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Abstract. Here we study the space of real hyperbolic plane curves that are invariant under
actions of the cyclic and dihedral groups and show they have determinantal representations
that certify this invariance. We show an analogue of Nuij’s theorem for the set of invariant
hyperbolic polynomials of a given degree. The main theorem is that every invariant hy-
perbolic plane curve has a determinantal representation using a block cyclic weighted shift
matrix. This generalizes previous work by Lentzos and the first author, as well as by Chien
and Nakazato. One consequence is that if the numerical range of a matrix is invariant under
rotation, then it is the numerical range of a block cyclic weighted shift matrix.

1. Introduction

Here we study properties of a real plane curve that can be certified by a Hermitian de-
terminantal representation, in particular, hyperbolicity and invariance under the action of a
finite group. A real homogeneous polynomial is hyperbolic with respect to a point in Rn if
it is positive at the point and has real-rooted restrictions on every line through that point.

Hyperbolic polynomials were introduced in the mid-20th century by Petrovsky and G̊arding,
in the context of partial differential equations. Since then they have appeared in a wide range
of areas and applications, including convex optimization [23, 37], combinatorics [6, 7, 24, 32],
convex and complex analysis [3, 5], and operator theory [28, 33].

A fundamental example is given by the determinant. On the real vector space of Hermitian
matrices, the determinant is hyperbolic with respect to the identity matrix. More generally,
given a linear matrix pencil A(x) =

∑n
i=1 xiAi where the matrices A1, . . . , An are Hermitian

and the matrix A(e) is positive definite, the polynomial f(x) = det(A(x)) is hyperbolic with
respect to e ∈ Rn. This determinantal representation certifies the hyperbolicity of f and we
say that A(x) is a definite determinantal representation of f . See [43] for more.

For n = 3, VC(f) is a plane curve in P2(C). Determinantal representations are a classical
object of study [4, 17]. In 1902, Dixon showed that every plane curve has a symmetric
determinantal representation over the complex numbers [16]. Almost a hundred years later,
Helton and Vinnikov proved the Lax conjecture, showing that every hyperbolic plane curve
has a definite determinantal representation with real symmetric matrices [28]. Proving the
existence of such representations involves the existence of two-torsion points on the Jaco-
bian of the curve with certain real structure. Showing the existence of definite Hermitian
representations is less delicate. Concrete methods for constructing such representations were
studied by Plaumann and Vinzant [36].
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Figure 1. The variety of a quartic invariant hyperbolic form in P2(R) and
R3.

Here we study this question in the context of curves invariant under the action of a finite
group, in particular the cyclic or dihedral groups. We say that a polynomial f ∈ R[t, x, y] is
invariant under a group Γ ⊂ GL(R3) if f(γ ·(t, x, y)) = f for all γ ∈ Γ . We will be interested
in the cyclic and dihedral groups Cn = 〈rot〉 and D2n = 〈rot, ref〉 on R3, given by

(1) rot ·

tx
y

 =

1 0 0
0 cos(2π/n) sin(2π/n)
0 − sin(2π/n) cos(2π/n)

tx
y

 and ref ·

tx
y

 =

 t
x
−y

 .

Our first main theorem is an analogue of Nuij’s theorem on the structure of the set of
hyperbolic polynomials of a given degree.

Theorem 2.2. The set of polynomials in R[t, x, y]d that are hyperbolic with respect to
(1, 0, 0) and invariant under the action of the cyclic or dihedral group (of any order) is
contractible and equal to the closure of its interior in the Euclidean topology on R[t, x, y]d.

This is a key step in the proof that all such polynomials have an invariant definite deter-
minantal representation. Such representations were first studied by Chien and Nakazato in
the context of numerical ranges [12]. Given a matrix A ∈ Cd×d, define the polynomial

(2) FA(t, x, y) = det(tI + x(A+ A∗)/2 + y(A− A∗)/2i) ∈ R[t, x, y]d.

Since the matrices I, (A + A∗)/2 and (A − A∗)/2i are Hermitian and the identity matrix
is positive definite, FA has a definite determinantal representation and is hyperbolic with
respect to (1, 0, 0). Chien and Nakazato show that if A ∈ Cn×n is a complex cyclic weighted
shift matrix, then FA is invariant under the action of the cyclic group Cn and if additionally
A has real entries then FA is invariant under the action of the dihedral group D2n [12]. They
also show that for n = 3 and 4 any hyperbolic, invariant polynomial f ∈ R[t, x, y]n has such
a representation. This was generalized by Lentzos and Pasley [31] who show this for all n.

Here we generalize this to block cyclic weighted shift matrices, as defined in Definition 3.1.
For such a matrix A, the polynomial FA is hyperbolic with respect to (1, 0, 0) and invariant
under Cn or D2n, if additionally the matrix is real. Moreover, any invariant hyperbolic
polynomial has such a representation when its degree is an integer multiple of n.

Theorem 6.1. Let d ∈ nZ+ and suppose f ∈ R[t, x, y]d is hyperbolic with respect to (1, 0, 0),
with f(1, 0, 0) = 1, and invariant under the action of Γ.

(a) If Γ = Cn, then f = FA for some block cyclic weighted shift matrix A ∈ Cd×d.
(b) If Γ = D2n, then f = FA for some block cyclic weighted shift matrix A ∈ Rd×d.
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Figure 2. The curve VR(FA) and its dual curve boundingW(A) for A ∈ C5×5.

The original motivation of Chien and Nakazato was to understand invariance of numerical
ranges. Formally, the numerical range of a matrix A ∈ Cd×d is

W(A) =
{
v∗Av : v ∈ Cd, ||v|| = 1

}
⊂ C.

The Toeplitz-Hausdorff theorem states that this is a convex body in C ∼= R2 [27, 41]. This
set appears in applications related to engineering, numerical analysis, and differential equa-
tions [1, 8, 18, 19, 22].

Theorem (Kippenhahn [29]). Let X∗ be the dual variety to X = VC(FA). The numerical
range of A ∈ Cd×d is the convex hull of the real, affine part of X∗. That is,

W(A) = conv ({x+ iy : [1 : x : y] ∈ X∗(R)}) .

Using the above theorem on invariant determinantal representations, we show the following
about numerical ranges that are invariant under the action of the cyclic or dihedral group.

