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I will be talking primarily about just one aspect of Is Singer’s many
contributions to mathematics and physics, namely his work with
Daniel Ray on “analytic torsion”:

D. B. Ray and I. M. Singer, “R-Torsion and The Laplacian On
Riemannian Manifolds,” Adv. Math. 7 (1971) 145-210

D. B. Ray and I. M. Singer, “Analytic Torsion For Complex
Manifolds,” Ann. Math. 98 (1973) 154-77.



I will also say something about the connection of the Ray-Singer
work with physics. This has multiple facets:

I zeta functions and determinants

I torsion and quantum field theory as first perceived in

A. S. Schwarz, “The Partition Function Of A Degenerate
Functional,” Comm. Math. Phys. 67 (1979) 1

I torsion for complex manifolds, applications in string theory

I determinants and anomalies, interpretation by Atiyah and
Singer

I torsion and volumes of moduli spaces

In the last part of the talk, I will explain a generalization of parts
of the story that started here

V. G. Turaev and O. Ya. Viro, “State Sum Invariants of
3-Manifolds and Quantum 6j Symbols,” Topology 31 (1992)

and has many repercussions in contemporary condensed matter
physics.



Though I won’t try to systematically explain the rest of Singer’s
work in mathematics and/or physics, which would be well-nigh
impossible in a single lecture, various other aspects of Singer’s
work will play a role today, notably:

I the Atiyah-Singer index theorem

I the Atiyah-Patodi-Singer η invariant

I the topological interpretation of “anomalies” by Atiyah and
Singer



The original “torsion” was the combinatorial torsion introduced by
Kurt Reidemeister in 1935. It was historically important because it
was the first invariant that could distinguish different manifolds
that are homotopy equivalent, for example it could completely
classify three-dimensional lens spaces.



One starts with a manifold M described by a simplicial complex,
for example a triangulated two-manifold

The manifold M may
also be endowed with a flat vector bundle E → M. Following Ray
and Singer, I will assume this flat bundle to be unitary, though it is
possible to modify the definitions to remove this assumption.



Ray and Singer begin their paper by reviewing the original
definition of Reidemeister torsion, but then they explain a variant
of that definition that motivated their work. This is as follows. For
each q-simplex eq in the complex

we define Eq to be the space of covariantly constant sections of E
over eq, and Cq = ⊕eqEq. Then we have a boundary operator

∂ : Cq → Cq−1

which restricts a covariantly constant section from any eq to its
boundary.



In the usual way, we have ∂2 = 0, and therefore we can define
homology groups of ∂, which are the most basic invariants in this
situation. However, Reidemeister torsion, which captures
information not contained in the homology groups, can be defined
as follows. Assuming for simplicity that E → M is a unitary flat
bundle, Cq is a Hilbert space in a natural way, so we can define the
adjoint ∂† : Cq → Cq+1 and then we can define a “Laplacian”

∆ = ∂†∂ + ∂∂†.

∆ maps Cq to itself for each q, so we define ∆q to be the
restriction of ∆ to Cq.



Reidemeister torsion is most simply described if the homology or
cohomology groups of M with values in E all vanish (E is
“acyclic”), in which case the torsion is simply a number. In that
situation, Ray and Singer show that the original definition of the
Reidemeister torsion τ(E ) of the flat bundle E , is equivalent to

log τ(E ) =
1

2

N=dim M∑
q=0

(−1)q+1q log det∆q.

As I remarked already, this is not quite the original definition of the
torsion, but Ray and Singer show it is equivalent.



The key immediate statement about the torsion is that τ(E ) does
not depend on the triangulation (simplicial complex) used to
compute it, so it is an invariant of the flat bundle E → M. The
main step in proving this is to show invariance under subdivision



If the homology groups are nonzero, one has to replace det∆q

(which vanishes because of a nontrivial kernel) with det′ ∆q, the
product of the nonzero eigenvalues of ∆q. The same formula with
det replaced by det′ is still used to define τ(E ), and now the claim
is that τ(E ) is invariant if it is interpreted, not as a number, but as
a metric or measure on what in modern language would be
interpreted as a determinant line bundle.



The idea of Ray and Singer was to make a similar construction in
Riemannian geometry. In other words, instead of picking a
triangulation of M, they pick a Riemannian metric g on M. Then,
letting d denote the exterior derivative acting on E -valued
differential forms on M, they define its adjoint d† and the
corresponding Laplacian ∆ = d†d + dd† and its restriction ∆q to
q-forms. Then assuming that E is acyclic, so the operator ∆q has
trivial kernel, they want to define a “determinant” ∆q and then to
define “analytic torsion” by imitating the formula for Reidemeister
torsion:

logT (E ) =
1

2

N=dim M∑
q=0

(−1)q+1q log det ∆q.



