result shows that, given SQ(X), X†Y can be approximated by a sketch with
constant failure probability. If we have SQ(X) and SQ(Y), we can make the failure
probability exponential small.

Lemma 5.7 (Approximating matrix multiplication to Frobenius norm error; corollary of
[DKM06]). Consider X ∈ Cm×n, Y ∈ Cm×p, and take S ∈ Rr×m to be sampled according
to q := q1+q2

2
, where q1, q2 ∈ Rm are ϕ1, ϕ2-oversampled importance sampling distributions

1See the proof of ?? in ?? for this kind of computation done with more detail.

3

from x, y, the vector of row norms for X, Y , respectively. Then S is a 2ϕ1, 2ϕ2-oversampled
importance sampling sketch of X, Y , respectively. Further,

Pr
[
∥X†S†SY −X†Y ∥F <

√
8ϕ1ϕ2 log 2/δ

r
∥X∥F∥Y ∥F

]
> 1− δ.

5.3 Proving extensibility from sketching

Remark 5.8. Lemma 5.7 implies that, given SQϕ1
(X) and SQϕ2

(Y), we can get SQϕ(M)

for M a sufficiently good approximation to X†Y , with ϕ ≤ ϕ1ϕ2
∥X∥2F∥Y ∥2F

∥M∥2F
. This is an

approximate closure property for oversampling and query access under matrix products.

Given the above types of accesses, we can compute the sketch S necessary for Lemma 5.7
by taking p = Dx̃ and q = Dỹ), thereby finding a desired M := X†S†SY . We can compute
entries of M with only r queries each to X and Y , so all we need is to get SQ(M̃) for M̃
the appropriate bound. We choose |M̃(i, j)|2 := r

∑r
ℓ=1 |[SX̃](ℓ, i)†[SỸ](ℓ, j)|2; showing

that we have SQ(M) follows from the proofs of Lemmas 5.2 and 5.3, since M is simply a
linear combination of outer products of rows of X̃ with rows of Ỹ . Finally, this bound
has the appropriate norm. Notating the rows sampled by the sketch as s1, . . . , sr, we have

∥M̃∥2F = r
r∑

ℓ=1

∥[SX̃](ℓ, ·)∥2∥[SỸ](ℓ, ·)∥2 = r
r∑

ℓ=1

∥X̃(sℓ, ·)∥2∥Ỹ (sℓ, ·)∥2

r2(∥X̃(sℓ,·)∥2
2∥X̃∥2F

+ ∥Ỹ (sℓ,·)∥2
2∥Ỹ ∥2F

)2

≤
r∑

ℓ=1

∥X̃(sℓ, ·)∥2∥Ỹ (sℓ, ·)∥2

r(∥X̃(sℓ,·)∥∥Ỹ (sℓ,·)∥
∥X̃∥F∥Ỹ ∥F

)2
= ∥X̃∥2F∥Ỹ ∥2F = ϕ1ϕ2∥X∥2F∥Y ∥2F.

Assuming A and b are in appropriate data structures in QRAM, we can implement a ∥A∥F-
block-encoding of A and prepare copies of |b⟩ efficiently, so we can quantumly produce a
sample from Ab in O(

∥A∥2F∥b∥
2

∥Ab∥2) time. We can dequantize this algorithm! Classically, under
identical assumptions, we can produce a sample from a v such that ∥v − Ab∥ ≤ ε∥Ab∥ in
O(

∥A∥4F∥b∥
4

ε2∥Ab∥4) time, only polynomially slower than quantum.

We note here that a dependence on error ε appears here where it does not in the quantum
setting. However, this is not a realizable quantum speedup (except possibly for sampling
tasks) since the output is a quantum state: estimating some statistic of the quantum state
requires incurring a polynomial dependence on ε. For example, if the goal is to estimate
|⟨v|Ab⟩|2, where v is a given vector, then this can be done with 1/ε2 invocations of a swap
test (or 1/ε if one uses amplitude amplification). More generally, distinguishing a state
from one ε-far in trace distance requires Ω(1/ε) additional overhead, even when given an
oracle efficiently preparing that state, so estimating quantities to this sensitivity requires
polynomial dependence on ε.

To see this, we first consider a simple case: where b is a constant-sized vector, so
n = O(1). Then we simply wish to sample from a linear combination of columns of A,
since Ab =

∑n
t=1 b(t)A(·, t). If A is in the QRAM data structure (i.e. storing A† in ??),

then this means its columns are in the vector QRAM data structures (??), so classically
we have sampling and query access to the columns of A, SQ(A(·, t)) for all t ∈ [n]. This
implies we have sampling and query access to Ab, up to some overhead.