Theorem 7.1. Let A ∈ Cd×d and letW(A) denote its numerical range. IfW(A) is invariant
under multiplication by n-th roots of unity, then there exists a block cyclic weighted shift
matrix B of size ≤ n · dd/ne so that W(A) = W(B). Moreover if W(A) is invariant under
conjugation, then the entries of B can be taken in R.

The paper is organized as follows. In Section 2, we introduce the theory of hyperbolic
polynomials and prove an invariant analogue of Nuij’s theorem on the topology of this set.
The precise definition of block cyclic weighted shift matrices and their connection to invari-
ant hyperbolic polynomials is discussed in Section 3. In Sections 4 and 5, we prove parts (a)
and (b) of Theorem 6.1 under some genericity conditions on the curve VC(f) and in Section 6
we address the degenerate cases to complete the proof. Applications to numerical ranges are
given in Section 7. Finally we conclude with a discussion of open problems in Section 8.

Acknowledgements. We thank Ricky Liu, Hiroshi Nakazato, Linda Patton, Daniel Plau-
mann, Edward Poon, and Rainer Sinn for helpful comments and discussions. Part of this
work was done while both authors were participants at the Fall 2018 Nonlinear Algebra pro-
gram at the Institute for Computational and Experimental Research in Mathematics. Both
authors were partially supported by the US NSF-DMS grant #1620014. The second author
was also partially supported by the US NSF-DMS grant #1943363. This material is based
upon work directly supported by the National Science Foundation Grant No. DMS-1926686,
and indirectly supported by the National Science Foundation Grant No. CCF-1900460.
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2. Invariant hyperbolic polynomials

For a field F = R or C, we use F[t, x, y]d to denote the F-vectorspace of polynomials in
variables t, x, y that are homogeneous of degree d. Given f ∈ F[t, x, y]d, we use VF(f) to
denote the variety of f in the projective plane P2(F) over F. A finite group Γ of GL(R3)
defines an action on the vector space F[t, x, y] given by γ · f = f(γ · (t, x, y)). Let F[t, x, y]Γ

denote the subring of invariant polynomials f satisfying f(γ · (t, x, y)) = f for all γ ∈ Γ and
let F[t, x, y]Γd denote homogeneous elements of degree d in this ring. By a classical theorem
of Hilbert, the invariant ring F[t, x, y]Γ is finitely generated. For the group actions of Cn and
D2n given in (1), we can explicitly find these generators. See e.g. [20]. Namely,

R[t, x, y]Cn = R
[
t, x2 + y2,R[(x+ iy)n], I[(x+ iy)n]

]
, and

R[t, x, y]D2n = R
[
t, x2 + y2,R[(x+ iy)n]

]
where

(3) R[(x+ iy)n] =
(x+ iy)n + (x− iy)n

2
and I[(x+ iy)n] =

(x+ iy)n − (x− iy)n

2i
.

We will be particularly interested in the set of invariant hyperbolic polynomials.

Definition 2.1. A polynomial f ∈ R[t, x, y]d is hyperbolic with respect to a point e ∈ R3

if f(e) > 0 and f(λe−v) ∈ R[λ] is real-rooted for every choice of v ∈ R3. We call f strictly
hyperbolic with respect to e if f is hyperbolic with respect to e and the roots of f(λe−v)
are distinct for every v ∈ R3\(Re). By [36, Lemma 2.4], an equivalent definition is that f is
hyperbolic with respect to e and its real projective variety VR(f) is smooth.

A polynomial g ∈ R[t, x, y]d−1 is interlaces f with respect to e ∈ R3 if both are hyperbolic
with respect to e and the roots of g(λe−v) interlace the roots of f(λe−v) for every v ∈ R3.
We say that g strictly interlaces f with respect to e if g interlaces f with respect to e the
roots of g(λe− v) and f(λe− v) are all distinct for every v ∈ R3\(Re).

For Γ = Cn, D2n denote the set of hyperbolic, invariant forms of degree d by

HΓ
d =

{
f ∈ R[t, x, y]Γd : f(1, 0, 0) = 1, f is hyperbolic with respect to (1, 0, 0)

}
.

The subset of hyperbolic polynomials without any real singularities we denote by

(H◦)Γ
d =

{
f ∈ HΓ

d : VR(f) ⊂ P2(R) is smooth
}
.

As noted above, these are exactly the strictly hyperbolic forms in HΓ
d . Polynomials in (H◦)Γ

d

may have complex singularities and indeed may be forced to do for some choices of d, as
discussed in Section 8.1.

Nuij [34] showed that the set of hyperbolic polynomials of a given degree is contractible

in R[t, x, y]d ∼= R(d+2
2 ) and equal to the closure of its interior, which consists of strictly

hyperbolic polynomials. Here we show an analogous statement for hyperbolic polynomials
invariant under the cyclic and dihedral groups.

Theorem 2.2. For Γ = Cn or D2n and any d ∈ Z+, both (H◦)Γ
d and HΓ

d are contractible.
Moreover, (H◦)Γ

d is a full-dimensional, open subset of the set of polynomials in R[t, x, y]Γd
with coefficient of td equal to 1 and its closure equals HΓ

d .

The proof requires developing an invariant version of techniques used in [34]. To un-
derstand how the sets (H◦)Γ

d and HΓ
d relate, we introduce the following linear operator on
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Figure 3. Curves in HCn
d for (n, d) = (5, 6), (5, 6), (3, 7), and (4, 8) (left to

right).

invariant polynomials. For s ∈ R, define the linear map Ts : R[t, x, y]d → R[t, x, y]d by

Ts(f) = f − s2(x2 + y2)
∂2f

∂t2
.

Lemma 2.3. For any s ∈ R>0, the map Ts preserves invariance under Γ and hyperbolicity.
That is, Ts(HΓ

d ) ⊂ HΓ
d . Moreover for any f ∈ HΓ

d , the polynomial T ds (f), obtained by applying
Ts d times to f , is strictly hyperbolic with respect to (1, 0, 0). That is T ds (HΓ

d ) ⊂ (H◦)Γ
d .

Proof. First, note that if f ∈ R[t, x, y]Γd , then so are x2 + y2 and ∂2f
∂t2

, meaning that Ts
preserves invariance under Γ.