One immediate obstacle is to explain what should be meant by the
determinant det ∆q of a self-adjoint elliptic operator such as ∆q.
Naively the determinant is the product of the eigenvalues λi of ∆q:

det ∆q
?
=
∞∏
i=1

λi .

Ray and Singer had the very nice idea of interpreting this formula
via zeta functions and heat kernels.



The zeta function of ∆q is defined as

ζq(s) =
∑
i

λ−si =
1

Γ(s)

∫ ∞
0

dt ts−1Tr exp(−t∆q).

This converges if Re s is large enough. Its analytic continuation
beyond the region of convergence can be analyzed using general
results about the small t behavior of the heat kernel 〈x |e−t∆q |x〉.
Schematically with N = dim M the heat kernel has an asymptotic
expansion for small t:

〈x |e−t∆q |x〉 =
1

(4πt)N/2
(1 + C0R(x)t + C1∆R(x)t2 + · · · )

Each term in the expansion leads to a pole in ζq(s) at a particular
real value of s; higher terms in the expansion give poles at more
negative values of s. If N is odd, which for most applications is the
main case in the study of the torsion, all the poles are at
half-integer values of s and ζq(s) is holomorphic at s = 0. (If N is
even, there are poles at s = 0 in general but they cancel out in the
specific combination of operators considered in the defintion of
T (E ).)



The formula
ζ(s) =

∑
i

λ−si

implies that for a finite-dimensional, positive self-adjoint operator
W , the determinant detW =

∏
i λi = exp(

∑
i log λi ) can be

defined as
detW = exp(−ζ ′(0)).

Ray and Singer proposed to use the same definition for det ∆q,
assuming that ζq(s) is holomorphic at s = 0:

det ∆q = exp(−ζ ′q(0)).

This motivated them to define the “analytic torsion” by

logT (E ) =
1

2

N∑
q=0

(−1)qqζ ′q(0).



Ray and Singer proved that the analytic torsion is a topological
invariant, like the Reidemeister torsion. They also showed that it
has many properties in common with the Reidemeister torsion: (1)
it is “trivial” on an even-dimensional, oriented manifold (which is
why in many applications the torsion is mainly studied on
manifolds of odd dimension), (2) in a product M1 ×M2 where one
factor is simply-connected, the analytic torsion T (E ) behaves the
same way as the Reidemeister torsion τ(E ), (3) if M ′ is a finite
cover of M, then analytic torsion computed on M ′ is related to
analytic torsion on M in the same way that holds for Reidemeister
torsion. They conjectured that the analytic torsion and the
Reidemeister torsion were equal, and developed a number of tools
that they anticipated would be part of a general proof.



The Ray-Singer conjecture was proved a few years later:

J. Cheeger, “Analytic Torsion and Reidemeister Torsion,” PNAS
74 (1977) 2651-4, “Analytic Torsion and the Heat Equation,”
Ann. Math. 109 (1979) 259-322

W. Müller, “Analytic Torsion and R Torsion Of Riemannian
Manifolds,” Adv. Math. 28 (1978) 233-305.



Before going on, I want to stress that the analysis by Ray and
Singer is not restricted to the case that ∆q has a nontrivial kernel.
In general, when the kernel is nontrivial, by using det′ instead of
det (in other words by using a modified ζ function defined with
only the nonzero eigenvalues), they show that the analytic torsion
T (E ) is a topological invariant if we interpret it as a measure on
(in modern language) a determinant line bundle rather than as a
number. This generalization was important for later developments.



In a physicist’s language, Ray and Singer took the continuum limit
of the combinatorial definition of torsion.

Actually, the proof that Ray and Singer give of the topological
invariance of the analytic torsion was based on some elegant
manipulations that were reinterpreted a few years later by Albert
Schwarz. I will say a word on this when I get to Schwarz’s work.



In their second paper, Ray and Singer observed that the ∂̄ operator
on a Kahler manifold X has all the formal properties that they had
used for the exterior derivative d on a general Riemannian
manifold. To generalize their formulation slightly, one can consider
the ∂̄ operator acting on (0, 1)-forms valued in a holomorphic
vector bundle E → X . (The case they consider is that E is the
bundle of (p, 0)-forms on X , for some p, tensored with a flat
unitary vector bundle over X .) Then they consider the
corresponding Laplacian ∆ = ∂̄†∂̄ + ∂̄∂̄†, its restriction ∆q to
(0, q)-forms, and the determinant det ∆q = exp(−ζ ′q(0)). Formally
imitating the definition of the Reidemeister torsion, they define the
torsion of a holomorphic vector bundle E by

logT (E ) =
1

2

N∑
q=0

(−1)qqζ ′q(E ).



