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Stable Vortex Surfaces

Abstract

We offer a new approach to the theory of vortex sheet
turbulence. The origin of irreversibility is the microscopic
stability of the vortex sheet, leading to new boundary
conditions for the local strain at the surface, restricting its
shape. The position and scale of the vortex surface
remains arbitrary. The scale is related to the energy
dissipation, but the position remains as a zero mode.
These random positions in ensemble of closed vortex
surfaces distributed in infinite space, lead to spontaneous
stochasticity. The Gaussian random background strain
tensor is created self-consistently as a mean field in
statistical mechanics and it determines statistics of vortex
structures. We prove the conservation of the surface
energy dissipation in the Navier-Stokes equation under
these boundary conditions and present exact solutions.
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Hamiltonian Dynamics of Vortex Surfaces

The following general ansatz [1] describes the vortex sheet vor-
ticity:

ω⃗(r⃗) =

∫
Σ
dΩ⃗δ3

(
X⃗ − r⃗

)
(1)

where the 2-form

dΩ⃗ ≡ dΓ ∧ dX⃗ = dξ1dξ2eab
∂Γ

∂ξa

∂X⃗

∂ξb
; (2)

This vorticity is zero everywhere in space, except the surface,
where it is infinite. To describe the physical vorticity of the
fluid, this ansatz must satisfy the divergence equation (the con-
servation of the ”current” ω⃗ in the language of statistical field
theory)

∇⃗ · ω⃗ = 0; (3)
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Hamiltonian Dynamics of Vortex Surfaces

This relation is built into this ansatz for arbitrary Γ(ξ), as can be
verified by direct calculation. In virtue of the singular behavior
of the Dirac delta function, it may be easier to understand this
calculation in Fourier space

ω⃗F (k⃗) =

∫
d3reı k⃗·r⃗ω⃗(r⃗) =

∫
Σ
dΩ⃗eı k⃗·X⃗ ; (4)

ı k⃗ · ω⃗F (k⃗) =

∫
Σ
dΓ ∧ dX⃗ · (ı k⃗)eı k⃗·X⃗ =∫

Σ
dΓ ∧ deı k⃗·X⃗ =

∫
∂Σ

dΓeı k⃗·X⃗ ; (5)

In case there is a boundary of the surface, this Γ(ξ) must be a
constant at the boundary for the identity k⃗ ·ωF (k⃗) = 0 to hold.
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Hamiltonian Dynamics of Vortex Surfaces

It may be instructive to write down an explicit formula for the
tangent components of vorticity in the local frame, where x, y is
a local tangent plane and z is a normal direction

ωj(x, y, z) = ∂iΓeijδ(z); (6)

ωz(x, y, z) = 0; (7)

In particular, outside the surface, ω⃗ = 0, so that its divergence
vanishes trivially.

The divergence is manifestly zero in this coordinate frame

∇⃗ · ω⃗ = δ(z)∂j∂iΓeij = 0; (8)
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Hamiltonian Dynamics of Vortex Surfaces

Let us compare this with the Clebsch representation

ωα = eαβγ∂βϕ1∂γϕ2, (9)

We see that that in case ϕ2 takes one space-independent value
ϕin
2 inside the surface and another space-independent value ϕout

2

outside, the vorticity will have the same form, with

Γ = ϕ1(ϕ
in
2 − ϕout

2 ) (10)

Thus, the closed vortex sheets are bubbles of confined constant
Clebsch field.

The vortex surfaces with a boundary curve [2] are more complex
topological objects made out of the Clebsch field on a unit sphere
S2.
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Hamiltonian Dynamics of Vortex Surfaces

The surface is driven by the self-generated velocity field (arith-
metic mean of velocity above and below the surface).