For the other claims, consider the operator on univariate polynomials T : R[t] → R[t]
where T (p) = p − s2p′′. We claim that for any real-rooted polynomial p ∈ R[t], T (p) is
also real rooted and the roots of T d(p) where d = deg(p) are simple. To see this, consider
the maps T± : R[t] → R[t] where T±(p) = p ± sp′ for some s ∈ R. The roots of T±(p)
have multiplicity one less than those of p, any repeated roots of T±(p) are also repeated
roots of p and any added roots of T±(p) are simple by the lemma of [34]. Let T = T+ ◦ T−
so T (p) = p − s2p′′. The roots of T (p) have multiplicity two less than those of p, and any
repeated roots are also repeated roots of p. Any other roots of T (p) are simple. If d = deg(p),
this implies every root of T d(p) is simple.

Since for any (a, b) ∈ R2, the restriction Ts(f)(t, a, b) equals the image of p(t) = f(t, a, b)
under the univariate operator T , the polynomial Ts(f) is hyperbolic with respect to (1, 0, 0)
and T ds (f) is strictly hyperbolic. �

For example, the left-most curve in Figure 3 is defined by an element f of HC5
6 and has

real singularities. Just to its right is the smooth curve defined by Ts(f) in (H◦)C5
6 .

Proof of Theorem 2.2. We follow the proof of the main theorem in [34]. Since strict hy-
perbolicity with respect to (1, 0, 0) is an open condition on R[t, x, y]d, it suffices to show

that (H◦)Γ
d is non-empty. An explicit example is tδ ·∏D

i=1(t2 − ri(x2 + y2)) where D = bd
2
c,

δ ∈ {0, 1} depending on the parity of d, and r1 < . . . < rD ∈ R+.
The set HΓ

d is closed in the hyperplane in R[t, x, y]Γd of polynomials with coefficient of td

equal to one. To see that it is the closure of (H◦)Γ
d , let f ∈ HΓ

d . By Lemma 2.3, for s > 0,
T ds (f) is strictly hyperbolic with respect to (1, 0, 0), meaning that T ds (f) belongs to (H◦)Γ

d .
The limit at s = 0 is exactly f . For s ∈ R, consider the linear mapGs : R[t, x, y]d → R[t, x, y]d
given by Gsf(t, x, y) = f(t, s2x, s2y). This map preserves hyperbolicity and invariance for
any s ∈ R as well as strict hyperbolicity when s 6= 0.
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For f ∈ HΓ
d , consider the path in R[t, x, y]Γd parametrized by s 7→ T d1−sGsf for s in

[0, 1]. At s = 1, this gives T d0G1f = f and at s = 0, this gives T d1G0f = T d1 t
d, which is

independent of the choice of f . Note that for s ∈ [0, 1), we have T d1−sGsf ∈ (H◦)Γ
d . The map

[0, 1]× R[t, x, y]d → R[t, x, y]d given by (s, f) 7→ T d1−sGsf in the Euclidean topology defines
a deformation retraction of both HΓ

d and (H◦)Γ
d onto the point T d1 t

d. �

3. Cyclic weighted shift matrices and invariance

One way of producing hyperbolic polynomials that are invariant under the actions of Cn
or D2n is via cyclic weighted shift matrices.

Definition 3.1. We call A ∈ Fd×d a block cyclic weighted shift matrix of order n if
Aij = 0 if j − i 6= 1 mod n. Let CF(n, d) denote the set of such matrices.

Remark 3.2. The term “block cyclic weighted shift matrix” is justified after a permutation
of the rows and columns of A. Consider the permutation of [d] that groups numbers by
their image modulo n and otherwise keeps them in order. For example, for n = 3, d = 5, we
consider the permutation (1, 2, 3, 4, 5) 7→ (1, 4, 2, 5, 3). After this permutation of rows and
columns, a block cyclic weighted shift matrix is a block matrix consisting blocks of size r× s
where r, s ∈ {b d

n
c, d d

n
e}, indexed by pairs (i, j) of equivalence classes modulo n, where the

block corresponding to (i, j) is the zero matrix whenever j − i 6= 1 modulo n.

Example 3.3. An arbitrary matrix A ∈ CF(3, 5) has the form

A =


0 a12 0 0 a15

0 0 a23 0 0
a31 0 0 a34 0
0 a42 0 0 a45

0 0 a53 0 0

 and PAP T =


0 0 a12 a15 0
0 0 a42 a45 0
0 0 0 0 a23

0 0 0 0 a53

a31 a34 0 0 0


where P is the permutation matrix representing (1, 2, 3, 4, 5) 7→ (1, 4, 2, 5, 3). The curve
VR(FA(1, x, y)) and numerical range W(A) for such a matrix are shown in Figure 2.

The set of matrices CC(n, n), also called cyclic weighted shift matrices, have been studied
extensively especially with respect to their numerical range [13, 20, 40]. In general, the
numerical range of any matrix in CC(n, d) is invariant under multiplication by nth roots of
unity. To see this, define the group homomorphism ρ : Cn → GL(Cd) by

(4) ρ(rot) = Ω∗ where Ω := diag
(
1, ω, ω2, . . . , ωd

)
and ω = e2πi/n.

This induces an action of the cyclic group on d× d matrices by rot · A = Ω∗AΩ. Note that
the (i, j)th entry of Ω∗AΩ is ωj−iAij. Therefore, for any matrix A ∈ CC(n, d), the cyclic
group acts by scaling by the nth root of unity. That is,

Ω∗AΩ = ωA.

Since the matrix Ω is unitary and numerical ranges are invariant under conjugation by
unitary matrices, we see that the numerical range of A is invariant under multiplication by
nth roots of unity, i.e. W(A) = W(ωA). Chien and Nakazato [12] show that for matrices
A ∈ CF(n, n), the polynomials FA are invariant under the cyclic group (for F = C) and
dihedral group (for F = R). Here we generalize this observation to matrices of arbitrary size.

To do this it is useful to rewrite the polynomial FA as

FA(t, x, y) = det
(
tI + 1

2
(x+ iy)A∗ + 1

2
(x− iy)A

)
.
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This is particular convenient as the group Cn acts diagonally on the linear forms t, x + iy,
and x− iy. Specifically, each action fixes t and we have

rot · (x+ iy) = e−2πi/n(x+ iy) ref · (x+ iy) = x− iy
rot · (x− iy) = e2πi/n(x− iy) ref · (x− iy) = x+ iy.