Again, this is the definition if the sheaf cohomology Hq(X ,E )
vanishes. In this case, Ray and Singer show that the torsion
depends only on the complex structure of X and E , and not on the
Kahler metric of X (which was used in defining ∂̄† and ∆). More
generally, they define T (E ) using det′ ∆q (defined as the
regularized product of the nonzero eigenvalues). If E is the bundle
of (p, 0)-forms (for some p) tensored with a flat vector bundle,
they show that the analytic torsion T (E ) depends only on the
Kahler class of X , not on the detailed Kahler metric. For a general
holomorphic vector bundle E → X , as considered by later authors,
there is a somewhat similar but more elaborate story.



For analytic torsion of a complex manifold, there is no
combinatorial version for Ray and Singer to compare to. They
explored their definition by computing the analytic torsion of the
(p, 0)-forms on a Riemann surface X (here p = 0 or 1), valued in a
flat line bundle L → X . They showed that the result involves
functions of number theoretic interest. For X of genus 1, they
computed explicitly and expressed the result in terms of theta
functions. For X a hyperbolic surface of genus greater than 1, they
related their result to the Selberg trace formula. (Roughly, the
Selberg trace formula expresses in terms of a sum over closed
geodesics the ζ-function regularized determinant of a slightly more
general operator, ∆ + z(z + 1), for a constant z .)



Now I am going to turn to explaining the influence that the
Ray-Singer work has had in physics. Recall the rough table of
contents:

I zeta functions and determinants

I torsion and quantum field theory as first perceived by A. S.
Schwarz

I torsion for complex manifolds, applications in string theory

I determinants and anomalies, interpretation by Atiyah and
Singer

I torsion and volumes of moduli spaces

I and last, a twist on part of the story that started with the
work of Turaev and Viro (1991) and has many repercussions
in modern condensed matter physics.



The first impact of the Ray-Singer work on physics was just that
their method of using zeta functions to define regularized
determinants was useful. Physicists had known since the work of
Richard Feynman and Julian Schwinger around 1950 that
regularized determinants of differential operators play an important
role in a semiclassical approximation to quantum mechanics.
However, the widely used methods of defining these determinants
were ineffective and/or inefficient in curved spacetimes. Ray and
Singer of course had been working on a curved manifold since the
beginning and the ζ function method of defining determinants was
very effective in their work. Within a few years, physicists studying
quantum field theory in curved spacetimes were using ζ function
definition of determinants. The first published reference was
apparently by Stuart Dowker and Raymond Critchley in Phys. Rev.
D13 (1976) 3324-32. (They cite earlier work by Phil Candelas and
Derek Raine.) There was an influential paper by Hawking:

S. W. Hawking “Zeta Function Regularization Of Path Integrals in
Curved Spacetime,” Commun. Math. Phys. 55 (1977) 133-48

followed by work by Gary Gibbons and others.



The next development relating analytic torsion to physics was by
Albert Schwarz in 1977. Let us write a formula for the analytic
torsion rather than its logarithm:

T (E ) =
n∏

q=0

(det ′∆q)−(−1)qq/2.

In other words, the torsion is a product of determinants of the
operators ∆q for different q, raised to various positive and negative
half-integral powers. Such expressions were familiar in physics.
The best-known case was simply that the partition function of
U(1) gauge theory on a manifold is

det′ ∆0

(det′ ∆1)1/2
.

The denominator is the path integral of the gauge field (in a
suitable gauge) and the numerator is the path integral of the
ghosts, introduced in their earliest version by Feynman. This is
similar to the formula for the torsion so one can ask if there is
some theory somewhat similar to ordinary U(1) gauge theory that
leads to the torsion. Schwarz showed that there is such a theory.



For simplicity, I will explain Schwarz’s idea in the case of N = 3
dimensions, which is the first case in which the torsion is an essentially
new topological invariant. Let E → M be a flat bundle described by a
flat connection R, with corresponding gauge-covariant exterior derivative
dR = d + [R, ·]. Let A, B be 1-forms on M valued respectively in E and
in the dual bundle E∨. Then Schwarz considered the quadratic action

I =

∫
M

(B,∧dRA).