Let us substitute our ansatz for vorticity into the Biot-Savart
integral for the velocity field and change the order of integration

v⃗(r⃗) = − 1

4π
∇⃗ ×

∫
d3r′

1

|r⃗ − r⃗′|

∫
dΩ⃗δ3(X − r⃗′) =

1

4π

∫
dΩ⃗× ∇⃗ 1

|r⃗ − X⃗|
(11)

The tangent gap in velocity is directly related to the gradient of
the potential gap Γ = Φ+ − Φ−

∆v⃗ = ∇⃗Γ (12)
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Hamiltonian Dynamics of Vortex Surfaces

The Lagrange equations of motion for the surface

∂tX⃗(ξ) = v⃗
(
X⃗(ξ)

)
; (13)

∂tΓ = 0 (14)

were shown in [1], [3] to follow from the action

S =

∫
ΓdV −

∫
Hdt; (15)

dV = dξ1dξ2dt
∂X⃗

∂ξ1
× ∂X⃗

∂ξ2
· ∂tX⃗; (16)

H =
1

2

∫
d3rv⃗2 =

1

2

∫
S

∫
S

dΩ⃗ · dΩ⃗′

4π|X⃗ − X⃗ ′|
; (17)

This dV is the 3-volume swept by the surface area element in
its movement for the time dt.
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Hamiltonian Dynamics of Vortex Surfaces

The easiest way to derive the vortex sheet representation for
the Hamiltonian is to go in Fourier space where the convolution
becomes just a multiplication and use the incompressibility con-
dition k⃗ · v⃗F (k⃗) = 0

ω⃗F (k⃗) = ı k⃗ × v⃗F (k⃗); (18)

v⃗F (k⃗) · v⃗F (−k⃗) =
ω⃗F (k⃗) · ω⃗F (−k⃗)

k⃗2
(19)

In the case of the handle on a surface, Γ acquires extra term
∆Γ =

∮
γ ∆v⃗ · dr⃗ when the point goes around one of the cycles

γ = {α, β} of the handle.
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Figure: The green vortex bubble T cut vertically by a red disk DC .
The vorticity flux through the disk reduces to integral of velocity
discontinuity over α cycle.
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Hamiltonian Dynamics of Vortex Surfaces

This ∆Γ does not depend on the path shape because there is no
normal vorticity at the surface, and thus there is no flux through
the surface. This topologically invariant ∆Γ represents the flux
through the handle cross-section.

This ambiguity in Γ makes our action multivalued as well.

Let us check the equations of motion emerging from the variation
of the surface at fixed Γ:

δ

∫
Hdt =

∫
dΩ⃗× δX⃗ · v⃗(X⃗)dt; (20)

δ

∫
ΓdV =

∫
dΩ⃗× δX⃗ · ∂tX⃗dt (21)
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Hamiltonian Dynamics of Vortex Surfaces

As we already discussed above, the tangent components of ve-
locity at the surface create tangent motion, resulting in the sur-
face’s re-parametrization.

One of the two tangent components of the velocity (along the
line of constant Γ(ξ)) does not contribute to variation of the
action, so that the correct Lagrange equation of motion following
from our action reads

∂tX⃗(ξ) = v⃗(X⃗(ξ)) mod eij∂iΓ∂jX⃗ (22)
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Hamiltonian Dynamics of Vortex Surfaces

We noticed this gauge invariance before in[3]; now we see that
as both tangent components of the velocity only lead to the re-
parametrization of a surface, they do not represent an observable
change of the surface.

However, the normal component of the velocity must vanish
in a steady solution, which provides a linear integral equation
for the conserved function Γ(ξ). This equation corresponds to
globalminimization of the Hamiltonian by Γ in the stable, steady
solution of the Euler equations.

As it was noticed this year (see below), there are additional
stability conditions (CVS) restricting the shape of the surface as
well as the velocity field around it.
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Hamiltonian Dynamics of Vortex Surfaces

The flow at the scales larger than the width of the boundary layer
(see below) obeys the Euler equations and is purely potential.

The vorticity is concentrated in the boundary layer, and at these
scales, one has to solve full Navier-Stokes equations.

However, at these scales, any smooth surface can be treated as
a local tangent plane, with the local value of the strain as a
background for the solution of the Navier-Stokes equation with
planar vortex sheet.