Proposition 3.4. For any A ∈ Cd×d, the polynomial FA is hyperbolic with respect to (1, 0, 0).
If A ∈ CC(n, d), then FA belongs to HCn

d and if A ∈ CR(n, d), then FA belongs to HD2n
d .

Here HΓ
d denotes the set of invariant hyperbolic polynomials as in Section 2.

Proof. By definition, the polynomial FA is the determinant of a linear matrix pencil that
equals the identity matrix at (1, 0, 0). The hyperbolicity of FA then follows from the fact
that all of the eigenvalues are real. For invariance, it suffices to check that rot · FA = FA for
A ∈ CC(n, d) and ref · FA = FA for A ∈ CR(n, d). Following [12] and using the simplification
of FA above, we apply rotation to give

rot · FA(t, x, y) = det
(
tI + 1

2
(x+ iy)(ωA)∗ + 1

2
(x− iy)(ωA)

)
= det

(
tI + 1

2
(x+ iy)(Ω∗AΩ)∗ + 1

2
(x− iy)(Ω∗AΩ)

)
= det(Ω∗) · det

(
tI + 1

2
(x+ iy)A∗ + 1

2
(x− iy)A

)
· det(Ω) = FA(t, x, y).

Similarly, if A has real entries then A∗ = AT and

ref · FA(t, x, y) = FA(t, x,−y) = det
(
tI + 1

2
(x− iy)AT + 1

2
(x+ iy)A

)
= det

((
tI + 1

2
(x+ iy)AT + 1

2
(x− iy)A

)T)
= FA(t, x, y).

�

Chien and Nakazato asked the converse question and provided a positive answer for the
case when d = n = 3, 4. The authors of [15, 25] studied rotational symmetry of the numerical
range of matrices of size d = 3, 4. We will provide a converse in the case d = qn in
Theorem 7.1. The difficulty for arbitrary d comes from the fact that for many values of d,
all forms in (H◦)Γ

d define curves with complex singularities, as discussed in Section 8.

4. A constructive proof for smooth curves

In this section we aim to prove Theorem 6.1, but with some added assumptions about of
a curve in HΓ

d and an interlacer. Throughout Sections 4 and 5 we will assume that

A1. f ∈ (H◦)Γ
d and VC(f) is smooth,

A2. g ∈ HΓ
d−1 interlaces f with respect to (1, 0, 0),

A3. VC(f) and VC(g) intersect transversely, and

A4.
∣∣VC(f, g, t)

∣∣ =

{
0 if n is odd,

d if n is even.

Specifically, we prove the following theorem.

Theorem 4.1. Let d = qn for some q ∈ Z+. Let f and g satisfy (A1)–(A4).

(a) If Γ = Cn, then there exists a matrix A ∈ CC(n, d) so that f = FA.
(b) If Γ = D2n, then there exists a matrix A ∈ CR(n, d) so that f = FA.
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In order to construct the matrix A and corresponding determinantal representation of f ,
we first construct the adjugate of this matrix, which will be a d×d matrix of forms of degree
d− 1 that has rank ≤ 1 on the curve VC(f). Following [16, 31, 36], we take g to be the (1, 1)
entry of this adjugate matrix and fill in the first row and column to vanish on complimentary
sets of points in VC(f) and VC(g).

The next lemma is a general statement about complex points in the intersection of VC(f)
and VC(g). This will allow us to split these intersection points into disjoint sets determined
by orbits under the action of rotation.

Lemma 4.2. Let f and g satisfy Assumptions (A1)–(A4). Any point [t : x : y] in VC(f, g)
satisfies |x+ iy| 6= |x− iy|.
Proof. For the sake of contradiction, suppose that |x + iy| = |x − iy|. If y 6= 0, then
x+ iy = z(x− iy) with |z| = 1 and z 6= 1. Solving for x/y gives

x

y
=
−i(1 + z)

1− z · (1− z)

(1− z)
=
−i(1− z + z − zz)

|1− z|2 =
−i(−z + z)

|1− z|2 =
2 · Im(z)

|1− z|2 ∈ R.

By homogeneity of f , f(t/y, x/y, 1) = 0, meaning that t/y is a root of the polynomial
f(λ, x/y, 1) ∈ R[λ] where x/y ∈ R is fixed. The hyperbolicity of f then implies that t/y ∈ R.
Since both x/y and t/y are real, the point [t : x : y] belongs to P2(R). By [36, Proposition 4.3],
any real intersection point of VC(f) and VC(g) is non-transverse, contradicting (A3).

Similarly, if y = 0, then x 6= 0 since f(1, 0, 0) = 1. Then f(t/x, 1, 0) = 0, implying that
t/x ∈ R and [t : x : y] = [t : x : 0] belongs to P2(R), again contradicting (A3). �

Corollary 4.3. Let f and g satisfy Assumptions (A1)–(A4). Then each Cn-orbit in VC(f, g)
is disjoint from its image under conjugation.

Proof. Let O be a Cn-orbit of points in VC(f, g) and suppose p = [t : x : y] ∈ O ∩ O. Then
rot` · p = p for some ` ∈ [n]. If rot` · p = [t : a : b], then [t : ω−`(x + iy) : ω`(x − iy)] = [t :
a+ ib : a− ib]. In particular, if rot` · p equals p, then

(5)
[
t : ω−` (x+ iy) : ω` (x− iy)

]
= [t : x+ iy : x− iy] = [t : x− iy : x+ iy].

The cross ratio the the last two coordinates gives x− iy · ω` (x− iy) = x+ iy · ω−` (x+ iy).
Taking the modulus of both sides shows that |x−iy| = |x+iy|, contradicting Lemma 4.2. �

Define the linear map

(6) ϕ : C[t, x, y]→ C[t, x, y] where h(t, x, y) 7→ h(rot−1 · (t, x, y)).