4

Given access to a constant number of vectors SQ(A(·, 1)), . . . , SQ(A(·, n)), we have access to
linear combinations SQϕ(Ab) with ϕ = n

∑n
t=1|b(t)|2∥A(·,t)∥2

∥Ab∥2 ≤ n∥A∥2F∥b∥
2

∥Ab∥2 and sqϕ(Ab) = O(n)

(Lemma 4.6; the inequality follows from Cauchy-Schwarz). Finally, from SQϕ(Ab) we can
perform approximate versions of all the queries of SQ(Ab) with a factor ϕ of overhead
(Lemma 4.5). This is possible with rejection sampling: given SQϕ(v), pull a sample i
from ṽ; accept it with probability |v(i)|2/|ṽ(i)|2, and restart otherwise; the output will
be a sample from v. In particular, we can sample from Ab in ϕn = O(n2 ∥A∥2F∥b∥

2

∥Ab∥2) time in
expectation, which is good when n = O(1).

Now, consider when n is too large to iterate over in our linear combination of vectors. In
this setting, we can use the approximate matrix product property of importance sampling
to reduce the number of vectors under consideration. Consider pulling a sample s ∈ [n]
where we sample i with probability p(i). Then 1

p(s)
b(s)A(·, s), a rescaled random column

of A, has expectation
∑

i b(i)A(·, i) = Ab. If the sampling distribution is chosen to be
p(i) = |b(i)|2

∥b∥2 , an importance sample from SQ(b), then a variance computation shows

that the average of τ = Θ(
∥A∥2F
ε2∥A∥2) copies of this random vector is ε∥A∥∥b∥-close to Ab

with probability ≥ 0.9 (Lemma 5.6). This average, which we denote v, is now a linear
combination of only τ columns of A, each of which we have sampling and query access. So,
we can use the closure properties mentioned before to get SQϕ(v) for ϕ = O(

∥A∥2F∥b∥
2

∥v∥2) and

sqϕ(v) = O(τ), and a sample from v in ϕτ = O(
∥A∥4F∥b∥

2

ε2∥A∥2∥v∥2) time in expectation. Rescaling
ε by a factor of ∥Ab∥

∥A∥∥b∥ gives the result stated above.

5.4 General singular value transformation

So far, we have shown extensibility properties of SQ access like that of the block-encoding.
However, as we saw in a problem set, this does not suffice to implement all polynomials.
We will now discuss the broad approach for producing p(SV)(A)b from SQ(A) and SQ(b).

First, we give an improved version of the above results on approximation of matrix
products, from scaling with ∥X∥F∥Y ∥2F to ∥X∥2F + ∥Y ∥2F.

Theorem 5.9 (Asymmetric Approximate Matrix Multiplication [BT23]). Given matrices
A ∈ Cm×n and B ∈ Cn×d, consider S sampled according to pi ≥ 1

2ϕ
(
∥A∗,i∥2
∥A∥2F

+
∥B∗,i∥2
∥B∥2F

) for

some ϕ ≥ 1. Let sr = ∥A∥2F
∥A∥2 +

∥B∥2F
∥B∥2 . Then, with probability at least 1− δ,

∥ASS†B† − AB†∥ ≤
√

2

s
log

(sr
δ

)
ϕ(∥A∥2F∥B∥2 + ∥A∥2∥B∥2F) +

1

s
log

(sr
δ

)
ϕ∥A∥F∥B∥F.

This means that a sketch of size s = Θ̃(ϕ sr
ε2

log 1
δ
) suffices to get an approximation of

ε∥A∥∥B∥.

Lemma 5.10 (Approximating matrix multiplication to spectral norm error [RV07, Theo-
rem 3.1]). Suppose we are given A ∈ Rm×n, ε > 0, δ ∈ [0, 1], and S ∈ Rr×n a ϕ-oversampled
importance sampling sketch of A. Then

Pr
[
∥A†S†SA− A†A∥ ≲

√
ϕ2 log r log 1/δ

r
∥A∥∥A∥F

]
> 1− δ.

5

Recall our goal of simulating QSVT: given a matrix SQ(A) ∈ Cm×n, a vector SQ(b) ∈ Cn,
and a polynomial p : [−1, 1] → R, compute a description of a vector y such that ∥y −
p(A)b∥ ≤ ε∥p∥[−1,1]∥b∥. Specifically, we aim for our algorithm to run in poly(∥A∥F,

1
ε
, d)

time, and our description to be some sparse vector x such that y = Ax, since this allows
us to get SQϕ(y).