The stability of this solution provides the boundary condition
involving the local strain tensor and the normal vector to the
surface.
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Attractor

Specifically, the local potential velocity v⃗± = ∇⃗Φ± and local
strain tensor Ŝij =

1
2(∂ivj+∂jvi)must satisfy the CVS boundary

conditions

n⃗0 · v⃗±(r⃗0) = 0; ∀r⃗0 ∈ T ; (23)

Ŝ(r⃗0) ·∆v⃗(r⃗0) = 0; (24)

n⃗0 · Ŝ(r⃗0) · n⃗0 < 0 (25)

These conditions as well as the shape of the Burgers-Townsend
solution [4], [5] follow from the analysis of the Navier-Stokes
equations [6], [7].

They are not satisfied with an arbitrary surface but rather define
the family of stable vortex surfaces.



Stable Vortex
Surfaces

Hamiltonian
Dynamics of
Vortex
Surfaces

Attractor

Zero Modes

Irreversibility

Enstrophy

Stationary
Vortex Sheets
and
Double-layer
potentials

CVS as a
variational
problem

The induced
background
strain

Energy
dissipation
and its
distribution

Dilute gas of
vortex bubbles
in mean-field
approximation

Attractor

We imply the boundary condition of some constant background
strain Ŝ(∞) at spacial infinity. It should be distinguished from
the local strain Ŝ(r⃗0) at every point r0 at the surface.

The CVS equation demands that this local strain be degenerate
(middle eigenvalue=0) at every point of the surface for arbitrary
background strain.

So, in case the background strain is degenerate, as in Burgers-
Townsend solution, the surface would be a plane, as there is no
need to curve it for stability.

However, if the strain at infinity is nondegenerate, the surface
rotates and bends. This distortion of the surface changes the
local velocity field to kill the projection of the strain on the
velocity gap. Otherwise, the sheet would leak vorticity.
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The Navier-Stokes solution in the local tangent plane looks as
follows. The velocity gap ∆v⃗ is directed along x, vorticity along
y and normal to the plane being z in coordinate frame where
strain is diagonal: Ŝ = {Sx, Sy, Sz}. Only the degenerate case
Sx = 0 is stable.
For the generic strain the Navier-Stokes equation is solved by
the following vorticity

ωy ∝ ∆v exp
(
−η2

)
HSx

Sz

(η); (26)

η = z

√
−Sz

2ν
; (27)

(28)

where Hµ(η) is a Hermite polynomial Hn(z), analytically con-
tinued to arbitrary index µ as a combination of hypergeometric
functions [6], [7].
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Figure: The vorticity profiles for asymmetric, Townsend and
super-Townsend strains
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Zero Modes

The Euler equation as well as the CVS boundary condition have
no spatial scale and they are invariant with respect to translations
and rotations.

The boundary condition Ŝ(∞) provides the time scale and breaks
rotational invariance. However, the spacial scale R0 as well as
the origin position r⃗c remain as zero modes.

The general solution of the CVS equations in presence of the
background strain tensor Ŝ(∞) has the form

S : r⃗ = r⃗0 +R0R⃗(u, v); (29)

v⃗ = v⃗0 + λmax(Ŝ(∞))R0F⃗

(
r⃗ − r⃗0
R0

)
; (30)

where λmax(Ŝ(∞)) is the largest eigenvalue of Ŝ(∞).
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Irreversibility

The velocity gap is an approximation to the stable solution [8],
which is valid inside the boundary layer of the bubble.

v⃗ (r⃗0 + n⃗0ζ) = v⃗R(r⃗0) +
1

2
∆v⃗(r⃗0) erf

(
ζ

h
√
2

)
; (31)

n⃗0 = n⃗(r⃗0); (32)

v⃗R(r) =
1

2
∇⃗Φ+(r⃗0) +

1

2
∇⃗Φ−(r⃗0); (33)

