PCMI lecture series: from sunflowers to thresholds Lecture 2 Problems

Lecturer: Shachar Lovett TA: Anthony Ostuni

July 2025

1. Recall that a family \mathcal{F} of sets over a universe U with common intersection $K = \bigcap_{S \in \mathcal{F}} S$ is a (p, ε) -robust sunflower (with kernel K) if $K \notin \mathcal{F}$ and

$$\Pr_{W \sim \text{Bin}(U,p)} [\exists S \in \mathcal{F}, S \subset K \cup W] \ge 1 - \varepsilon.$$

Prove that any (1/2r, 1/2)-robust sunflower contains an r-sunflower.

2. Prove that the robust sunflower lemma is sharp by considering the following example. Let R_1, \ldots, R_n be pairwise disjoint sets, each of size $k = \log(n/c)$ for some $1 \le c \ll n$ to be chosen later, and let U be their union. Consider the set system

$$\mathcal{F} = \{ S \subset U : |S \cap R_i| = 1 \ \forall i \in [n] \}.$$

Note that \mathcal{F} is a family of *n*-sets of size $|\mathcal{F}| = k^n$. Let $W \sim \text{Bin}(U, 1/2)$.

A) Show that \mathcal{F} does contain a (1/2, 1/2)-robust sunflower.

It turns out that by refining \mathcal{F} , we can remove all such robust sunflowers. Set $\varepsilon = 1/c$, and define $\mathcal{F}' \subset \mathcal{F}$ to satisfy

$$|S \cap S'| \le (1 - \varepsilon)n$$
 for all $S, S' \in \mathcal{F}', S \ne S'$.

By a greedy approach, one can find such an \mathcal{F}' of size $|\mathcal{F}'| \geq 2^{-n} k^{(1-\varepsilon)n}$. (You may assume this without proof.) Assume by contradiction \mathcal{F}' does contain a (1/2, 1/2)-robust sunflower.

- B) Show that $Pr_W[W \text{ is disjoint from some set } R_i] > 1/2$.
- C) Use this to argue that \mathcal{F}' does not contain a (1/2, 1/2)-robust sunflower.

Observe that by setting $c = \sqrt{n}$, we have $|\mathcal{F}'| \ge (\log n)^{(1-o(1))n}$.

3. The quantitatively improved sunflower lemma discussed today operates by finding r disjoint sets in any $(cr \log n)$ -spread family of n-sets. We will show that this is tight.

Let R_1, \ldots, R_n be pairwise disjoint sets, each of size k, and let U be their union. Consider the set system

$$\mathcal{F} = \{ S \subset U : \exists i, R_i \subset S \land \forall j \neq i, |S \cap R_j| = 1 \}.$$

Pictorially, one may view this as an $n \times k$ grid, where \mathcal{F} is constructed by choosing one element from each row of the grid, as well as one entire row. Note that \mathcal{F} is a family of (n+k-1)-sets.

- A) Prove that \mathcal{F} is an intersecting family. (In particular, we cannot even find two disjoint sets.)
- B) Prove that \mathcal{F} is $(c \log n / \log \log n)$ -spread for an appropriate choice of k.

The following questions (essentially) come from Sam Spiro's notes: https://samspiro.xyz/Misc/MethodsInCombo.pdf. (Sam is at PCMI, so say hello!)

4. Let \mathcal{F} be a random family of n-sets on a fixed universe U, where each n-set is included independently with probability p. Suppose |U| is a multiple of n. Prove that if

$$p \ge C \cdot \frac{\log\left(\frac{|U|}{n}\right)}{\left(\frac{|U|}{n}\right)^{n-1}},$$

then \mathcal{F} contains a perfect matching with probability at least 1/2. (Recall a perfect matching is a set of edges such that every element in U is in exactly one edge.)

edges are all perfect matchings.

Hint: Analyze the spreadness of the set family whose ground set is all n-sets and whose

5. Let \mathcal{F} be a random family as in the previous question, and let \mathcal{G} be a fixed family of n-sets. For any set family \mathcal{H} , let $U(\mathcal{H})$ denote the size of the universe of \mathcal{H} . Define

$$t(\mathcal{G}) = \max_{\mathcal{H} \subset \mathcal{G}} \left\{ \frac{|\mathcal{H}|}{U(\mathcal{H})} \right\}.$$

Prove that there exists some $C = C(\mathcal{G})$ such that if

$$p \ge C \cdot \frac{\log(|\mathcal{G}|)}{|U|^{1/t(\mathcal{G})}},$$

then \mathcal{F} contains a copy of \mathcal{G} with probability at least 1/2.