Given a degree-d polynomial p given in terms of its Chebyshev coefficients aℓ (i.e. p(x) =∑d
ℓ=0 aℓTℓ(x), where Tℓ(x) is the degree ℓ Chebyshev polynomial) and a value x ∈ [−1, 1],

the Clenshaw recurrence computes p(x). Concretely, our recurrence for p odd (so that
aℓ = 0 for ℓ even), is the following.

q(d−1)/2 = q(d+1)/2 = 0

qk = 2(2x2 − 1)qk+1 − qk+2 + 2a2k+1x

p(x) = 1
2
(q0 − q1)

The scalar recurrences we discuss lift to computing matrix polynomials in a natural way:

u(d−1)/2 = u(d+1)/2 = 0

uk = 2(2AA† − I)uk+1 − uk+2 + 2a2k+1Ab

p(A)b = 1
2
(u0 − u1)

Each iteration (to get uk from uk+1 and uk+2) can be performed in O(nnz(A)) arithmetic
operations, so this can be used to compute p(A)b in O(d nnz(A)) operations. We would
like to do this approximately in time independent of nnz(A) and n. We begin by sketching
down our matrix and vector: we show that it suffices to maintain a sparse description of
uk of the form uk = Avk where vk is sparse. In particular, we produce sketches S ∈ Cn×s

and T ∈ Ct×m such that

1.
∥∥AS(AS)† − AA†

∥∥ ≤ ε,

2.
∥∥ASS†b− Ab

∥∥ ≤ ε∥b∥,

3.
∥∥TAS(TAS)† − AS(AS)†

∥∥ ≤ ε

In the pre-processing phase, we can produce these sketches of size s, t = Õ(
∥A∥2F
ε2

log 1
δ
),

and then compute TAS. If the input is given in the quantum-inspired access model of
oversampling and query access, this can even be done in time independent of dimension.
All of these guarantees follow from Theorem 5.9, which shows ℓ22 sampling gives an
asymmetric approximate matrix product property (in operator norm). We do not need
this generalization (prior “symmetric” results suffice), but we use it for convenience.

Using these guarantees we can sketch the iterates as follows:

uk = 2(2AA† − I)uk+1 − uk+2 + 2a2k+1Ab

= 4AA†Avk+1 − 2Avk+1 − Avk+2 + 2a2k+1Ab

≈ AS[4(TAS)†(TAS)vk+1 − 2vk+1 − vk+2 + 2a2k+1S
†b].

(1)

Therefore, we can interpret Clenshaw iteration as the recursion on the dimension-
independent term vk ≈ 4(TAS)†(TAS)vk+1−2vk+1−vk+2+2a2k+1S

†b, and then applying
AS on the left to lift it back to m dimensional space. As desired, we can perform the
iteration to produce vk in O(st) = Õ(

∥A∥4F
ε4

log2 1
δ
) time, which is independent of dimension,

6

at the cost of incurring O(ε(∥vk+1∥+ ∥vk+2∥+ a2k+1∥b∥)) error. To bound the effect of
these per-iteration errors on the final output, we need a stability analysis of the Clenshaw
recurrence. We can prove that this gives a d3ε∥p∥[−1,1]∥b∥ scaling on the final bound, so
we rescale ε by a factor of d2 to get a final runtime of

d
∥A∥4F
(ε/d3)4

log2
1

δ
= d13

∥A∥4F
ε4

log2
1

δ
.

If we allow linear-time pre-processing, this can be improved further by a factor of
ε2/d2 [BT23].

References
[BT23] Ainesh Bakshi and Ewin Tang. An improved classical singular value trans-

formation for quantum machine learning. Mar. 2, 2023. arXiv: 2303.01492
[quant-ph] (pages 5, 7).

[FKV04] Alan Frieze, Ravi Kannan, and Santosh Vempala. “Fast Monte-Carlo algorithms
for finding low-rank approximations”. In: Journal of the ACM 51.6 (Nov. 2004),
pp. 1025–1041. doi: 10.1145/1039488.1039494 (page 2).

[RV07] Mark Rudelson and Roman Vershynin. “Sampling from large matrices: an
approach through geometric functional analysis”. In: Journal of the ACM 54.4
(July 2007), 21–es. issn: 0004-5411. doi: 10.1145/1255443.1255449. url:
https://doi.org/10.1145/1255443.1255449 (page 5).

[Tan19] Ewin Tang. “A quantum-inspired classical algorithm for recommendation
systems”. In: Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing - STOC 2019. ACM Press, 2019, pp. 217–228. doi:
10.1145/3313276.3316310. arXiv: 1807.04271 [cs.IR] (page 1).

7

https://arxiv.org/abs/2303.01492
https://arxiv.org/abs/2303.01492
https://doi.org/10.1145/1039488.1039494
https://doi.org/10.1145/1255443.1255449
https://doi.org/10.1145/1255443.1255449
https://doi.org/10.1145/3313276.3316310
https://arxiv.org/abs/1807.04271

	Quantum-inspired algorithms: sketching and beyond
	Oversampling and query access to matrices
	Sketching to estimate matrix products
	Proving extensibility from sketching
	General singular value transformation

