
3 Approximating many things by polynomials
In the previous lecture, we showed that we can get block-encodings of p(SV)(A) from
block-encodings of A, provided that p(x) is an even or odd polynomial such that |p(x)| ≤ 1
for x ∈ [−1, 1]. Roughly, this turned a Q-block encoding to a dQ-block encoding. For
applications of interest, the main goal is actually to apply a non-polynomial function; to
capture these applications, we need tools for approximating the relevant functions with
bounded polynomials. In this lecture, we introduce Chebyshev polynomials, our main tool
for constructing such approximations. We will see that the class of low-degree bounded
polynomials is expressive enough for many applications.

3.1 Chebyshev polynomials and properties

Chebyshev polynomials are a very common tool in applied math; we’ll cover a small
amount of the theory here.

Definition 3.1 (Chebyshev polynomial). The degree-n Chebyshev polynomial (of the
first kind), denoted Tn(x), is the function that satisfies, for all z ∈ C,

Tn(
1
2
(z + z−1)) = 1

2
(zn + z−n). (1)

We can see this is a polynomial by verifying that Tn satisfies the recurrence

Tn = 2x · Tn−1 − Tn−2,

with T0 = 1 and T1 = x. Plugging in z = exp(iθ) for θ ∈ [−π, π], we get another familiar
definition of the Chebyshev polynomials,

Tn(cos(θ)) = cos(kθ).

From these definitions we have that ∥Tn(x)∥[−1,1] ≤ 1, and that Tn has the same parity as
n, i.e. Tn(−x) = (−1)nTn(x).

Under mild “niceness” conditions, any function can be written as a series of Chebyshev
polynomials f(x) =

∑
k≥0 akTk(x).

Lemma 3.2 ([Tre19, Theorem 3.1]). Let f : [−1, 1] → R be Lipschitz (i.e. |f(x)− f(y)| ≤
C|x− y| for finite C). Then f has a unique decomposition into Chebyshev polynomials

f(x) =
∞∑
k=0

akTk(x),

where the Chebyshev coefficients ak absolutely converge.

This is true for the same reason functions have Fourier series. In fact, the theory of
Chebyshev polynomials is a parallel theory. For z = eiθ, define g(z) = f(1

2
(z + z−1)).

Then g(z) is a function on the unit circle with a Laurent series.

g(z) =
∑
k

akTk(
1

2
(z + z−1)) =

∑
k

ak
2
(zk + z−k).

For θ ∈ [−π, π], define h(θ) = g(eiθ) = f(1
2
(eiθ+e−iθ)). Then h(θ) is a 2π-periodic function

with a Fourier series.

h(θ) =
∑
k

akTk(
1

2
(eiθ + e−iθ)) =

∑
k

ak
2
(eikθ + e−ikθ).
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Lemma 3.3 (Orthogonality property). {Tk}k are orthogonal under a particular choice of
inner product.

2

π

∫ 1

−1

Tk(x)Tℓ(x)√
1− x2

dx =

{
1 k = ℓ

0 otherwise

Proof. Substituting x = cos(θ) and dx = − sin(θ)dθ = −
√
1− x2dθ,∫ 1

−1

Tk(x)Tℓ(x)√
1− x2

dx =

∫ 0

π

−Tk(cos(θ))Tℓ(cos(θ))dz

=

∫ π

0

− cos(kθ) cos(ℓθ)dz =

{
π
2

k = ℓ

0 otherwise

(When k = ℓ = 0, we have π instead.)

Lemma 3.4 (Chebyshev coefficients, [Tre19, Theorem 3.1]). For f(x) with a Chebyshev
series f(x) =

∑
k≥0 akTk(x), the Chebyshev coefficients can be computed with the integral

ak =
2

π

∫ 1

−1

f(x)Tk(x)√
1− x2

dx. (2)

For k = 0 the same formula holds with the factor 2/π changed to 1/π.

