
4 Introducing quantum-inspired linear algebra
We have established a theory of quantum linear algebra based on the block-encoding: you
might have noticed that, with block-encodings, we can implicitly manipulate exponentially
large matrices in polynomial time. This raises a natural question: perhaps we can harness
Nature’s linear algebra processor to manipulate data exponentially faster than we can with
classical computers. The key work in this line is Harrow, Hassidim, and Lloyd’s quantum
algorithm for sampling from the solution to a sparse system of linear equations [HHL09].
QML has since rapidly developed into an active field of study with numerous proposals for
quantum speedups for machine learning tasks in domains ranging from recommendation
systems [KP17] to topological data analysis [LGZ16].

A key tool underlying many QML algorithms is the observation that certain kinds of data
structures could allow for efficient preparation of block encodings of arbitrary matrices,
assuming the ability to query these data structures in superposition (i.e. assuming that
the data is in QRAM). In particular, this allows for log(rc)-block encodings of A/∥A∥F.
Many QML algorithms relied on this data structure for exponential speedup, with the
belief that this additional assumption would not affect it. However, it was discovered
that classical algorithms given this data structure can achieve the same results up to
polynomial slowdown. These are known as “dequantized” algorithms. The existence of
a dequantized algorithm means that its quantum counterpart cannot give exponential
speedups on classical data, illuminating the landscape of QML speedups.

Quantum singular value transformation captures essentially all known linear algebraic
QML techniques [MRTC21], including all prior dequantized QML algorithms (up to
minor technical details), so it is our natural target for dequantizing. We cannot hope to
dequantize all of QSVT, because with sparse input data encoded appropriately, QSVT
can simulate algorithms for BQP-complete problems [JW06; HHL09]. However, we show
that we can dequantize the QSVT framework, provided that the input data comes in the
state preparation data structure commonly used for quantum linear algebra. Such data
structures only allow for efficient QML when the input is low-rank. Nevertheless, they
are the only way we know how to run quantum linear algebra on unstructured classical
data, so this setting covers all QML algorithms that do not rely on sparsity assumptions.
We present a classical analogue of the QSVT framework that is only polynomially slower
when the input is low rank, and apply it to dequantize QML algorithms.

Bibliographic note: the results here are all taken from [CGLLTW22].

4.1 Example 1: The swap test, and access models

It seems counterintuitive that classical linear algebra algorithms can perform nearly as
well as quantum ones, even on classical data. In some sense, what dequantization shows
is that some quantum linear algebra algorithms do not fully exploit “quantumness,” since
they can be mimicked classically using sampling procedures. We’ll investigate a simple
example of a quantum linear algebra algorithm: the swap test [BCWW01].

Suppose we have two d-dimensional vectors ϕ, ψ ∈ Cd, both with unit norm. We wish
to compute their overlap |⟨ϕ|ψ⟩|2. There is a quantum algorithm, the swap test (shown
in Fig. 2), to solve this: prepare the log(d)-qubit quantum states |ϕ⟩ =

∑d
i=1 ϕi|i⟩ and

|ψ⟩ =
∑d

i=1 ψi|i⟩, along with one additional qubit in the state H |0⟩ = 1√
2
(|0⟩+ |1⟩). Then,
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Figure 1: Pictured is the landscape of quantum machine learning algorithms after
dequantization. In this thesis, we dequantize all of the algorithms on the right-hand
side, showing that they do not give exponential speedups on classical data. All of these
algorithms can be placed in the QSVT framework, and in this setting, the dequantized
algorithms are precisely the algorithms that do not rely on sparsity assumptions.

|0⟩ H • H

|ϕ⟩
SWAP

|ψ⟩

Figure 2: The quantum circuit for the swap test, taken from [BCWW01, Figure 1].

apply a controlled SWAP between |ϕ⟩ and |ψ⟩, with the additional qubit as the control,
and then measure this qubit in the Hadamard basis; the measurement produces 1 with
probability 1