The corresponding path integral∫
DA,DB exp

(
−
∫
M

(B,dRA)

)
is Gaussian, so it can be expressed in terms of determinants. Via
standard Faddeev-Popov gauge fixing, Schwarz showed that the
appropriate product of determinants is

(det′ ∆0)3/2

(det′ ∆1)1/2
.

(Note that this is the same that we would have in an ordinary U(1) gauge
theory, except that the exponent in the numerator is 3/2 instead of 1.)



In 3 dimensions, Poincaré duality gives det′ ∆3 = det′∆0,
det′∆2 = det′∆1, so T (E ) =

∏3
q=0(det′∆q)−(−1)qq/2, which is

the analytic torsion as defined by Ray and Singer, reduces to
(det′ ∆0)3/2/(det′∆1)1/2, which comes from Schwarz’s
calculation.



So the theory considered by Schwarz, with

I =

∫
M

(B,∧dRA),

has the property that its parttition function is the analytic torsion
of Ray and Singer, and so in particular is a topological invariant.
Why did this happen? The point is that the action I can be
defined on any smooth manifold M. (M does not even have to be
oriented, if B is viewed as a 1-form twisted by the orientation
bundle of M.) In particular, no Riemannian metric is required.
However, to quantize the theory in a way that leads to the formula
involving determinants, one has to first fix a gauge and this gauge
choice does require a choice of Riemannian metric on M. Then the
Ray-Singer theorem that the torsion does not depend on the metric
of spacetime is a special case of the statement that the partition
function of the theory is independent of the gauge. A physicist
looking at the matter today would probably use the machinery of
BRST quantization to find the identity that implies that the
torsion does not depend on the metric. Ray and Singer had found
this identity by hand.



Schwarz’s work was not limited to the case of three dimensions. In
any dimension N, he similarly considered the action

I =

∫
M

(B, dRA),

where A is a p-form valued in E (for some p), and B is an
N − p− 1-form valued in the dual bundle E∨. Since at least one of
A,B is a form of degree greater than 1, a generalization of the
standard Faddeev-Popov or BRST gauge fixing is required, and
Schwarz provided this (anticipating some aspects of the modern
BV approach to quantization). Schwarz showed that, for any p,
the partition function of this theory is the analytic torsion T (E ).
The fact that the partition function of this theory is independent of
p is somewhat puzzling to me, even today.



To summarize part of this more briefly, Schwarz’s explanation of
the topological invariance of the analytic torsion was that the
torsion comes by quantizing a theory

I =

∫
M

(B,∧dRA)

that can be defined on any smooth manifold M with no additional
structure. This is a slightly formal statement. To turn it into a real
argument, one needs to analyze the quantization carefully enough
to show that there is no possible “anomaly.” That step is actually
not difficult. It is reasonable to view Schwarz’s paper as the first
paper on topological field theory from a physics perspective. Of
course, the papers of Reidemeister and of Ray and Singer were
important precursors, from a math perspective. I was aware of
Schwarz’s paper, because Sidney Coleman pointed it out to me
soon after it appeared.



A decade later, trying to understand the Jones polynomial in quantum
field theory, I considered a theory on an oriented three-manifold M with
gauge group G , gauge field A, and action a multiple of the Chern-Simons
functional:

I =
k

4π

∫
M

Tr

(
AdA +

2

3
A3

)
.

Since this action is not quadratic in A, the path integral is not a simple
Gaussian and cannot be expressed just in terms of determinants.
However, determinants do arise in a semiclassical approximation. The
Euler-Lagrange equation for a critical point of the functional I just says
that the curvature F = dA + A ∧ A should vanish. So let A0 be a
classical solution, that is a flat connection. It is a little easier to consider
first the case that the holonomy of A0 is irreducible (it commutes only
with the center of G ) and that the classical solution corresponding to A0

is isolated – it has no moduli. These assumptions are equivalent to saying
that the flat bundle E that corresponds to A0 has the property that the
cohomology Hq(M, ad(E )) = 0 for all q, where ad(E ) is the adjoint
bundle associated to E . Remember that that is the condition that makes
the torsion of ad(E ) a topologically invariant number.



Now we write A = A0 + B, where A0 is a classical solution and the
“quantum fluctuation” B will be small if the Chern-Simons “level”
k is large. The path integral over B is (in the large k limit)∫

DB exp(iI (A0 + B))

where

I (A0 + B) =
k

4π

∫
M
Tr

(
A0dA0 +

2

3
A3

0

)
+

k

4π

∫
M
TrBdA0B.

