
1 The block-encoding
We begin with a problem:

Problem (Hamiltonian simulation). Let H be a Hamiltonian made up of m Pauli terms,
meaning that

H =
m∑
a=1

λaEa where Ea is a tensor product of Pauli matrices.

Find an algorithm implementing a unitary U close to e−iHt, so that ∥U − eiHt∥ ≤ ε.

Original solutions proceeded by using Trotter approximations: for r large enough,

e−iHt ≈ (e−iE1t/re−iE2t/r · · · e−iEmt/r)r,

However, this solution is far from optimal, notably because implementing this approxima-
tion requires poly(1/ε) gate complexity. Improved algorithms [BCCKS17; LC17; LC19]
eventually developed into the framework I will present now [GSLW19].

This framework proceeds by:

1. Defining a type of quantum circuit called a “block-encoding”;

2. Showing that, given λa and Ea, we can construct an efficient block-encoding of H;

3. Showing that we can get a block-encoding of (an approximation of) e−iHt with few
uses of the block-encoding to H;

4. Using this block-encoding to apply our approximation to a state.

1.1 Block-encodings

Definition 1.1 (Variant of [GSLW19, Definition 43], [Ral20, Definition 1]). Given
A ∈ Cr×c, we say U ∈ Cd×d is a Q-block encoding of A if U is implementable with O(Q)
gates and

B†
L,1UBR,1 = A, (1)

where BL,1 ∈ Cd×r, BR,1 ∈ Cd×c are the first r and c columns of the identity matrix.
Equivalently,

U =

(
A ·
· ·

)
, (2)

where · denotes arbitrary elements of U . We denote ΠL = BL,1B
†
L,1, ΠR = BR,1B

†
R,1 to be

the corresponding projections onto the spans of BL,1 and BR,1, respectively.

We’ll often consider d, r, and c as powers of two so that we can write everything in terms
of qubits. The equation in Definition 1.1 then becomes

(⟨0|⊗aL ⊗ I)U(|0⟩⊗aR ⊗ I) = A. (3)

In the literature, you’ll often see block-encodings defined with an accuracy parameter ε
and a rescaling parameter α, allowing for approximation:

∥A/α−B†
L,1UBR,1∥ ≤ ε.

1

In these lecture notes, we usually drop the (ε, α) parameters, and instead say that we
have a 0-accurate 1-scaled block-encoding of Ã/α for ∥Ã/α − A/α∥ ≤ ε/α. Definitions
sometimes also allow BL,1 and BR,1 to be arbitrary isometries [GSLW19, Definition 11];
this is not any more general, since then B†

LUBR is a block-encoding in the sense above,
where BL, BR ∈ Cd×d are unitary completions of BL,1 and BR,1.

We can view the block-encoding as a generalization of a unitary quantum circuit.

Lemma 1.2. A quantum circuit implementing the unitary U with Q gates is a Q-block
encoding of U .

In the way that we apply a circuit implementing U to perform the map |ψ⟩ 7→ U |ψ⟩, a
block-encoding of A can be used to perform the map |ψ⟩ 7→ A |ψ⟩, with some chance of
failure. This allows us to perform more general types of linear algebraic operations than
what unitary circuits offer.

Lemma 1.3. Given U ∈ Cd×d, a Q-block encoding of A ∈ Cr×c, and a state |ψ⟩ ∈ Cc,
there is a quantum circuit with O(Q) gates that produces the state A|ψ⟩

∥A|ψ⟩∥ with probability
∥A |ψ⟩∥2.

|0⟩⊗a
U

|ψ⟩

Figure 1: A basic block-encoding circuit. If U is a block-encoding of the matrix A ∈ Cr×r,
then provided the outcome of the measurement on the first wire is |0⟩⊗a, then the output
of the circuit is A |ψ⟩.

Proof. The circuit is shown in Fig. 1: we can take the state |ψ⟩ and add aR qubits
initialized to |0⟩. Then, we apply the block-encoding U and measure the first aL qubits.
If they all have outcome 0, then by Eq. (3), the resulting state is A |ψ⟩. This occurs with
probability ∥A |ψ⟩∥2.

1.2 Extensibility properties of block-encodings

The question now becomes: when can we produce an efficient block-encoding of a matrix?
In fact, we can re-cast the problem of Hamiltonian simulation as follows: given 1-block
encodings of {Ea}a∈[m] defining the Hamiltonian H =

∑m
a=1 λaEa, can we get a block-

encoding of (an approximation of) e−iHt? Block-encodings enjoy several extensibility
properties : that is, given block-encodings of A and B, we can get block-encodings of AB
and c0A+ c1B under some mild conditions. This will allow us to get a block-encoding of
H/α for some rescaling constant α.