2
− 1

2
|⟨ϕ|ψ⟩|2, so we can use it to estimate the overlap. Averaging over more

runs of this circuit gives an estimate to 0.01 error with only O(log(d)) quantum gates
and a constant number of copies of the input states. Even approximating overlaps using
classical computers requires Ω(d) time, since we need to read this many entries of the
input to distinguish the two cases ϕ = ei, ψ = ei and ϕ = ei, ψ = ej . So, we might naively
conclude that the swap test achieves an exponential quantum advantage in the task of
“computing overlaps”. This is not as farfetched a claim as it might appear: the general
version of this task, where we wish to estimate |⟨0|⊗nU |0⟩⊗n| for U ∈ C2n×2n a unitary
matrix encoded as a poly(n)-sized quantum circuit, indeed gives a quantum advantage
(since this task is BQP-hard). Further, this idea has been proposed before in QML: a
preprint of Lloyd, Mohseni, and Rebentrost claims to achieve an exponential quantum
advantage for clustering with the swap test, computing the distance of a vector to a
centroid by estimating the overlap of states like the above [LMR13].
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However, the comparison between O(log(d)) and Ω(d) hides the difference in input models:
the quantum algorithm requires copies of the states |ϕ⟩ and |ψ⟩, and the classical lower
bound assumes that we are only given the input vectors as lists of entries. For applications
to machine learning, it’s reasonable to receive the data in the latter form, since the data
is classical (in that it comes from classical sources, as is the case for the vast majority of
data). For example, machine learning datasets are stored in this way. This leads us to the
question: given ϕ and ψ classically, how can we efficiently prepare their corresponding
quantum states? Though state preparation assumptions like these are common in quantum
linear algebra, they cannot be satisfied in general: the typical way of satisfying them is to
assume pre-processing to load the input into a certain kind of data structure in quantum
random access memory (QRAM) [GLM08; Pra14; JR23]. QRAM is a speculative piece
of quantum hardware which supports storing n bits of data and subsequently querying
that data in superposition in (functionally) polylog(n) time, similarly to how we consider
classical RAM; for the sake of comparison, we assume the existence of QRAM.1 If we
assume that input is given in this data structure (see Fig. 3) for the sake of the quantum
computer, then for a fair comparison, we should give our classical computer this same
data structure.

∥v∥2

|v(1)|2 + |v(2)|2 |v(3)|2 + |v(4)|2

|v(1)|2 |v(2)|2 |v(3)|2 |v(4)|2

v(1) v(2) v(3) v(4)

Figure 3: Dynamic data structure used to perform efficient state preparation of a vector
v ∈ C4. The values displayed are stored in QRAM, along with pointers to other values
as designated by the entries. Observe that, by starting from the root of the tree and
recursing appropriately, we can sample i ∈ [4] with probability proportional to |v(i)|2
using only classical access to the data structure. See ?? part (b) for more information.
A variety of data structures have similar properties, but this one has the advantage of
supporting updating entries in O(log n) accesses.

If A is in a state preparation data structure in QRAM (like the vector case, see Fig. 4), we
can implement a block-encoding of A/∥A∥F efficiently [GSLW19, Lemma 50]. This type
of block-encoding is the one commonly used for quantum linear algebra algorithms on
classical data, since it works for arbitrary matrices and vectors, paying only a ∥A∥F/∥A∥
(square root of stable rank) factor in sub-normalization.