Lemma 3.5 (Chebyshev coefficients are bounded). If ∥f(x)∥[−1,1] ≤ 1, then

|ak| =
2

π

∣∣∣∫ 1

−1

f(x)Tk(x)√
1− x2

dx
∣∣∣

≤ 2

π

∫ 1

−1

∥f∥[−1,1]∥Tk∥[−1,1]√
1− x2

dx

≤ 2

π

∫ 1

−1

1√
1− x2

dx

≤ 2.

This does not hold for polynomials in the monomial basis: ∥Tn∥[−1,1] = 1, but the monomial
of the leading coefficient is 2n−1.

3.2 Approximating functions from Chebyshev series

Definition 3.6 (Chebyshev truncation). For a function f : [−1, 1] → C written as a
Chebyshev series f(x) =

∑∞
k=0 akTk(x), we denote the degree-n Chebyshev truncation of

f as

fn(x) =
n∑

k=0

akTk(x).
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If the function f one wishes to approximate is standard, closed forms of the Chebyshev
coefficients may be known, so one can take a Chebyshev truncation and explicitly bound
the error:

∥f − fn∥[−1,1] =
∥∥∥ ∞∑
k=n+1

akTk(x)
∥∥∥
[−1,1]

≤
∞∑

k=n+1

|ak|∥Tk(x)∥[−1,1] =
∞∑

k=n+1

|ak|.

In other words, by choosing n such that the coefficient tail sum is bounded by ε, we obtain
an ε-uniform approximation on [−1, 1]. If we had these Chebyshev coefficients explicitly,
we could bound them directly to get a polynomial approximation. However, we may not
know explicitly what the Chebyshev coefficients of our desired function is, so we can’t
easily bound them. The following shows that the Chebyshev coefficient tail is exponential,
provided that the function is analytic around [−1, 1].

Theorem 3.7 ([Tre19, Theorems 8.1 and 8.2]). Let f be an analytic function in [−1, 1] and
analytically continuable to the interior of the Bernstein ellipse Eρ = {1

2
(z+ z−1) : |z| = ρ},

where it satisfies |f(x)| ≤ M . Then its Chebyshev coefficients satisfy |a0| ≤ M and
|ak| ≤ 2Mρ−k for k ≥ 1.

Corollary 3.8. Consequently, for each n ≥ 0, its Chebyshev projections satisfy

∥f − fn∥[−1,1] ≤
∑

k≥n+1

|ak| ≤ 2M
∑

k≥n+1

ρ−k =
2Mρ−n

ρ− 1
,

and choosing n = ⌈ 1
log(ρ)

log 2M
(ρ−1)ε

⌉, we have ∥f − fn∥[−1,1] ≤ ε.

Proof. Recall from (2) (and since inverting z does not change the contour integral) that
for k ≥ 1,

ak =
1

πi

∫
|z|=1

z−(k+1)f(1
2
(z + z−1))dz.

The boundary of Eρ is given by 1
2
(z + z−1) for |z| = ρ, and f is analytic in Eρ, so we may

choose a different contour without affecting the value of the integral:

ak =
1

πi

∫
|z|=ρ

z−(k+1)f(1
2
(z + z−1))dz.

The conclusion follows from the facts that the circumference of |z| = ρ is 2πρ and the
function is bounded by M . A similar argument gives the case k = 0, where (2) has 2πi in
the denominator.

Fact 3.9. The Bernstein ellipse Eρ for ρ = 1 + δ ≤ 2 satisfies

interior(Eρ) ⊂
{
x+ iy | x, y ∈ R, |x| ≤ 1 +

δ2

2
and |y| ≤ δ

}
.

Corollary 3.10 (Application to Hamiltonian simulation). Consider the function sin(tx).
Then for z = a+ ib on the interior of the Bernstein ellipse Eρ,

|sin(tz)| ≤ 1
2
|eitz − e−itz|

≤ 1
2
(|e−bt|+ |ebt|) ≤ e|bt|.
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So, choosing ρ = 1 + 1/t, we can apply the theorem with M = O(1). When t ≥ 1, this
gives an ε-good approximation for the Chebyshev truncation of degree

n = O(t log
t

ε
).