ω⃗ (r⃗0 + n⃗0ζ) =

√
2

h
√
π
n⃗×∆v⃗(r⃗0) exp

(
− ζ2

2h2

)
; (34)

h =

√
ν

−n⃗0 · Ŝ(r⃗0) · n⃗0

; (35)

Ŝαβ(r⃗0) =
1

2
∂α∂βΦ+(r⃗0) +

1

2
∂α∂βΦ−(r⃗0) (36)
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Figure: The velocity gap profile in the boundary layer (the Error
function).
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Irreversibility

The Euler equation is invariant under time reversal, changing
the sign of the strain. Without the CVS boundary conditions,
both signs of the normal strain would satisfy the stationary Euler
equation. Therefore, this CVS vortex sheet represents a dynam-
ical breaking of the time-reversal symmetry.

Out of the two time-reflected solutions of the Euler equation,
only the one with the negative normal strain survives. If virtually
created as a metastable phase, the other one dissolves in the
turbulent flow, but this remains stable.

Technically this instability displays itself in the lack of the real
solutions of the steady Navier-Stokes equation for positive Snn.
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Irreversibility

The Gaussian profile of vorticity as a function of normal coor-
dinate formally becomes complex at positive Snn, which means
instability or decay in the time-dependent equation.

In [7] the authors verified this decay/instability process. The
time-dependent Navier-Stokes equation was solved numerically
in the vicinity of the steady solution with arbitrary background
strain. Only the Burgers-Townsend solution corresponding to
our CVS conditions on the strain was stable.
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Irreversibility

The background strain Ŝ(∞) does not define the sign of the
solution of the CVS equation, though in the Laplace equation
for the potential the boundary strain enters linearly.

The constant traceless matrix Ŝ(∞) has three ordered eigenval-
ues a ≤ b ≤ c ,such that a+ b+ c = 0.

Obviously a ≤ 0, c ≥ 0 with equality only possible when all
eigenvalues are zero. The time reflection Ŝ(∞) ⇒ −Ŝ(∞) cor-
responds to c ⇒ −a.

The third CVS equation Snn < 0 selects only one of two solu-
tions with respect to time reversal. Thus, the time reversibility
is spontaneously broken by the Navier-Stokes stability condition.
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Enstrophy

There is another manifestation of the stability of the CVS vortex
surface.

We have also shown [9] that given these boundary conditions,
the energy dissipation integral

E = ν

∫
d3rω⃗2 (37)

is confined to the vortex sheet S

E →
√
ν

2
√
π

∫
S
dS

√
−n⃗ · Ŝ · n⃗ (∆v⃗)2 ; (38)
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Enstrophy

The time derivative of enstrophy vanishes for any steady solu-
tion. It is instructive to check how it happens for the Burgers-
Townsend solution on the CVS surface. Integrating out the nor-
mal coordinate locally we find for time derivative on the steady
solution

∂tE =

ν

∫
dS

∫ ∞

∞
dz
(
−vα∂αω

2
α + 2ωαωβ∂βvα + 2νωα∂

2
βωα

)
→

√
ν

2
√
π

∫
dS
√

Sk
k∆ṽi∆ṽj

(
Sij − Sk

kgij

)
; (39)

ṽi = eijvj ; dS = d2ξ
√
G; gij = ∂iR⃗(ξ) · ∂jR⃗(ξ) (40)
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Enstrophy

The advection, vortex stretching and viscose diffusion terms
combine into a single formula

(∂tE)NS = −
√
ν

2
√
π

∫
dS

√
−n⃗ · Ŝ · n⃗ ∆v⃗ · Ŝ ·∆v⃗ = 0 (41)

which vanishes at every point of the surface in virtue of the CVS
conditions.
For a generic vortex surface the velocity linearly grows and vor-
ticity decreases as a power outside the surface. Therefore there
would be a finite enstrophy flux through any surface S′ surround-
ing the vortex surface∫

V ′:∂V ′=S′
d3rvα∂αω

2
β =

∫
S′>S

dσ⃗ · v⃗ω⃗2 ̸= 0 (42)

For CVS this flux is exponentially small outside the boundary
layer so that both the enstrophy and its time derivative are con-
centrated on the surface.
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Stationary Vortex Sheets and Double-layer
potentials

Let us go into details of the CVS equations.
In the 3D space inside and outside the surface S± : ∂S± =
S there is no vorticity so that the flow can be described by a
potential Φ±(r⃗) with the gap on the surface.
This is a well-known double-layer potential from electrostatics
[10].