If ϕ in this data structure, a classical computer can draw independent samples i ∈ [n] with
probability proportional to |ϕ(i)|2 with O(log(n)) accesses. Equipped with this additional

1Of course, neither forms of RAM could be “truly” polylog(n) time, since storing n bits of data requires
poly(n) space and therefore poly(n) time for the information to travel across that amount of space. The
goal would be to optimize QRAM as well as classical RAM, so that accesses can be treated as O(log(n))
time, the cost of simply writing down the pointer into the data.
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∥a∥2 = ∥A∥2F

|a1|2 = ∥A(1, ·)∥2 |a2|2 = ∥A(2, ·)∥2

|A(1, 1)|2 + |A(1, 2)|2 |A(1, 3)|2 + |A(1, 4)|2 |A(2, 1)|2 + |A(2, 2)|2 |A(2, 3)|2 + |A(2, 4)|2

|A(1, 1)|2 |A(1, 2)|2 |A(1, 3)|2 |A(1, 4)|2 |A(2, 1)|2 |A(2, 2)|2 |A(2, 3)|2 |A(2, 4)|2

A(1, 1) A(1, 2) A(1, 3) A(1, 4) A(2, 1) A(2, 2) A(2, 3) A(2, 4)

Figure 4: Dynamic data structure for a matrix A ∈ C2×4 discussed in ?? part (b). We
compose the data structure for a, the vector of row norms, with the data structure for
A’s rows.

type of input access, we can estimate the overlap much faster via a Monte Carlo method:
pull one sample, s, from |ϕ⟩, and then compute the estimator ψs/ϕs. This estimator has
expected value ⟨ϕ|ψ⟩ and variance 1, so by averaging over a constant number of runs,
we can estimate of the overlap to 0.01 error using O(log d) classical gates, assuming that
the entries of ϕ and ψ are specified with O(log d) bits. The swap test achieves the same
dependence on dimension as the dequantized swap test, so it does not give an exponential
speedup in this setting. (A more precise analysis would reveal that a quadratic quantum
speedup in error is possible, from O(1/ε2) to O(1/ε).) This argument against exponential
quantum speedup remains valid provided we want to run the quantum algorithm in a
setting where we could also perform the quantum-inspired algorithm.

The general principle of the dequantized swap test extends to other QML algorithms. In
the typical RAM access model, we assume only that we can query entries efficiently. In
other words, we receive our input v ∈ Cn as Q(v) with q(v) = 1.

Definition 4.1 (Query access). For a vector v ∈ Cn, we have Q(v), query access to v, if
for all i ∈ [n], we can query for v(i). Let q(v) denote the (time) cost of such a query.

For comparison to quantum algorithms, we assume a stronger input model, sampling
and query access, which supports the types of queries we need to perform the overlap
estimation algorithm.

Definition 4.2 (Sampling and query access to a vector). For a vector v ∈ Cn, we have
SQ(v), sampling and query access to v, if we can:

1. query for entries of v as in Q(v);

2. obtain independent samples i ∈ [n] where the probability of sampling i is |v(i)|2/∥v∥2;

3. query for ∥v∥.

Let sq(v) denote the time cost of any query.

If we only have Q(v), then responding to queries from SQ(v) (or preparing the state |v⟩)
requires linear-time pre-processing. When quantum algorithms use |v⟩, it’s sensible to
give classical algorithms access to SQ(v), since this is Q(v) with access to computational
basis measurements of |v⟩, also known as importance samples from v. In fact, as far as we
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know, if input data is given classically,2 classical algorithms in the sampling and query
model can be run whenever the corresponding algorithms in the quantum model can (??).
For example, if input is loaded in the QRAM data structure, as commonly assumed in
QML in order to satisfy state preparation assumptions [Pra14; Cil+18], then we have
log-time sampling and query access to it. So, a fast classical algorithm for a problem in
this classical model implies lack of quantum speedup for the problem, at least in the usual
settings explored in the QML literature.

As the inner product estimation protocol suggests, SQ(v) is a much more powerful access
model than Q(v). Classical algorithms can exploit the measurements of input data
possible with sampling and query access to speed up linear algebra to become time-
independent of the dimension. Specifically, sketching algorithms explore how to use
randomness to perform a dimensionality reduction and “sketch” a large matrix A down
to a constant-sized matrix normalized submatrix of A which behaves similarly to the
full matrix [Woo14]. The computational basis measurements one can produce in the
quantum-inspired input model allow for the efficient estimation of matrix products through
Monte Carlo methods [DKM06], which can be applied iteratively to produce dequantized
algorithms that achieve surprisingly similar bounds to their quantum counterparts. We
explore this in our next example.