The eigenvectors of this map have the form tl(x + iy)j(x − iy)k, each with eigenvalue
ωj−k. The restriction ϕ|d of ϕ to C[t, x, y]d has a finite number of eigenvectors equal to
dimC(C[t, x, y]d) =

(
d+2

2

)
. For each ` = 0, 1, . . . , n− 1, denote by

(7) Λ(ω`)d =
{
f ∈ C[t, x, y]d : ϕ(f) = ω`f

}
the eigenspace of the restriction ϕ|d associated to eigenvalue ω`. Notice Λ(ω0)d = C[t, x, y]Cnd
and we can write C[t, x, y]d as a decomposition of eigenspaces

C[t, x, y]d =
n−1⊕
`=0

Λ(ω`)d.
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We will be interested in the dimension of each eigenspace. In particular, for d = qn, we want
at least q elements in each eigenspace Λ(ω`)d−1 in order to choose linearly independent set
of elements in C[t, x, y]d−1 for the first row of the adjugate matrix we wish to construct.

Lemma 4.4. Let d = qn for some q ∈ Z+. The dimension of the eigenspace Λ(ω`)d−1 is

dimC
(
Λ(ω`)d−1

)
=


dq
2

+ q
2

if n is odd
dq
2

+ q if n is even and ` is odd
dq
2

if n is even and ` is even.

Proof. The monomials td−1−j−k(x + iy)j(x − iy)k where j − k ≡ ` mod n form a basis for
the vectorspace

(
Λ(ω`)d−1

)
. Thus the dimension of

(
Λ(ω`)d−1

)
is the number points in the

simplex {(j, k) ∈ Z2
≥0 : j+k ≤ d− 1} with j−k ≡ ` mod n. Note that the such first points

on the j and k axes will be (`, 0) and (0, n− `).
For any 0 ≤ j ≤ d− 1, the number of integer points of the form (a+ j, a) in this simplex

is given by dd−j
2
e. Similarly the number of integer points of the form (a, a+ k) is dd−k

2
e. We

are interested in these values when j = `+ an and k = n− `+ an. That is,

dim
(
Λ(ω`)d−1

)
=

q−1∑
a=0

⌈
d− (`+ an)

2

⌉
+

⌈
d− (n− `+ an)

2

⌉
.

When n is odd, ` and n − ` have different parities, meaning exactly one of d−(`+an)
2

and
d−(n−`+an)

2
will be an integer. When n is even the parities of d− (`+an) and d− (n− `+an)

depend only on the parity of `. They are odd if and only if ` is odd. Let δ = 1 when n is
odd, 2 when n is even and ` is odd, and zero otherwise. Then dim

(
Λ(ω`)d−1

)
equals

q−1∑
a=0

d− (`+ an) + d− (n− `+ an) + δ

2
=

q−1∑
a=0

2d− n+ δ − 2an

2
= q

2d− n+ δ

2
−nq(q − 1)

2
,

where the last equality is obtained by summing the arithmetic sequence. Recalling that
d = qn, we see that this dimension simplifies to q(qn+ δ)/2 = q(d+ δ)/2, as desired. �

For f and g that satisfy (A1)–(A4), we will split the points of VC(f, g) into S ∪ S based
on orbits under rotation. The next lemma helps enumerate conditions imposed by the set
of orbit representatives, and accurately count dimensions later in Lemma 4.7.

Lemma 4.5. Let d = qn for some q ∈ Z+. If n and ` are even, then each monomial in
Λ(ω`)d−1 has a factor of t.

Proof. Let td−1−j−k(x+ iy)j(x− iy)k be an arbitrary monomial in Λ(ω`)d−1. Then j − k ≡ `
mod n. Since n and ` are even, j − k is even and so is j + k = j − k + 2k. Moreover d = qn
is even and d− 1 is odd. It follows that the exponent d− 1− (j+ k) of t is odd and ≥ 1. �

By Corollary 4.3, VC(f, g) may be split into two disjoint sets according to orbits invariant
under the action of Cn. More explicitly, write VC(f, g) = S ∪ S as the union of two disjoint
conjugate sets. Define S̃ to be a minimal set of orbit representatives from S so that

(8) S =
{

rot` · p | p ∈ S̃, ` ∈ [n]
}

.

The next proposition gives the maximum number of possible conditions imposed by S̃ on an
element of Λ(ω`)d−1.
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Proposition 4.6. Let d = qn for some q ∈ Z+ and suppose f and g satisfy (A1)–(A4).
Then the number of distinct orbits in S is∣∣S̃∣∣ =

{
q(d− 1)/2 if n is odd

qd/2 if n is even.

Proof. Since f(1, 0, 0) 6= 0, each point [t : x : y] ∈ VC(f, g) with t 6= 0 generates a Cn-orbit of
size n, since rot` fixes such a point if and only if ` ≡ 0 mod n. When n is odd, all points in
VC(f, g) have t 6= 0, so the d(d−1)/2 total points of S split up into d(d−1)/2n = q(d−1)/2
orbits under Cn. When n is even, the d(d − 2)/2 total points in S with t 6= 0 split up into
q(d−2)/2 orbits. Each point in VC(f, g, t) generates a Cn-orbit of size n/2 since rotn/2 acts as
the identity on points of the form [0 : x : y]. Thus the d total points of VC(f, g, t) contribute
(d/2)/(n/2) = q orbits to S which means S has a total of qd/2 Cn-orbits. �

Denote the space of forms in C[t, x, y]d−1 vanishing on points S and S̃ from (8) by

(9) I (S)d−1 and I(S̃)d−1

respectively. Now we can show there are enough elements in each eigenspace to choose a
linearly independent forms in C[t, x, y]d−1 for the first row in our desired adjugate matrix.

Lemma 4.7. Let d = qn for some q ∈ Z+. There exist q linearly independent polynomials
in each eigenspace Λ(ω`)d−1 that vanish on the points S. That is,

dimC
(
Λ(ω`)d−1 ∩ I(S)d−1

)
≥ q.

Proof. An element of Λ(ω`)d−1 vanishes on S if and only if it vanishes on S̃. Then for any `,

dim
(
Λ(ω`)d−1 ∩ I(S)d−1

)
= dim

(
Λ(ω`)d−1 ∩ I

(
S̃
)
d−1

)
≥ dim

(
Λ(ω`)d−1

)
−
∣∣∣S̃∣∣∣ .