Φ±(r⃗) =
1

2
Wαβ

± rαrβ −

1

4π

∫
S
Γ±(r⃗

′)eαβγdrβ ∧ drγ∂α
1

|r⃗ − r⃗′|
; (43)

The pressure in each of the domains inside/outside is given by
the Bernoulli formula

p± = −1

2
(∂αΦ±(r⃗))

2 (44)
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Stationary Vortex Sheets and Double-layer
potentials

The normal velocity vanishes on both sides (Neumann boundary
conditions for Φ±).

The tangent velocity, on the other hand, has a gap ∆v⃗. This
gap arises because of the gap in the potential

∆v⃗ = ∇⃗Φ+(r⃗)− ∇⃗Φ−(r⃗) (45)

In that case, there are 5 unknown functions and 5 CVS equa-
tions (two normal derivatives and one vector equation for the
projection of the strain on the velocity gap).
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CVS as a variational problem

The steady solution of the vortex sheet dynamics minimizes the
Hamiltonian

Htot = H[Γ+,S; Ŵ+] +H[Γ−,S; Ŵ−] +∫
r⃗∈S

Λ⃗(r⃗) ·
(
Ŝ+(r⃗) + Ŝ−(r⃗)

)
· (v⃗+(r⃗)− v⃗−(r⃗)) ; (46)

H[Γ,S; Ŵ ] =

∫
r⃗1,r⃗2∈S

dΓ(r⃗1) ∧ dr⃗1 · dΓ(r⃗1) ∧ dr⃗1
8π|r⃗1 − r⃗2|

+∫
r⃗∈S

Γ(r⃗)eαβγdrβ ∧ drγWαµrµ (47)

Minimization by Γ± produces the first CVS equation (vanishing
normal velocity) on each side, and minimization by the Lagrange
multiplier Λ⃗ produces the second CVS equation.
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CVS as a variational problem

Each S±(r⃗) = (∂α∂βΦ±) and v⃗± = (∂αΦ±) represent a linear

functional of Γ± also depending upon constant tensor Ŵ±.

Therefore, at fixed Λ⃗(r⃗) our Hamiltonian is a quadratic func-
tional of Γ±. Minimization of this quadratic functional repre-
sents a linear part of our problem.

Note that all the unknown functions are two dimensional, rather
than three-dimensional fields as velocity. This dimensional re-
duction is a remarkable property of the vortex sheet dynamics

The nonlinear part would be a subsequent minimization by Λ⃗, R⃗.
In the next talk we present exact (singular) solution of this prob-
lem for cylindrical geometry.
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The induced background strain

What is the physical origin of the constant background strain
Ŵ+ = Ŝ(∞) which we used in our solution?

Traditionally, the ad hoc Gaussian random forces are added to
the Navier-Stokes equation to simulate the effects of the un-
known inner randomness.

In our theory, the random forces come from many remote vortex
structures, contributing to the background velocity field via the
Biot-Savart law.

These forces are not arbitrary; they are rather self-consistent,
like a mean-field in ordinary statistical mechanics.
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The induced background strain

Let us assume that the space is occupied by some localized CVS
structures far from each other. In other words, let us consider
an ideal gas of vortex bubbles.

In such an ideal gas, we can neglect the collision of these ex-
tended particles, but not the long-range effect of the strain they
impose on each other.

The Biot-Savart formula for the velocity field induced by the set
of remote localized vorticity bubbles B

v⃗(r⃗) =
∑
B

∫
B
d3r′

ω⃗(r⃗′)× (r⃗′ − r⃗)

4π|r⃗ − r⃗′|3
(48)

falls off as 1/r2 for each bubble, like an electric field from the
charged body.
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The induced background strain

Note that all vortex structures in our infinite volume contribute
to this background velocity field, adding up to a large number
of small terms at every point in space.