4.2 Extensibility properties

We can show that oversampling and query access is approximately closed under arithmetic
operations. These extensibility properties together imply that, given input matrices and
vectors in data structures in QRAM, we can get oversampling and query access to low-
degree polynomials of the input via closure properties; in the same setting, QSVT gives
block-encodings of low-degree polynomials of the input, through similar properties. The
classical algorithm’s runtime is only polynomially slower than the corresponding quantum
algorithm (except in the ε parameter). This dequantizes QSVT.

Definition 4.3. We have ϕ-oversampling and query access to a vector v ∈ Cn, SQϕ(v), if:

1. we can query for entries of v, Q(v), and;

2. we have sampling and query access to an “entry-wise upper bound” vector ṽ, SQ(ṽ),
where ∥ṽ∥2 = ϕ∥v∥2 and |ṽ(i)| ≥ |v(i)| for all indices i ∈ [n].

Let sqϕ(v) denote the time cost of any query.

The parameter ϕ is the classical analogue of α for block-encodings. These appear in running
times of algorithms because they correspond to overhead in rejection sampling and post-
selection, respectively. More specifically, we will compare what we call (sub)normalization
“overhead” between the two, which is the value ϕ in the classical setting and what [GSLW19]
denotes as α in the quantum setting.

Lemma 4.4. Suppose we are given SQϕ(v) and some δ ∈ (0, 1]. Denote sq(v) :=
ϕ sqϕ(v) log

1
δ
. We can sample from Dv with probability ≥ 1 − δ in O(sq(v)) time. We

can also estimate ∥v∥ to ν multiplicative error for ν ∈ (0, 1] with probability ≥ 1− δ in
O( 1

ν2
sq(v)) time.

2This assumption is important. When input data is quantum (say, it is coming directly from a
quantum system), a classical computer has little hope of performing linear algebra on it efficiently, see for
example [ACQ22; CHM21].
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Proof. Consider the following rejection sampling algorithm to generate samples: sample
an index i from ṽ, and output it as the desired sample with probability r(i) := |v(i)|2

|ṽ(i)|2 .
Otherwise, restart. We can perform this: we can compute r(i) in O(sqϕ(v)) time and
r(i) ≤ 1 since ṽ bounds v.

The probability of accepting a sample in a round is
∑

i Dṽ(i)r(i) = ∥v∥2/∥ṽ∥2 = ϕ−1 and,
conditioned on a sample being accepted, the probability of it being i is |v(i)|2/∥v∥2, so
the output distribution is Dv as desired. So, to get a sample with ≥ 1 − δ probability,
run rejection sampling for at most 2ϕ log 1

δ
rounds.

To estimate ∥v∥2, notice that we know ∥ṽ∥2, so it suffices to estimate ∥v∥2/∥ṽ∥2 which
is ϕ−1. The probability of accepting the rejection sampling routine is ϕ−1, so we run
3ν−2ϕ log 2

δ
rounds of it for estimating ϕ−1. Let Z denote the fraction of them which end

in acceptance. Then, by a Chernoff bound we have

Pr[|Z − ϕ−1| ≥ νϕ−1] ≤ 2 exp
(
− ν2zϕ−1

2 + ν

)
≤ δ,

so Z∥ṽ∥2 is a good multiplicative approximation to ∥v∥2 with probability ≥ 1− δ.