The first term is just a constant I (A0), the classical action of the
classical solution A0. This leads to a phase factor exp(iI (A0)) in
the path integral (for large k , this factor is highly oscillatory as
I (A0) is proportional to k). Let us look at the part of the action
that depends on the quantum fluctuation B:

I (B) =
k

4π

∫
M
TrBdA0B.



Let us compare this action

I (B) =
k

4π

∫
M
TrBdA0B.

to the theory studied by Schwarz:

ISch(A,B) =

∫
M

(B, dRA).

There are a few cosmetic differences: there is an inessential extra
factor k/4π, the background flat connection has been called A0

rather than R, and the pairing ( , ) between a flat bundle and its
dual is now called Tr (with the flat bundle being ad(E )). The only
important difference is that, relative to the case considered by
Schwarz, one now has A = B.



Let us write A± B = C±/2, so C 2
+ − C 2

− = AB. The “Schwarz”
path integral is therefore∫

DADB exp(i

∫
(B, dRA))

=

∫
DC+ exp(i

∫
C+dRC+)

∫
DC− exp(−i

∫
(C−, dRC−).

We see that because of the opposite signs in the exponent, the C+

and C− path integrals are complex conjugates of each other. The
C+ path integral is equivalent to the one that we got in
Chern-Simons theory (in this 1-loop approximation) with C+ → B
(and R → A0) as from Chern-Simons we had∫

DB exp

(
i
k

4π

∫
Tr BdA0B

)
.

The conclusion then is that the “Schwarz” or AB path integral is
the absolute value squared of the 1-loop path integral of the
Chern-Simons theory. Since the AB path integral equals the
torsion, the Chern-Simons path integral is equal to the square root
of the torsion, times something of modulus 1.



A more careful analysis shows that the factor of modulus 1 is
related to another contribution by Singer – it can be expressed in
terms of the η-invariant of Atiyah, Patodi, and Singer (1973). The
upshot is that in the 1-loop approximation, the contribution of an
isolated classical solution A0 to the path integral is essentially

1

#G
exp(iI (A0))

√
T (A0) exp(iπη(A0)/2).

(Here #G is the order of the center of G , which enters when one
treats precisely the Fadeev-Popov gauge fixing. For a careful
discussion of this formula and comparison to exact calculations by
other methods, see D. Freed and R. Gompf, Commun. Math.
Phys. 141 (1991) 79-117.)



So far we have assumed that the flat connection A0 is isolated – up
to a gauge transformation, it has no deformation that preserves the
condition dA + A ∧ A = 0. We also assume that A0 is irreducible.
The combined conditions say that the flat bundle ad(E )
corresponding to A0 is acyclic, so the torsion T (A0) is a number.

As I explained earlier, Ray and Singer defined the torsion without
such assumptions as a metric on a certain line bundle. In the
context of Chern-Simons theory in three dimensions, this has a
very nice interpretation. Let us keep the assumption that A0 is
irreducible but drop the assumption that it is isolated. Then A0

defines a point in a moduli space M of flat connections over the
three-manifold M. In the path integral, we expect to have to
integrate over M (as well as over small quantum fluctuations in
directions normal to M). What is the measure that we will
integrate over M, in the 1-loop approximation?



The answer is that in this situation, the logic of Ray and Singer
shows that

√
T (A0) can be interpreted as a measure on M. In

other words, the line bundle on which
√
T (A0) turns out to be a

measure is precisely the determinant of the tangent space to M at
the point corresponding to A0. Thus what has to be integrated
over M in the 1-loop approximation is precisely what we described
before: the contribution of M to the path integral is

1

#G

∫
M

exp(iI (A0))
√

T (A0) exp(iπη(A0)/2).



All this is the 1-loop approximation to the path integral; there are
further corrections involving an asymptotic expansion in powers of
1/k. Singer became very interested in this expansion. With Scott
Axelrod, he established its well-foundedness in a very elegant way,
for the case of expanding around an acyclic flat connection. (See
their paper J. Diff. Geom. 39 (1994) 173-213).



There is another situation in which the interpretation of the torsion
as a measure is extremely useful. This happens in a theory in 2
dimensions that nowadays is usually called BF theory; it is even
more similar than 3d Chern-Simons theory to the theory considered
by Schwarz. In two dimensions, on a two-manifold Σ, we consider
a theory with a gauge G and a connection A on a G -bundle
E → Σ. As usual the curvature is F = dA + A ∧ A. We also
include a field B that is a section of ad(E )⊗ or, where or (trivial if
Σ is orientable) is the orientation bundle of Σ. The action is

I =

∫
Σ
TrBF .