The spacial positions of bubbles are the zero modes of the Eu-
ler+ CVS equations. Therefore these bubbles are uniformly dis-
tributed in space, leading to spontaneous stochasticity.

While the Navier-Stokes equation is nonlinear, this relation be-
tween the local strain and contributions from each vortex bubble
is exactly linear, as it follows from the linear Poisson equation
relating velocity to vorticity.

The interaction between bubbles decreases with distance by the
power law (the multipole expansion of Coulomb kernel), which
justifies the ideal gas picture in the case of sparsely distributed
vortex bubbles.



Stable Vortex
Surfaces

Hamiltonian
Dynamics of
Vortex
Surfaces

Attractor

Zero Modes

Irreversibility

Enstrophy

Stationary
Vortex Sheets
and
Double-layer
potentials

CVS as a
variational
problem

The induced
background
strain

Energy
dissipation
and its
distribution

Dilute gas of
vortex bubbles
in mean-field
approximation

The induced background strain
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The induced background strain

This picture symbolizes the vortex bubble under consideration
(blue vortex symbol) surrounded by other remote bubbles on a
large sphere (orange arrows). The arrows symbolize the direc-
tions of these remote bubbles, which follow the local strain main
axis and point in random directions.

If there are many such bubbles distributed in space with small but
finite density, we would have the ”night sky paradox.” The bub-
bles spread on the far away sphere will compensate the inverse
distance squared for a divergent distribution like

∫
R2dR/R2.

This estimate is, of course, wrong, as the velocity contributions
from various bubbles are uncorrelated, so there is no coherent
mean velocity.

Moreover, a Galilean transformation would remove the finite
background velocity, so it does not have any physical effects.
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The induced background strain

However, with the strain, there is another story.

Strain coming from remote vortex bubbles

Wαβ(r⃗) =
1

2
eαµγ∂β∂γ

∑
B

∫
B
d3r′

ωµ(r⃗
′)

4π|r⃗ − r⃗′|
+ {α ↔ β} ; (49)

falls off as 1/r3, and this time, there could be a mean value
W̄ , coming from a large number of random terms from various
bubbles with distribution R2dR/R3 ∼ dR/R.

The space symmetry arguments and some refined arguments we
present in the next section tell us that averaging over the direc-
tions of the bubble centers R⃗ = r⃗′ − r⃗ completely cancels this
mean value.
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The induced background strain

The Central Limit Theorem suggests (within our ideal vortex gas
model) that such a strain would be a Gaussian tensor variable,
satisfying the normal distribution of a symmetric traceless matrix
with zero mean

dPσ(W ) ∝
∏
i

dWii

∏
i<j

dWijδ

(∑
i

Wii

)
exp

(
− trW 2

2σ2

)
(50)

The parameter σ is related to the mean mean square of the
random matrix. In n dimensional space

(n+ 2)(n− 1)

2
σ2 =

〈
trW 2

〉
(51)

The Gaussian random matrices were studied extensively in physics
and mathematics. For example, in [11] the distribution of Gaus-
sian random symmetric matrix (Gaussian Orthogonal Ensemble,
GOE(n)) is presented.
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The induced background strain

We achieve the extra condition of zero matrix trace by inserting
the delta function of the matrix trace into the invariant measure.

This projection preserves the measure’s O(n) symmetry as the
trace is invariant to orthogonal transformations. We could not
find any references for this straightforward extension of theGOE(n)
to the space of traceless symmetric matrices.

Separating SO3 rotations Ω ∈ S2, we have the measure for
eigenvalues a, b, c:

dPσ(W ) =
1

4π
dΩdadbdcδ(a+ b+ c)Pσ(a, b, c); (52)

Pσ(a, b, c) =

√
3

π
θ(b− a)θ(c− b)(b− a)(c− a)(c− b)

exp

(
−a2 + b2 + c2

2σ2

)
(53)
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Energy dissipation and its distribution

As we noticed above the total surface dissipation is conserved
on CVS surfaces.