Lemma 4.5 (Linear combinations, Proposition 4.3 of [Tan19]). Given SQφt
(vt) ∈ Cn and

λt ∈ C for all t ∈ [τ ], we have SQϕ(
∑τ

t=1 λtvt) for ϕ = τ
∑

φt∥λtvt∥2
∥
∑

λtvt∥2 and sqϕ(
∑
λtvt) =∑τ

t=1 sq(vt) (after paying O(
∑τ

t=1 sqφt
(vt)) one-time pre-processing cost to query for

norms).

Proof. Denote u :=
∑
λtvt. To compute u(s) for some s ∈ [n], we just need to query vt(s)

for all t ∈ [τ ], paying O(
∑

q(vt)) cost. So, it suffices to get SQ(ũ) for an appropriate
bound ũ. We choose

ũ(s) =
√
τ
∑τ

t=1 |λtṽt(s)|2,
so that |ũ(s)| ≥ |u(s)| by Cauchy–Schwarz, and ∥ũ∥2 = τ

∑τ
t=1 ∥λtṽt∥2 = τ

∑τ
t=1 φt∥λtvt∥2,

giving the desired value of ϕ.

We have SQ(ũ): we can compute ∥ũ∥2 by querying for all norms ∥ṽt∥, compute ũ(s)
by querying ṽt(s) for all t ∈ [τ ]. We can sample from ũ by first sampling t ∈ [τ ] with
probability ∥λtṽt∥2∑

ℓ ∥λℓṽℓ∥2
, and then taking our sample to be j ∈ [n] from ṽt. The probability

of sampling j ∈ [n] is correct:
τ∑

t=1

∥λtṽt∥2∑
ℓ ∥λℓṽℓ∥2

|ṽt(j)|2

∥ṽt∥2
=

∑τ
t=1|λtṽt(j)|2∑τ
ℓ=1 ∥λℓṽℓ∥2

=
|ũ(j)|2

∥ũ∥2
.

If we pre-process by querying all the norms ∥ṽℓ∥ in advance, we can sample from the
distribution over i’s in O(1) time, using an alias sampling data structure for the distribution
(??), and we can sample from ṽt using our assumed access to it, SQφt

(vt).

Definition 4.6 (Oversampling and query access to a matrix). For a matrix A ∈ Cm×n,
we have SQ(A) if we have SQ(A(i, ·)) for all i ∈ [m] and SQ(a) for a ∈ Rm the vector of
row norms (a(i) :=∥A(i, ·)∥).

We have SQϕ(A) if we have Q(A) and SQ(Ã) for Ã ∈ Cm×n satisfying ∥Ã∥2F = ϕ∥A∥2F and
|Ã(i, j)|2 ≥ |A(i, j)|2 for all (i, j) ∈ [m]× [n].

Let sqϕ(A) denote the cost of every query. We omit subscripts if ϕ = 1.
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Lemma 4.7. Given vectors SQφu
(u) ∈ Cm and SQφv

(v) ∈ Cn, we have SQϕ(A) for their
outer product A := uv† with ϕ = φuφv and sqϕ(A) = sqφu

(u) + sqφv
(v).

Proof. We can query an entry A(i, j) = u(i)v(j)† by querying once from u and v. Our
choice of upper bound is Ã = ũṽ†. Clearly, this is an upper bound on uv† and ∥Ã∥2F =
∥ũ∥2∥ṽ∥2 = φuφv∥A∥2F. We have SQ(Ã) in the following manner: Ã(i, ·) = ũ(i)ṽ†, so we
have SQ(Ã(i, ·)) from SQ(ṽ) after querying for ũ(i), and ã = ∥ṽ∥2ũ, so we have SQ(ã)
from SQ(ũ) after querying for ∥ṽ∥.

Using the same ideas as in Lemma 4.5, we can extend sampling and query access of input
matrices to linear combinations of those matrices.