This isn’t tight; the Chebyshev coefficients of sin(tx) actually decay super-exponentially [TT23].

Remark 3.11 (Chebyshev approximation vs Taylor series approximation). You might be
wondering what the difference is between truncating a Chebyshev series and truncating
a Taylor series, perhaps a more commonly known tool for polynomial approximation.
In fact, one can make a similar statement to the above (see [GSLW19, Corollary 66]),
but it becomes difficult to apply in settings where one does not know the Taylor series.
Note that this does not always give the right polynomial approximation; for example,
truncating the Taylor series of ex does not give the optimal degree.

Theorem 3.7 shows that if one can analytically continue f to a Bernstein ellipse with
ρ = 1 + α for small α, then a degree ≈ 1

α
polynomial obtains good approximation error

on [−1, 1]. Unfortunately, since the approximation in Theorem 3.7 is based on Chebyshev
truncation, the approximation rapidly blows up outside the range [−1, 1] (i.e. growing
as O(|x|n) for x sufficiently outside [−1, 1]). In interesting applications of the QSVT
framework, this is an obstacle. For example, to use QSVT for solving a system of linear
equations, we need a polynomial approximation to x−1 on [δ, 1] that is bounded on [−1, 1].
Upon linearly remapping [δ, 1] to [−1, 1], this corresponds to a bounded approximation on
[−b, 1] for some b > 1, so Chebyshev truncations give us a very poor degree of control.

Chebyshev truncation is not enough for our purposes, since our criteria is different from
uniform approximation on [−1, 1]. For quantum linear systems, we require a polynomial
approximation close to 1/x on [−1,−1/κ]∪ [1/κ, 1], but it merely needs to be bounded on
[−1/κ, 1/κ]. This bounded requirement is necessary for our block-encoding machineary.

As [GSLW19] points out, there are generic ways to find approximations to piecewise
smooth functions which satisfy this sort of “ε-close on smooth pieces, but bounded near
points of discontinuity” requirement, with log 1

ε
scaling in the degree.

Theorem 3.12 ([TT23, Theorem 19]). Let f be an analytic function in [−1, 1] and
analytically continuable to the interior of Eρ where ρ = 1 + α, where it is bounded by M .
For δ ∈ (0, 1

C
min(1, α2)) where C is a sufficiently large constant, ε ∈ (0, 1), and b > 1,

there is a polynomial q of degree O( b
δ
log b

δε
) such that

∥f − q∥[−1,1] ≤ Mε,

∥q∥[−(1+δ),1+δ] ≤ M,

∥q∥[−b,−(1+δ)]∪[1+δ,b] ≤ Mε.

Proof sketch. 1. Applying Theorem 3.7 gives fn of degree n ≈ 1
α

approximating f in
the interval [−1, 1], but fn does not satisfy the other required conclusions due to its
growth outside [−1, 1].

2. We multiply fn by a “threshold” r based on the Gaussian error function erf, whose
tails decay much faster than the Chebyshev polynomials grow outside [−1, 1]. Our
function r has the property that inside [−1, 1], it is close to 1, and outside [−(1 +
δ), 1 + δ], it is close to 0.
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3. Using bounds on the growth of erf, we show r · fn is bounded on a Bernstein ellipse
of radius 1 + δ

b
appropriately rescaled, and applying Theorem 3.7 once more gives

the conclusion.

The final proof requires some care to obtain the claimed scalings on the windows of
approximation, but we include this tedium to make the theorem statement as simple to
use as possible.

Corollary 3.13. Let δ, ε ∈ (0, 1), and let f(x) = | δ
x
|. There exist both even and odd

polynomials p(x) of degree O(1
δ
log 1

δε
) such that ∥p∥[−1,1] ≤ 3 and ∥p− f∥[δ,1] ≤ ε.

Proof. Assume δ is sufficiently small, else taking a smaller δ only affects the bound by a
constant. We rescale the region of interest: x = 1−δ

2
y+ 1+δ

2
is in [δ, 1] for y ∈ [−1, 1], so let

g(y) := δ
(1− δ

2
y +

1 + δ

2

)−c

.