In the cases when n is odd or n is even with ` odd, this count is straightforward due to
Lemmas 4.4 and 4.6. By Lemma 4.5, when n and ` are even, every monomial in Λ(ω`)d−1

has a factor of t. Thus every element of Λ(ω`)d−1 will already vanish at points with t = 0
without adding additional constraints from those in VC(f, g, t). In this case we do not take
into account the q orbits at infinity and using Lemmas 4.4 and 4.6 we have

dim
(
Λ(ω`)d−1 ∩ I(S)d−1

)
≥ dim

(
Λ(ω`)d−1

)
−
∣∣∣S̃∣∣∣+ q ≥ q.

�

The final piece to the construction is an invariant version of Max Noether’s Theorem on
divisors on smooth plane curves, appearing in [31].

Lemma 4.8 (Lemma 3.7 [31]). Suppose f, g ∈ Λ(ω0) and h ∈ Λ(ω`) are homogeneous with
VC(f) smooth where deg(h) > deg(f), deg(g) and g and h have no irreducible components
in common with f . If VC(f, g) consists of distinct points and VC(f, g) ⊆ VC(f, h), then there
exists homogeneous a, b ∈ Λ(ω`) with deg(a) = deg(h)−deg(f) and deg(b) = deg(h)−deg(g)
so that h = af + bg. Moreover, if f , g, and h are real, then a and b can be chosen real.

The construction below is similar to Construction 4.1 from [31]. For normalization of the
coefficient matrix of t, however, we must be more careful. Now the variable t appears in
off-diagonal entries of the determinantal representation, so we must first block diagonalize
the coefficient matrix of t, then normalize with respect to each block separately in order to
preserve the desired matrix structure.
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Construction 4.9. Let d = qn for some q ∈ Z+ and Γ = Cn.
Input: Two plane curves f and g satisfying (A1)–(A4).
Output: A ∈ CC(n, d) with f = FA.

(1) Set g11 = g.
(2) Split up the distinct d(d − 1) points of VC(f, g11) into two disjoint, conjugate sets

S ∪ S of Cn-orbits such that rot(S) = S.
(3) Extend g11 to a linearly independent set {g11, g12, . . . , g1d} ⊂ C[t, x, y]d−1 vanishing

on all points of S with g1j ∈ Λ(ω1−j)d−1 for all j ∈ [n] and set gj1 = g1j for each j.
(4) For 1 < i ≤ j, choose gij ∈ Λ(ωi−j)d−1 so that g11gij−g1ig1j ∈ 〈f〉 and gii ∈ R[t, x, y].
(5) For i < j, set gji = gij and define G = (gij)i,j ∈ (C[t, x, y]d−1)d×d.
(6) Define M = (1/fd−2) · adj(G).
(7) For ` ∈ [d], write ` − 1 = an + b for some integers a and b with 0 ≤ b ≤ n − 1.

Let P be the permutation matrix that takes ` = an + b + 1 to bq + a + 1. Define
M ′ = PMP T as a matrix with q × q blocks M ′ = (M ′

kl)
n
k,l=1

(M ′
kl)ij ∈ Λ(ωk−l)1 for k, l ∈ [n] and i, j ∈ [q].

(8) For each k compute the Cholesky decomposition of each diagonal block M ′
kk and

write (M ′)−1
kk = UkU

∗
k for some Uk ∈ Cq×q.

(9) Define U = diag(U1, U2, . . . , Uk) and output A =
(
P TU∗M ′UP

)
(0, 1, i).

Proof of Theorem 4.1. Our goal is to show each step of Construction 4.9 can be completed
and produces a matrix A ∈ CC(n, d) such that f = FA as in (2). Let g11 = g. By Corollary 4.3,
we can write VC(f, g11) as a disjoint union S ∪ S where rot(S) = S. For Step 3, Lemma 4.4
allows us extend g11 to a linearly independent set {g11, g12, . . . , g1d} where g1j ∈ Λ(ω1−j)d−1

vanishes on S for every j ∈ [n]. Now let gj1 = g1j. By Lemma 4.8, we can choose gij
such that gij ∈ Λ(ωi−j)d−1 for 1 < i < j and g11gij − g1ig1j = af for some homogeneous
a ∈ C[t, x, y] to complete Step 4. Since f , g11, g1ig1i ∈ R[t, x, y], we can choose gii ∈ R[t, x, y]
as well. Let gji = gij for i < j and define G = (gij)i,j be the d× d complex matrix of forms
of degree d− 1. By Theorem 4.6 of [36], each entry of adj(G) will be divisible by fd−2 and
Step 6 is valid. The entries in G have degree d − 1, so entries of its adjugate have degree
(d − 1)2. Then fd−2 has degree d(d − 2), so entries of M are linear in t, x, and y. By [36,
Theorem 4.6], M(1, 0, 0) is positive definite and det(M) is a nonzero scalar multiple of f .
Let Ω = diag(1, ω, . . . , ωd−1). Applying the map ϕ to the (i, j)-th entry of M = (mij)ij gives

ϕ (mij) = (1/fd−2) · adj(ϕ(G))ij

= (1/fd−2) · adj(ΩGΩ∗)ij

= (1/fd−2) · (adj(Ω∗)adj(G)adj(Ω))ij

= (ΩMΩ∗)ij

= ωj−1ωi−1mij

= ωi−jmij.

Therefore, mij ∈ Λ(ωi−j)1 for each i, j. The restriction of ϕ to C[t, x, y]1 has eigenvalues
1, ω, and ωn−1 with associated eigenspaces Λ(ω0)1, Λ(ω1)1, and Λ(ωn−1)1. This implies
mij = 0 if i − j 6≡ 0,±1 mod n. For mij such that i − j ≡ n − 1 mod n, we have
mij ∈ Λ(ωn−1)1, showing that mij is a scalar multiple of x − iy. Similarly, since M is
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Hermitian, this implies mji ∈ Λ(ω1)1 must be a scalar multiples of x + iy. If i − j ≡ 0
mod n then i ≡ j mod n and mij ∈ Λ(ω0) ∩ R[t, x, y] is a multiple of t.