Lemma 4.8. Given SQφ(t)(A(t)) ∈ Cm×n and λt ∈ C for all t ∈ [τ ], we have SQϕ(A) ∈
Cm×n for A :=

∑τ
t=1 λtA

(t) with ϕ = τ
∑τ

t=1 φ
(t)∥λtA(t)∥2F
∥A∥2F

and sqϕ(A) =
∑τ

t=1 sqφ(t)(A(t))

(after paying O(
∑τ

t=1 sqφ(t)(A(t))) one-time pre-processing cost).

Lemma 4.9 (Asymmetric matrix multiplication to Frobenius norm error, [DKM06,
Lemma 4]). Consider X ∈ Cm×n, Y ∈ Cm×p, and take S ∈ Rr×m to be sampled according
to p ∈ Rm a ϕ-oversampled importance sampling distribution from X or Y . Then,

E[∥X†S†SY −X†Y ∥2F] ≤
ϕ

r
∥X∥2F∥Y ∥2F

Proof. To show the first equation, we use that E[∥X†S†SY −X†Y ∥2F] is a sum of variances,
one for each entry (i, j), since E[X†S†SY −XY ] is zero in every entry. Furthermore, for
every entry (i, j), the matrix expression is the sum of r independent, mean-zero terms,
one for each row of S:

[X†S†SY −XY ](i, j) =
r∑

s=1

(
[SX](s, i)†[SY ](s, j)− 1

r
[X†Y ](i, j)

)
.

So, we can use standard properties of variances to conclude that

E[∥X†S†SY−X†Y ∥2F] = r·E[∥[SX](1, ·)†[SY ](1, ·)−1
r
X†Y ∥2F] ≤ r·E[∥[SX](1, ·)†[SY ](1, ·)∥2F]

= r

m∑
i=1

p(i)
∥X(i, ·)†Y (i, ·)∥2F

r2p(i)2
=

1

r

m∑
i=1

∥X(i, ·)∥2∥Y (i, ·)∥2

p(i)
≤ ϕ

r
∥X∥2F∥Y ∥2F.

Remark 4.10. This implies that, given SQϕ1
(X) and SQϕ2

(Y ), we can get SQϕ(M) for M a
sufficiently good approximation to X†Y , with ϕ ≤ ϕ1ϕ2

∥X∥2F∥Y ∥2F
∥M∥2F

. This is an approximate
closure property for oversampling and query access under matrix products.

Given the above types of accesses, we can compute the sketch S necessary for Lemma 4.9
by taking p = Dx̃ and q = Dỹ), thereby finding a desired M := X†S†SY . We can compute
entries of M with only r queries each to X and Y , so all we need is to get SQ(M̃) for M̃
the appropriate bound. We choose |M̃(i, j)|2 := r

∑r
ℓ=1 |[SX̃](ℓ, i)†[SỸ ](ℓ, j)|2; showing

that we have SQ(M) follows from the proofs of Lemmas 4.7 and 4.8, since M is simply a
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linear combination of outer products of rows of X̃ with rows of Ỹ . Finally, this bound
has the appropriate norm. Notating the rows sampled by the sketch as s1, . . . , sr, we have

∥M̃∥2F = r

r∑
ℓ=1

∥[SX̃](ℓ, ·)∥2∥[SỸ ](ℓ, ·)∥2 = r
r∑

ℓ=1

∥X̃(sℓ, ·)∥2∥Ỹ (sℓ, ·)∥2

r2(∥X̃(sℓ,·)∥2
2∥X̃∥2F

+ ∥Ỹ (sℓ,·)∥2
2∥Ỹ ∥2F

)2

≤
r∑

ℓ=1

∥X̃(sℓ, ·)∥2∥Ỹ (sℓ, ·)∥2

r(∥X̃(sℓ,·)∥∥Ỹ (sℓ,·)∥
∥X̃∥F∥Ỹ ∥F

)2
= ∥X̃∥2F∥Ỹ ∥2F = ϕ1ϕ2∥X∥2F∥Y ∥2F.