Etot =
∑
S

ES = const (54)

Without CVS as a stability condition, the surface dissipation
itself would not be an integral of motion. The energy would leak
from the vortex surfaces and dissipate in the rest of the volume.
Thus, the CVS condition is a necessary part of the vortex sheet
turbulence.
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Energy dissipation and its distribution

While the total dissipation is conserved, the individual contribu-
tions to this sum from each bubble are not.

The long-term interactions between the vortex bubbles, arising
due to the Gaussian fluctuations of the background strain, lead
to the statistical distribution of the energy dissipation of an in-
dividual bubble.

From analogy with the Gibbs-Boltzmann statistical mechanics,
one would expect that the dissipation distribution would come
out exponential, with some effective temperature. This hypoth-
esis was put forward in our previous work.
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Energy dissipation and its distribution

However, the interaction between our bubbles is different from
that of the Gibbs mechanics. While the background strain is a
Gaussian (matrix) variable, the shapes of the bubbles and the
corresponding dissipation are not.

These bubbles in our incompressible fluid instantly adjust to the
realization of the random background strain. This adjustment is
described by our exact solutions of the Euler equations with the
CVS boundary conditions.

The general formula [9] for the surface dissipation reads

ES =

√
ν

2
√
π

∫
S
dS

√
−Ŝnn(∆v⃗)2; (55)

where
∫
dS refers to the surface integral and Ŝnn is the normal

component of the local strain.
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Energy dissipation and its distribution

The dimensional counting using scale invariance of Euler + CVS
leads to the following formula

E√
ν
= R4

0c
5
2F (µ) (56)

where F (µ) is some universal function of the ratio of the two
independent eigenvalues

µ = 1− c

a
(57)

This function can be found once we know the solution of the
CVS equations (see the next talk).
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Energy dissipation and its distribution

The normalized distribution W (ζ) for the scaling variable ζ =

F (µ) c
2√c

σ
5
2

takes the form [12]

W (ζ) =

∫ 3

3
2

dµ
2ζ(3− µ)µ(2µ− 3)

5(µ− 1)5F (µ)

exp

−
((µ− 3)µ+ 3)

(
ζ

F (µ)

)4/5
(µ− 1)2

 ; (58)

with

E =
√
νσ5R4

0ζ (59)
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Energy dissipation and its distribution

This W (ζ) is a completely universal function. We would mea-
sure this function when the distribution of energy dissipation and
bubble sizes in numerical or real experiments in the extreme tur-
bulent regime will become available. The size R0 of the surface
remains a free parameter of our theory.

We need some extra restrictions to find the distribution of these
perimeters. This extra restriction of the fixed perimeter of the
cross-section makes it quite tedious to compare our distribution
of the energy dissipation with numerical simulation.
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Dilute gas of vortex bubbles in mean-field
approximation

Let us elaborate on this idea of a dilute gas of vortex bubbles
and estimate the strain variance.

Consider a large number of independent vortex bubbles, sparsely
distributed in the 3D volume.

The net strain near this surface will come from the Biot-Savart
formula, which we expand at large distances

Wαβ(r⃗) →
1

2
eαµγ (Ωµ∂β∂γ +Ωµλ∂β∂γ∂λ + . . . )

1

4π|r⃗|
+ {α ↔ β} ; (60)

Ωµ =

∫
B
d3r′ωµ(r⃗

′); (61)

Ωµλ =

∫
B
d3r′ωµ(r⃗

′)r′λ (62)
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Dilute gas of vortex bubbles in mean-field
approximation

The contribution to the strain from each remote vortex blob will
be linearly related to these multipole moments of vorticity.

The leading term is proportional to the net vorticity Ω⃗ which
vanishes as an integral of closed form dΩ⃗ over a closed surface
(net flux through the surface without normal vorticity in physics
terms).