Lemma 1.4 (Multiplication of block-encodings). Let U and V be QU - and QV -block-
encodings of A ∈ Cr×s and B ∈ Cs×t, respectively. Then we can construct a (QU +QV)-
block encoding of AB.

Proof. The circuit implementing AB is shown in Fig. 2. We can see that this is a
block-encoding of AB by inspection, as this is a composition of two of the circuits in
Fig. 1.

2

|0⟩⊗aV

V|0⟩⊗aU
U

//

|ψ⟩

Figure 2: If U is a block-encoding of A and V is a block-encoding of B, then this circuit
is a block-encoding of AB, shown being applied to input |ψ⟩. Here, aU and aV are the
padding needed for the respective block-encodings.

We can construct block-encodings of linear combinations of block-encodings using the
Linear Combination of Unitaries (LCU) algorithm.

Lemma 1.5 (Linear combination of block-encodings). Let U (i) be a Q(i)-block-encoding
of A(i) ∈ Cr×c for all i = 0, . . . , k − 1. Then we can construct a (k +

∑k−1
i=0 Q

(i))-block
encoding of

∑
αiU

(i), for αi ∈ C such that
∑

|αi| ≤ 1.

|0⟩ V † • V

|0⟩⊗a
U (0) U (1)

|ψ⟩

Figure 3: If U (1) and U (2) are block-encodings of A(1) and A(2), then this circuit is a
block-encoding of |V0,0|2A(0) + |V0,1|2A(1), shown being applied to input |ψ⟩. Here, the
gate blocks containing U (0) and U (1) denote conditioning on |1⟩ and conditioning on |1⟩.

Proof. First, consider when taking the linear combination of k = 2 block-encodings. The
circuit implementing a linear combination is shown in Fig. 3. The controlled-U (0) and
controlled-U (1) apply the unitary(

U (0)

I

)(
I

U (1)

)
=

(
U (0)

U (1)

)
︸ ︷︷ ︸

(|0⟩⟨0|)⊗U(0)+(|1⟩⟨1|)⊗U(1)

(4)

So, the full circuit is performing(
V0,0I V0,1I
V1,0I V1,1I

)†(
U (0)

U (1)

)(
V0,0I V0,1I
V1,0I V1,1I

)
︸ ︷︷ ︸

(V †|0⟩⟨0|V)⊗U(0)+(V †|1⟩⟨1|V)⊗U(1).

(5)

The top-right corner of this matrix, which is where the block-encoding should be, equals

|V0,0|2U (0) + |V1,0|2U (1).

So, for any non-negative real α0, α1 summing to one, we can find some one-qubit unitary
V whose first column is

√
α0,

√
α1, giving the desired block-encoding. If, say, α0 was

negative, we could use the circuit for |α0|, but use a controlled unitary of −U (0) instead
of U (0) to negate it in the block-encoding.

3

The general version is of the following form. First, if U is a block-encoding of A then so
is I ⊗ U , so without loss we can pad the dimension until all U (i)’s are all the same size,
d× d. Second, without loss we can pad our linear combination until k is a power of two
by adding U (i) = I and αi = 0 to the linear combination. Let V ∈ Ck×k be a unitary such
that

V |0⟩ =
k∑
i=0

√
|αi| |i⟩

and let U ∈ Ckd×kd be the unitary
k−1∑
i=0

(|k⟩ ⟨k|)⊗ (
αi
|αi|

)U (i)).

Then (V † ⊗ I)U(V ⊗ I) is a block-encoding of
∑
αiU

(i). The cost of applying V is O(k),
and assuming that the cost of applying the controlled version of U (i) is only a constant
factor larger than the cost of applying U (i) itself, the cost of U is O(k +

∑
iQ

(i)).

1.3 The “fundamental theorem” of block-encodings

These extensibility theorems are powerful: one might notice that we can combine them to
get block-encodings of polynomials of A. “Polynomials of A” has a clear meaning when A
is Hermitian: for a function f : R → C, f(A) is defined to be the function that applies
f to the eigenvalues of A: for A =

∑
λiu

(i)(u(i))† the unitary eigendecomposition of A,
f(A) =

∑
f(λi)u

(i)(u(i))†.

Definition 1.6 ([GSLW19, Definition 16]). Let f : R → C be even or odd, and let
A ∈ Cr×c have SVD A =

∑
i∈[min(r,c)] σiuiv

†
i . Then we define

f (SV)(A) =

{∑
i∈[min(r,c)] f(σi)uiv

†
i f is odd∑

i∈[c] f(σi)viv
†
i f is even

where σi is defined to be zero for i > min(r, c).