Next we will show by permuting rows and columns of M we may get the identity matrix
as the coefficient of t in our representation. Consider M as a matrix of n× n blocks. Each
block is a cyclic weighted shift matrix and there are q2 blocks in total. For ` ∈ [d], write
` − 1 = an + b for some integers a and b with 0 ≤ b ≤ n − 1. Let P be the permutation
matrix that takes ` = an+ b+ 1 to bq + a+ 1, as in Remark 3.2. Define M ′ = PMP T as a
matrix with q × q blocks M ′ = (M ′

kl)
n
k,l=1 with

(M ′
kl)ij ∈ Λ(ωk−l)1 for k, l ∈ [n] and i, j ∈ [q].

It follows that M ′(1, 0, 0) is a block diagonal matrix. Moreover, since M(1, 0, 0) is pos-
itive definite, so is M ′(1, 0, 0). For each k ∈ [n] we can decompose M ′

kk(1, 0, 0) so that
M ′

kk(1, 0, 0)−1 = U∗kUk for some Uk ∈ Cq×q. Define U = diag(U1, U2, . . . , Un). Then
M ′′ = UM ′U∗ is a desired representation of f since M ′′(1, 0, 0) = Id, (M ′′

kl)ij ∈ Λ(ωk−l)1 for

k, l ∈ [n] and i, j ∈ [q], and f = (1/λ) · det (UM ′U∗) for λ = det(U) · det(U∗). Lastly, apply
the inverse permutation so f = (1/λ) · det(P TM ′′P ) and evaluating (P TM ′′P )(0, 1, i) gives
a cyclic weighted shift matrix of order n. �

Example 4.10. [d = 6, n = 3, q = 2] For n = 3 and d = 6, we see that VC(f, g) consists
of d(d − 1) = 30 points, which split into 10 orbits, each of size 3. These orbits come in
conjugate pairs, of which we take half to form the set S, which will have size 15. The set S̃
of orbit representatives in S has size q(d − 1)/2 = 5. For every `, Λ(ω`)d−1 has dimension
q(d + 1)/2 = 7. Since each point in S̃ imposes a linear condition on forms in Λ(ω`)d−1,
we can find 7 − 5 = 2 linearly independent forms g1j, g1(j+n) ∈ Λ(ω1−j) that vanish on

S̃. Ranging over j = 0, 1, 2 gives the first row of the matrix G. The entries of the linear
matrix M = (mij)ij satisfy mij ∈ Λ(ωi−j)1. In particular, the (i, j) entry of M(1, 0, 0) zero
whenever i 6= j mod 3. Evaluating the matrix M ′ = PMP T at (t, x, y) = (1, 0, 0) therefore
results in a block diagonal matrix of three 2 × 2 blocks, each of which is positive definite.
Conjugation by the appropriate block diagonal matrix results in the identity matrix and the
desired determinantal representation of f . A detailed example of this construction can be
found in [39, Example 3.1.9].

Example 4.11 (d = 12, n = 4, q = 3). For n = 4 and d = 12, we see that VC(f, g) consists
of d(d− 1) = 132 points. Of these, 120 have t 6= 0 and split up into q(d− 2) = 30 orbits of
size 4. Since g has a factor of t, there are an additional 12 points with t = 0, splitting up
into 6 orbits, each of size two. Splitting these 132 into conjugate pairs S ∪ S, we see that S
has 66 points, consisting of 15 orbits of size 4 and three orbits of size two. The set S̃ of orbit
representatives has size qd/2 = 18. The dimension of Λ(ω`)d−1 is qd/2 = 18 when ` is even
and qd/2+q = 21 when ` is odd. Note that when ` is even, elements of Λ(ω`)d−1 have a factor
of t and so automatically vanish on those points in S̃ with t = 0. Each of the 15 remaining
points imposes a linear condition on Λ(ω`)d−1, leaving a three-dimensional subspace of forms
in Λ(ω`)d−1 that vanish on S. Similarly, if ` is odd, then dimC Λ(ω`)d−1− |S̃| = 21− 18 = 3.
Therefore for each j = 0, 1, 2, 3, we can choose linearly independent g1j, g1(j+n), g1(j+2n) in
Λ(ω1−j)d−1 that vanish on S.
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5. Dihedral Invariance

In this section, we modify Construction 4.9 to include the invariance under reflection and
produce a matrix in CR(n, d). We divide the points of VC(f, g) based on orbits under rotation,
then split according to reflection. Specifically, we require not only that VC(f, g) = S ∪ S
where rot(S) = S, but also ref

(
S
)

= S meaning that if p ∈ S, then ref(p) ∈ S.

Corollary 5.1. Every Cn-orbit in VC(f, g) is disjoint from its image under reflection when
f and g satisfy (A1)–(A4).

Proof. Let O be a Cn-orbit in VC(f, g). Suppose p = [t : x : y] ∈ O ∩ ref(O). Then
ref(p) = rot` · p for some ` ∈ [n], giving that

(10) [t : x− iy : x+ iy] =
[
t : ω−`(x+ iy) : ω`(x− iy)

]
.

Then (x−iy) ·ω`(x−iy) = (x+iy) ·ω−`(x+iy). Taking the modulus of both sides shows that
|x− iy| = |x+ iy|, which contradicts Lemma 4.2. Therefore O ∩ ref(O) must be empty. �

Remark 5.2. Corollaries 4.3 and 5.1 imply that a Cn-orbit O ∈ VC(f, g) is disjoint from
both conj(O) and ref(O). However, this tells us nothing about the intersection of orbits
conj(O) and ref(O). Their intersection may be nonempty, hence D2n-orbits in VC(f, g) do
not always have the same cardinality.

When the matrix A has real entries, both the linear matrix with determinant FA and its
adjugate have entries in R[t, x + iy, x − iy]. Therefore to reverse engineer this process and
produce a matrix in CR(n, d), we amend the construction to use forms in R[t, x+ iy, x− iy].

Remark 5.3. Complex conjugation, denoted conj acts on C[t, x, y] by conjugating the co-
efficients of a polynomial in the basis of monomials tlxjyk. We claim that the invariant ring

of the composition ref ◦ conj is given by C[t, x, y]
〈ref◦conj〉
d = R[t, x+ iy, x− iy]d. Indeed, any

element in C[t, x, y] is a C-linear combination of forms tl(x+ iy)j(x− iy)k. Then

(ref ◦ conj) ·
∑

l+j+k=d

cljkt
l(x+ iy)j(x− iy)k = ref ·

∑
l+j+k=d

cljkt
l(x− iy)j(x+ iy)k

=
∑

l+j+k=d

cljkt
l(x+ iy)j(x− iy)k,

meaning that the polynomial is invariant if any only if its coefficients cljk with respect to
this basis are real.