The path integral “localizes” on the moduli space M of flat
connections on E as one can see by an elementary calculation.



To see the localization, we perform the path integral over B first:

Z =
1

vol

∫
DADB exp(i

∫
Σ
TrBF ) =

1

vol

∫
DAδ(F ).

When we do the integral over A with the help of the delta
function, we get a ratio of determinants which precisely
corresponds to the torsion T (A). The result is that the “partition
function” Z is the integral of T (A) over the moduli space M:

Z =

∫
M

T (A).

This makes sense, because if one follows the logic of Ray and
Singer, one finds that in two dimensions, T (A) is a measure on M
(while in three dimensions

√
T (A) is a measure on M).



If Σ is orientable, the measure that comes from T (A) coincides
with the measure on M that can be defined using its symplectic
structure. (Equivalence of these two measures results from the fact
that “torsion is trivial on an orientable manifold of even
dimension,” which is one of the common properties of
Reidemeister and analytic torsion that had been analyzed by Ray
and Singer.) For unorientable Σ, as far as I know, the measure
that comes from T (A) is not equivalent to anything more
elementary. (See L. Jeffrey and N.-K. Ho, arXiv:math/0307404, for
more on these volumes in the unorientable case.) Whether Σ is
orientable or not, the integral

∫
M T (A) can be computed quite

explicitly, using properties of the torsion that go somewhat beyond
when we have time for today.



Now I would like to say something about the influence in string
theory of ∂̄ version of the Ray-Singer analytic torsion, which I will
also call the analytic torsion of a complex manifold. First I will
explain how it has been used in physics if we take the question
literally, and then I will comment on what other developments it
has helped inspire.



It is mainly in string theory that physicists have run into the
analytic torsion of a complex manifold. First of all, the
“worldsheet” of a string is a complex Riemann surface. The
building blocks of string perturbation theory (in the simplest string
theory constructions) are products of determinants on the string
worldsheet, and these determinants are very closely related to the
analytic torsion. These determinants are the examples that Ray
and Singer studied by way of illustrating their complex version of
analytic torsion.



However, we encounter analytic torsion of a complex manifold of
higher dimension when we consider compactifications of string
theory. The most studied case is a Calabi-Yau threefold X . In
particular, the 1-loop contributions for the B-model with a
Calabi-Yau target space involve the analytic torsion. This is true
both for closed strings and for open strings. For closed strings,
Bershadsky, Cecotti, Ooguri and Vafa (Commun. Math. Phys.
165 1994) expressed the 1-loop B-model amplitude with target X
in terms of the analytic torsion (for the vector bundles that were
actually considered by Ray and Singer, namely the bundles of
(p, 0)-forms for various p).



If one considers the 1-loop B-model for open strings on X , one
runs into the analytic torsion for a rather large class of
holomorphic vector bundles E → X . The reason for this is that
one runs into a holomoprhic version of Chern-Simons theory, a
gauge theory of a connection on a smooth vector bundle E → X
such that only the (0, 1) part of the connection, which I will call A,
is relevant, and the action is a Chern-Simons (0, 3)-form of A:

I =

∫
X

ΩTr

(
A∂̄A+

2

3
A3

)
.

(Here Ω is a holomorphic (3, 0) form on X , which has been used in
defining the B-model.) Many of the things that I said in the
discussion of ordinary Chern-Simons theory have analogs here, with
the ∂̄ version of analytic torsion playing the role that in ordinary
Chern-Simons theory is played by the ordinary analytic torsion.



However, there is another important development that I think was
likely inspired in part by the understanding of ∂̄ analytic torsion.
As background, I have to explain a little physics. First let me recall
how the importance of the Atiyah-Singer index theorem first came
to be appreciated by physicists. By about 1974, Quantum
Chromodynamics – SU(3) gauge theory with quarks, also called
QCD – had emerged as a candidate theory of the nuclear force
(also called the strong interactions). There was a problem: there
was an almost perfect match between the symmetries of QCD and
the experimentally observed symmetries of the nuclear force, but
there was one troubling discrepancy. QCD appeared to have an
extra U(1) symmetry that was not observed in nature.



Then the Yang-Mills instanton was discovered, and in 1976, Gerard
’t Hooft (inspired in part by earlier work of C. Rebbi and R. Jackiw)
discovered that in the field of an instanton, the kernel of the Dirac
operator is not invariant under the troublesome U(1) symmetry. It
was soon explained by Albert Schwarz (in another paper that I
learned about from Sidney Coleman, by the way) that what was
happening was a manifestation of the Atiyah-Singer index theorem.
The properties of the Dirac operator that were leading to the
solution of the U(1) problem were predicted by the index theorem.