When f(x) = p(x) is an even or odd polynomial, p(SV)(A) can be written as a polynomial
in the expected way, e.g. if p(x) = x2 + 1, p(SV)(A) = A†A + I and if p(x) = x3 + x,
p(SV)(A) = AA†A+ A.

Definition 1.7. A degree-d polynomial p ∈ C[x] is “achievable” if there is an explicit way
to convert a block-encoding of A to a block-encoding of p(SV)(A).

Corollary 1.8 (Corollary of the extensibility properties). Polynomials of the form
p(x) =

∑d
k=0 akx

k are achievable, provided that
∑

|ak| ≤ 1 and p is odd or even.

With this definition in hand, we are now ready to state the main result of the QSVT
framework, which states that all bounded polynomials are achievable.

Theorem 1.9 ([GSLW19, Theorem 17 and Corollary 18]). If a polynomial with real
coefficients p ∈ R[x] is even or odd and satisfies |p(x)| ≤ 1 for all x ∈ [−1, 1], then it is
achievable.

This is the most we could hope for, since we could never get a block-encoding of p(SV)(A)
if p(SV)(A) has norm greater than one.

4

1.4 Wielding our tool

Hamiltonian simulation gives a nice view into how to use block-encodings and QSVT. As
we discussed before, we can construct a m-block-encoding of H/(

∑
|λi|). Rescaling time,

we can take
∑

|λi| = 1 without loss of generality. Our goal is to get an (approximate)
block-encoding of f(H), where

f(x) = exp(−ixt) = cos(tx)− i sin(tx). (6)

Since cos(tx) and sin(tx) are bounded even and odd functions, respectively, we can find
good polynomial approximations of them. That is, we can find c and s such that, for all
x ∈ [−1, 1],

|c(x)− cos(tx)| ≤ ε |s(x)− sin(tx)| ≤ ε

By Theorem 1.9, we can get block-encodings of c(SV)(H) and s(SV)(H). By Lemma 1.5, we
can get a block-encoding of 1

2
(c(SV)(H)− is(SV)(H)) ≈ 1

2
e−iHt. This is enough if we wish

to apply it to an input state |ψ⟩, but to decrease the failure probability we can remove
the 1

2
through oblivious amplitude amplification, which can be done with QSVT.

I haven’t yet discussed gate complexity or the error analysis, but we will see that the
running time of the whole algorithm is dictated by how small the degree can be of
polynomials approximating cos(tx) and sin(tx). Up to constant factors of wiggle room in
the parameters, the number of times one needs to apply the block-encoding for H is equal
to this degree, and we get optimal algorithms for Hamiltonian simulation by choosing the
optimal polynomial approximations.

References
[BCCKS17] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and

Rolando D. Somma. “Exponential improvement in precision for simulating
sparse hamiltonians”. In: Forum of Mathematics, Sigma 5 (2017), e8. doi:
10.1017/fms.2017.2. arXiv: 1312.1414 [quant-ph] (page 1).

[GSLW19] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. “Quantum
singular value transformation and beyond: Exponential improvements for
quantum matrix arithmetics”. In: Proceedings of the 51st ACM Symposium
on the Theory of Computing (STOC). ACM, June 2019, pp. 193–204. doi:
10.1145/3313276.3316366. arXiv: 1806.01838 (pages 1, 2, 4).

[LC17] Guang Hao Low and Isaac L. Chuang. “Optimal hamiltonian simulation by
quantum signal processing”. In: Physical Review Letters 118.1 (Jan. 2017),
p. 010501. doi: 10.1103/PhysRevLett.118.010501. arXiv: 1606.02685
[quant-ph] (page 1).

[LC19] Guang Hao Low and Isaac L. Chuang. “Hamiltonian simulation by qubitiza-
tion”. In: Quantum 3 (July 2019), p. 163. doi: 10.22331/q-2019-07-12-163
(page 1).

[Ral20] Patrick Rall. “Quantum algorithms for estimating physical quantities using
block encodings”. In: Physical Review A 102.2 (Aug. 2020), p. 022408. doi:
10.1103/physreva.102.022408. arXiv: 2004.06832 [quant-ph] (page 1).

5

https://doi.org/10.1017/fms.2017.2
https://arxiv.org/abs/1312.1414
https://doi.org/10.1145/3313276.3316366
https://arxiv.org/abs/1806.01838
https://doi.org/10.1103/PhysRevLett.118.010501
https://arxiv.org/abs/1606.02685
https://arxiv.org/abs/1606.02685
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1103/physreva.102.022408
https://arxiv.org/abs/2004.06832

	The block-encoding
	Block-encodings
	Extensibility properties of block-encodings
	The ``fundamental theorem'' of block-encodings
	Wielding our tool