These vectors and tensors are random variables with zero mean,
in addition to the random locations on a sphere, which is why
we expect the Central Limit Theorem to apply here).
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Dilute gas of vortex bubbles in mean-field
approximation

The vorticity for each vortex bubble S is given by a surface
integral[1], [3]

ων(r⃗) =

∫
S
dΓ ∧ dr′νδ

3(r⃗ − r⃗′); (63)

Ωµ =

∫
S
dΓ ∧ drµ = 0; (64)

Ωµλ =

∫
S
dΓ ∧ drµrλ (65)

We get exactly zero when averaged over directions of the position
vector r⃗ of the bubble on the large sphere. We verified that up
to the fourth term by symbolic integration [13]. There is, of
course, a general reason for these cancellations.
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Dilute gas of vortex bubbles in mean-field
approximation

The rotational average of the multiple derivative matrix has only
one totally symmetric symmetric tensor structure

Tµ1,...µn =

〈
∂µ1 , . . . ∂µn

1

|r⃗|

〉
r⃗∈S2

=

= C
(
δµ1µ2 . . . δµn−1µn + permutations

)
(66)

However, the contraction over any pair of indices yields zeroes
because 1

|r⃗| satisfies the Laplace equation. Therefore C = 0.
The number dN of the vortex structures on the large sphere
would be estimated as

dN = 4πρ(R)R2dR (67)

where ρ(R) is the distribution of distances between the vortex
structures.
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Dilute gas of vortex bubbles in mean-field
approximation

After some tensor algebra and symbolic angular integration [13]
we found the formula for σ with separated averaging over the
unit vector on a sphere S2 and the random tensor W

5σ2 =
9

2π2

〈
Ω2
αβ

〉
W

4π

∫
dR

ρ(R)

R6
; (68)

This distribution is normalized as

4π

∫
dRρ(R)R2 = 1 (69)
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Dilute gas of vortex bubbles in mean-field
approximation

Therefore, our expression involves a mean value of 1/R8〈
1

R8

〉
=

∫
dRρ(R)R−6∫
dRρ(R)R2

; (70)∫
dRρ(R)R−6 =

1

4π

〈
1

R8

〉
(71)

After that, we relate the variance to the mean squared vorticity
of each vortex structure and the relative distance distribution of
these bubbles.

σ2 =
9

10π2

〈
Ω2
αβ

〉
W

〈
1

R8

〉
(72)
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Dilute gas of vortex bubbles in mean-field
approximation

After integrating over the eigenvalues a, b, c, assuming the scale
R0 fixed, we find the following expression for the variance of
strain

σ2 = σ2const
〈
R8

0

〉〈 1

R8

〉
; (73)

R̄ =

〈
1

R8

〉− 1
8

(74)

The variance cancels here and this brings us to the final result
for the mean energy dissipation

⟨E⟩ ∝
〈
R4

0

〉√
νσ5; (75)〈

R8
0

〉
∝ R̄8; (76)
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Dilute gas of vortex bubbles in mean-field
approximation

Let us be specific about the geometry scale here: we choose
the mean distance between vortex structures R̄ as a universal
length scale. The sizes of the individual CVS surfaces vary and
fluctuate, but this R̄ is a global parameter of our system so that
we can use it as a unit of length.

The mean energy dissipation (for a single CVS surface) in this
case scales as

⟨E⟩ ∝ R̄4
√
νσ5; (77)
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Dilute gas of vortex bubbles in mean-field
approximation

Thus, we get a scaling relation in the turbulent limit, the same
we assumed in previous papers [2], [9]

σ ∼
(

E
R̄4

) 2
5

ν−
1
5 (78)

For the generic solution of the CVS equation we find the scale
R0 the same order of magnitude as the mean distance R̄ between
the bubbles.

However, for the exact cylindrical solution (the tube) we describe
in the next talk, there is a small parameter: the ratio of the cross-
section perimeter P to the length L of the tube, going to zero
as some positive power of viscosity.

For the tubes, therefore, the dilute gas approximation becomes
exact in the extreme turbulent limit.
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