This development had a huge impact in physics – hard to
exaggerate. I tend to assume that it is part of what got Singer and
Atiyah, among others, interested in physics.



Physicists described what was happening as an “anomaly” – an
apparent symmetry of the theory was in fact not a valid symmetry
because of subtleties introduced in the process of regularizing it.
This particular anomaly was called a triangle anomaly because the
Feynman diagram that one has to calculate to see the anomaly is a
triangle:



The anomaly in this particular Feynman diagram had been
discovered around 1970 by Steve Adler and by Jackiw and John
Bell. They had applied it to another important problem (involving
the decay of the π0 elementary particle), but one that had not
required a familiarity with instantons or the index theorem.



The same triangle anomaly had yet another important
manifestation in physics. This involves “parity” – the symmetry of
reflecting a direction in space, exchanging left and right and
reversing the orientation of space. It turns out that parity is a
symmetry of the nuclear force and of electromagnetism, but it is
not a symmetry of the weak interactions. Mathematically, one
consequence of this is that when one formulates the Standard
Model of particle physics in Euclidean signature, one has to use a
Dirac operator /D that is far from being self-adjoint; it maps
sections of one vector bundle E to sections of another vector
bundle F . Formally then the Euclidean signature path integral of
the Standard Model involves a factor det /D where /D is highly
non-self-adjoint.



Does this determinant make sense? It certainly cannot be defined
by the ζ-function method of Ray and Singer. To define the zeta
function

∑
i λ
−s
i of an operator, it needs to have eigenvalues, but

an operator that maps sections of one bundle E to sections of a
different bundle F does not have eigenvalues.

Physicists of the time were certainly not computing determinants
of operators via ζ-functions. Instead they were using pertubation
theory, by means of which an interesting necessary condition for
well-definedness of the determinant had been discovered (by
Bouchiat, Iliopoulos, and Maiani, and by Gross and Jackiw).



Formally, the construction of the perturbation theory involved
standard physical ideas, but when one implemented these ideas one
ran into the same triangle anomaly

by which Adler and Bell-Jackiw had solved the puzzle about π0

decay. One found that a certain condition on the “quantum
numbers” of quarks and leptons had to be satisfied or the fermion
determinant would not make sense. This criterion had important
implications. For example, the top quark was predicted before it
was discovered because without it, the fermion determinant of the
Standard Model could not be defined.



But what was the mathematical interpretation of what physicists
were doing in these computations? This question was elucidated
by Atiyah and Singer in 1984 (“Dirac Operators Coupled To Vector
Potentials,” PNAS (1984) 2597-2600). The idea (as elaborated
later, in part, by Singer’s student D. Freed) was the following.
When /D maps one vector bundle E to another bundle F , its
determinant may not make sense as a number, but it always makes
sense as a section of a certain determinant line bundle. Moreover,
this determinant line bundle carries a natural hermitian metric and
a natural connection, which (in their interpretation) is being
constructed in the computations of the physicists. Finally, if this
natural connection is flat with trivial global holonomy, then det /D
can be defined as a complex-valued function, as physicists wanted
in the Standard Model. So in short, according to Atiyah and
Singer, what physicists were computing with the triangle
calculation was the curvature of a natural connection on the
determinant line bundle.



This interpretation of the triangle anomaly was very illuminating
for physicists. It clarified the meaning of a number of important
computations by physicists. I believe that in advancing this
interpretation of the anomaly, Atiyah and Singer were in part
generalizing to differential geometry some things that were more
obvious in complex geometry. In complex geometry, the torsion
was defined by Ray and Singer as (in modern language) a hermitan
metric on a determinant line bundle. In complex geometry, a
hermitian metric on a line bundle automatically determines a
connection. It is less obvious that the determinant line bundle has
a natural connection in differential geometry, but the interpretation
of Atiyah and Singer was that it does and that that is what
physicists were analyzing.



The practical import of the analysis of anomalies is to learn which
Standard Model-like theories – i.e., gauge theories with fermions –
are consistent and so could potentially be applicable in describing
Nature.