4.3 Applying the extensibility properties

Assuming A and b are in appropriate data structures in QRAM, we can implement a ∥A∥F-
block-encoding of A and prepare copies of |b⟩ efficiently, so we can quantumly produce a
sample from Ab in O(

∥A∥2F∥b∥
2

∥Ab∥2 ) time. We can dequantize this algorithm! Classically, under
identical assumptions, we can produce a sample from a v such that ∥v − Ab∥ ≤ ε∥Ab∥ in
O(

∥A∥4F∥b∥
4

ε2∥Ab∥4 ) time, only polynomially slower than quantum.

We note here that a dependence on error ε appears here where it does not in the quantum
setting. However, this is not a realizable quantum speedup (except possibly for sampling
tasks) since the output is a quantum state: estimating some statistic of the quantum state
requires incurring a polynomial dependence on ε. For example, if the goal is to estimate
|⟨v|Ab⟩|2, where v is a given vector, then this can be done with 1/ε2 invocations of a swap
test (or 1/ε if one uses amplitude amplification). More generally, distinguishing a state
from one ε-far in trace distance requires Ω(1/ε) additional overhead, even when given an
oracle efficiently preparing that state, so estimating quantities to this sensitivity requires
polynomial dependence on ε.

To see this, we first consider a simple case: where b is a constant-sized vector, so
n = O(1). Then we simply wish to sample from a linear combination of columns of A,
since Ab =

∑n
t=1 b(t)A(·, t). If A is in the QRAM data structure (i.e. storing A† in Fig. 4),

then this means its columns are in the vector QRAM data structures (Fig. 3), so classically
we have sampling and query access to the columns of A, SQ(A(·, t)) for all t ∈ [n]. This
implies we have sampling and query access to Ab, up to some overhead.

Given access to a constant number of vectors SQ(A(·, 1)), . . . , SQ(A(·, n)), we have access to
linear combinations SQϕ(Ab) with ϕ = n

∑n
t=1|b(t)|2∥A(·,t)∥2

∥Ab∥2 ≤ n∥A∥2F∥b∥
2

∥Ab∥2 and sqϕ(Ab) = O(n)

(Lemma 4.5; the inequality follows from Cauchy-Schwarz). Finally, from SQϕ(Ab) we can
perform approximate versions of all the queries of SQ(Ab) with a factor ϕ of overhead
(Lemma 4.4). This is possible with rejection sampling: given SQϕ(v), pull a sample i
from ṽ; accept it with probability |v(i)|2/|ṽ(i)|2, and restart otherwise; the output will
be a sample from v. In particular, we can sample from Ab in ϕn = O(n2 ∥A∥2F∥b∥

2

∥Ab∥2 ) time in
expectation, which is good when n = O(1).

Now, consider when n is too large to iterate over in our linear combination of vectors. In
this setting, we can use the approximate matrix product property of importance sampling
to reduce the number of vectors under consideration. Consider pulling a sample s ∈ [n]
where we sample i with probability p(i). Then 1

p(s)
b(s)A(·, s), a rescaled random column

of A, has expectation
∑

i b(i)A(·, i) = Ab. If the sampling distribution is chosen to be
p(i) = |b(i)|2

∥b∥2 , an importance sample from SQ(b), then a variance computation shows
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that the average of τ = Θ(
∥A∥2F
ε2∥A∥2 ) copies of this random vector is ε∥A∥∥b∥-close to Ab

with probability ≥ 0.9 (Lemma 4.9). This average, which we denote v, is now a linear
combination of only τ columns of A, each of which we have sampling and query access. So,
we can use the closure properties mentioned before to get SQϕ(v) for ϕ = O(

∥A∥2F∥b∥
2

∥v∥2 ) and

sqϕ(v) = O(τ), and a sample from v in ϕτ = O(
∥A∥4F∥b∥

2

ε2∥A∥2∥v∥2 ) time in expectation. Rescaling
ε by a factor of ∥Ab∥

∥A∥∥b∥ gives the result stated above.
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