We require a bound of g on Eρ for ρ = 1 +
√

δ/4. Since f is largest closest to the origin,
g is largest at the point closest to −1+δ

1−δ
, i.e. −1

2
(ρ+ ρ−1) > −(1 + δ

8
) by Fact 3.9. Further,

g(−1

2
(ρ+ ρ−1)) ≤ g(−(1 +

δ

8
))

≤ δ
(
− 1− δ

2
(1 +

δ

8
) +

1 + δ

2

)−1

= (1− 1− δ

16
)−1 ≤ 3

2
.

Let δ̃ = δ
4C

for sufficiently large C, and b = 4. Theorem 3.12 yields q(y) satisfying:

∥q(y)− g(y)∥[−1,1] ≤ ε, ∥q(y)∥[−(1+δ̃),1+δ̃] ≤ 2, ∥q(y)∥[−4,−(1+δ̃)]∪[1+δ̃,4] ≤ ε.

Shifting back y = 2
1−δ

(x− 1+δ
2
), it is clear for sufficiently large C that y = −1+3δ

1−δ
(which

corresponds to x = −δ) has y < −(1 + δ̃), and y = −3+δ
1−δ

(which corresponds to x = −1)
has y > −4. So, ∥∥∥∥q( 2

1− δ
(x− 1 + δ

2
))− f(x)

∥∥∥∥
[δ,1]

≤ ε,∥∥∥∥q( 2

1− δ
(x− 1 + δ

2
))

∥∥∥∥
[−δ,δ]

≤ 2,∥∥∥∥q( 2

1− δ
(x− 1 + δ

2
))

∥∥∥∥
[−1,−δ]

≤ ε.

(3)

Depending on whether we wish the final function to be even or odd, we take

p(x) = q(
2

1− δ
(x− 1 + δ

2
))± q(

2

1− δ
(−x− 1 + δ

2
)).

Then the guarantees of (3) give ∥p(x)−f(x)∥[δ,1] ≤ 2ε and ∥p(x)∥[−1,1] ≤ 3, and we rescale
ε to conclude. The final degree of the polynomial is the degree of q(y): O(1

δ
log 1

δε
).
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3.3 Lower bounds on polynomial approximation

There are limitations to what kinds of functions can be approximated by low-degree
polynomials. The most common lower bounds to keep in mind are the Markov brothers’
and Bernstein inequalities:

Theorem 3.14 ([Sch41, Theorem 1]). Let p(x) be a degree n polynomial such that
∥p(x)∥[−1,1] ≤ 1. Then

∥p′(x)∥[−1,1] ≤ n2 (4)

Theorem 3.15 ([Sch41, Theorem 2]). Let p(x) be a degree n polynomial such that
∥p(x)∥[−1,1] ≤ 1. Then

∥p′(x)∥[−1,1] ≤
n√

1− x2
. (5)

Remark 3.16. This means that a bounded polynomial has derivative O(n) near the center of
[−1, 1], but can be O(n2) near the edge. This suggests that functions can be approximated
better when its worst-conditioned pieces are on the edges of [−1, 1]. This is true: note
that the above argument shows that sufficiently good bounded polynomial approximations
to δ/x on [−1,−δ] ∪ [δ, 1] must have degree Ω(1/δ).

However, suppose we have a block-encoding of I − A, where A is a Hermitian matrix.
That ∥I −A∥ ≤ 1 implies that A is PSD, and suppose its eigenvalues are in [δ, 2]. We can
then get an approximate block-encoding of A−1 via a polynomial approximation of

1

1− x
for x ∈ [−1 + δ, 1].

There is a O(
√
δ)-degree polynomial approximation of this, implying that we can invert a

matrix quadratically faster if we get this block-encoding [OD21].

1

x− (1 + δ)
=

−2√
2δ − δ2

∞′∑
k=0

(1 + δ −
√
2δ + δ2)kTk(x)
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