Finally I want to explain a remarkable twist on the equivalence
between analytic and combinatorial (Reidemeister) torsion. Let us
accept A. Schwarz’s interpretation of the torsion as the partition
function of a continuum topological field theory. Then the
Ray-Singer conjecture means that this continuum topological field
theory is equivalent to a theory – the combinatorial torsion – that
actually can be defined on a spacetime lattice (a simplicial complex
in mathematical language). I was familiar with this interpretation
more than thirty years ago when I was working on Chern-Simons
gauge theory. I did not technically understand exactly how to write
a lattice version of the

∫
(B,dRA) action but I realized that the

equivalence of analytic and combinatorial torsion suggested that
something like this was possible. Regardless, I assumed that the
existence of a combinatorial description depended on the fact that
the

∫
(B,dRA) theory is free (quadratic in the fields A,B so that

the partition function can be written just in terms of determinants).



Remarkably, V. G. Turaev and O. Ya. Viro discovered (1992) that
this is not true. If G is a compact gauge group then the “level k”
Chern-Simons theory with action

k

4π

∫
M

Tr

(
AdA +

2

3
A3

)
does not (it is believed) have a combinatorial description. But
suppose we consider two copies of this theory, with equal and
opposite levels. The action is

k

4π

∫
M

Tr

(
AdA +

2

3
A3

)
− k

4π

∫
M

Tr

(
BdB +

2

3
B3

)
where A,B are the two gauge fields. Turaev and Viro discovered a
description of this model as what a physicist would call a “lattice
model,” in which the partition function is written in terms of local
data defined on simplices and summed over, representing the
partition function as an explicit sum over locally-defined data. (It is
the locally defined data, not the explicit sum, that is the surprise.)



More recently condensed matter physicists became interested in
this phenomenon and discovered lattice representations of many
three-dimensional topological field theories (for a small sample of
references: Levin and Wen (2004), Kitaev and Kong (2012),
Bhardwaj, Gaiotto, and Kapustin, (2016)). The modern
understanding is the following: a topological field theory has a
lattice representation if and only if it admits a gapped boundary.



Let me explain this criterion in our examples. The Schwarz theory∫
M

(B,dRA)

actually has two possible gapped boundary conditions, namely A = 0 with
B free and B = 0 with A free. So it has a combinatorial counterpart,
which is the combinatorial torsion. The Chern-Simons theory with action

k

4π

∫
M

Tr

(
AdA +

2

3
A3

)
has no gauge-invariant gapped boundary condition. Instead it has a
gapless boundary condition with chiral currents (i.e. a left-moving version
of the WZW model) on the boundary. This is important in its physical
applications and in the way it is solved. (Absence of gapped boundary
was proved by Freed and Teleman, arXiv: 2006.10200.) The doubled
Chern-Simons theory with equal and opposite levels

k

4π

∫
M

Tr

(
AdA +

2

3
A3

)
− k

4π

∫
M

Tr

(
BdB +

2

3
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)
has a gapped boundary condition A = B, so it has the combinatorial
description discovered by Turaev and Viro.



I will only give a sketch of why when a topological field theory has
a gapped boundary condition, this leads to a combinatorial
description. (I follow Bhardwaj, Gaiotto, and Kapustin.) Consider
a topological field theory in dimension D. Suppose we remove an
open ball from a D-manifold M.

In a unitary topological field theory, this multiplies the partition
function by a universal constant, independent of M.



Now consider any triangulated D-manifold, drawn here for D = 2:

Remove an open ball from every D-simplex:



What is left

is a slightly thickened version of the (D − 1)-skeleton of the
manifold. What one sees on each D − 1 simplex S is a
D − 1-dimensional topological field theory (obtained by
“compactification” on an interval normal to S) of the original
D-dimensional theory. The D − 1-dimensional theory has a finite
set of “vacua.” For example, in the Turaev-Viro case, these vacua
are the integrable representations of G at level k (the
representations of the quantum group Gq at q = exp(2πi/(kh))).
To calculate the partition function of the system, we can sum over
labeling of the D − 1 simplices by those vacua. Then we have to
sum over local data where D − 1-simplices meet along
D − 2-simplices, and then further data at intersections along
D − 3-simplices, and so on down to the bottom.



The conclusion is a remarkable generalization of the equivalence
between analytic and combinatorial torsion that was discovered
nearly half a century ago with Ray and Singer. This generalization
is of considerable interest in contemporary physics.



To summarize, I reviewed the two famous papers of Ray and Singer
on analytic torsion and then I talked about the influence of this
work in physics in these areas:

I zeta functions and determinants

I torsion and quantum field theory as first perceived by A. S.
Schwarz

I torsion for complex manifolds, applications in string theory

I determinants and anomalies, interpretation by Atiyah and
Singer

I torsion and volumes of moduli spaces

I and last, a twist on part of the story that started with the
work of Turaev and Viro (1991) and has many repercussions
in modern condensed matter physics.