Lemma 5.4. If S ⊂ P2(C) is fixed under ref ◦ conj, i.e. ref(S) = S, then the intersection of
the subspace Λ(ω`)d−1 in (7) with I(S)d−1 has a basis in R[t, x+ iy, x− iy]d−1.

Proof. We will argue that each linear subspace is invariant under ref ◦ conj separately, hence
so is their intersection. The subspace Λ(ω`)d−1 is invariant under ref ◦ conj since in spanned
by monomials td−1−j−k(x + iy)j(x − iy)k, which are invariant. The subspace I(S)d−1 is
invariant under ref ◦ conj because

I(S)d−1 = I(ref(S))d−1 = (ref ◦ conj)(I(S)d−1).

Since both Λ(ω`)d−1 and I(S)d−1 are invariant under ref ◦ conj, so is their intersection. It

therefore has a basis in C[t, x, y]
〈ref◦conj〉
d−1 = R[t, x+ iy, x− iy]d−1. �
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Construction 5.5. Let d = qn for some q ∈ Z+ and Γ = D2n.
Input: Two plane curves f and g satisfying (A1)–(A4).
Output: a matrix A ∈ CR(n, d) such that f = FA.

(1) Set g11 = g.
(2) Split up the distinct d(d − 1) points of VC(f, g11) into two disjoint, conjugate sets

S ∪ S of Cn-orbits such that rot(S) = S and ref(S) = S.
(3) Extend g11 to a linearly independent set {g11, g12, . . . , g1d} ⊂ R[t, x + iy, x − iy]d−1

vanishing on all points of S with g1j ∈ Λ(ω1−j)d−1 and set gj1 = g1j for all j ∈ [d].
(4) For 1 < i ≤ j, choose gij ∈ Λ(ωi−j)d−1 ∩ R[t, x+ iy, x− iy]d−1 so that g11gij − g1ig1j

belongs to 〈f〉 and gii ∈ R[t, x, y].
(5) For i < j, set gji = gij and define G = (gij)i,j ∈ (R[t, x+ iy, x− iy]d−1)d×d.
(6) Define M = (1/fd−2) · adj(G).
(7) For ` ∈ [d], write ` − 1 = an + b for some integers a and b with 0 ≤ b ≤ n − 1.

Let P be the permutation matrix that takes ` = an + b + 1 to bq + a + 1. Define
M ′ = PMP T as a matrix with q × q blocks M ′ = (M ′

kl)
n
k,l=1

(M ′
kl)ij ∈ Λ(ωk−l)1 for k, l ∈ [n] and i, j ∈ [q].

(8) For each k compute the Cholesky decomposition of each diagonal block M ′
kk and

write (M ′)−1
kk = UkU

T
k for some Uk ∈ Rq×q.

(9) Define U = diag(U1, U2, . . . , Uk) and output A =
(
P TUTM ′UP

)
(0, 1, i).

Proof of Theorem 4.1(b). Let g11 = g. Here we follow Construction 4.9, but split the in-
tersection points VC(f, g) into S ∪ S so that rot(S) = S and ref(S) = S. Indeed, by
Corollaries 4.3 and 5.1, for an orbit O of a point in VC(f, g), we may put O and ref(O) in S
while taking ref(O) and O in S. By Lemma 5.4, we can extend g11 to a linearly independent
set {g11, . . . , g1d} so that g1j ∈ Λ(ω1−j)d−1 ∩ I(S)d−1 ∩R[t, x+ iy, x− iy]. Now let gj1 = g1j.
The polynomials f , g11, g1ig1j ∈ R[t, x+ iy, x− iy], so by Lemma 4.8, we are also able to find
gij such that gij ∈ Λ(ωi−j)d−1 ∩ R[t, x + iy, x − iy]d for 1 < i < j. Moreover, gii ∈ R[t, x, y]
since f, g11, g1ig1i ∈ R[t, x, y]. Let gji = gij for i < j and define G = (gij)i,j. Notice that
G ∈ R[t, x+iy, x−iy]d×dd−1. We then complete the construction as in the proof of Theorem 4.1.

The matrix M = (1/fd−2) · adj(G) satisfies M ∈ R[t, x+ iy, x− iy]d×d1 so M(1, 0, 0) ∈ Rd×d.
Next we will show by permuting rows and columns of M we may get the identity matrix

as the coefficient of t in our representation. Consider M as a matrix of n× n blocks. Each
block is a cyclic weighted shift matrix and there are q2 blocks in total. For ` ∈ [d], write
` − 1 = an + b for some integers a and b with 0 ≤ b ≤ n − 1. Let P be the permutation
matrix that takes ` = an+ b+ 1 to bq + a+ 1. Define M ′ = PMP T as a matrix with q × q
blocks M ′ = (M ′

kl)
n
k,l=1 with

(M ′
kl)ij ∈ Λ(ωk−l)1 for k, l ∈ [n] and i, j ∈ [q]

and M ′(1, 0, 0) is a real block diagonal matrix. By Theorem 3.3 of [36], we know M(1, 0, 0)
is definite, thus M ′(1, 0, 0) is definite. For each k ∈ [n] write M ′

kk(1, 0, 0)−1 = UT
k Uk for some

Uk ∈ Rd×d. Define U = diag(U1, U2, . . . , Un). Then M ′′ = UM ′UT is a representation of f
since M ′′(1, 0, 0) = Id and f = (1/λ) · det (M ′′) for λ = det(U) · det(UT ). Lastly, apply the
inverse permutation so f = (1/λ) ·det(P TM ′′P ). Evaluating (P TM ′′P )(0, 1, i) gives a cyclic
weighted shift matrix of order n and it is real because P TM ′′P ∈ R[t, x+ iy, x− iy]d×d1 . �
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Example 5.6 (d = 6, n = 3, q = 2). For n = 3 and d = 6, we see that VC(f, g) consists
of d(d − 1) = 30 points, which split into 10 orbits, each of size 3. Each orbit O is either
fixed by ref ◦ conj, in which case ref(O) = O, or not, in which case ref(O) 6= O. Indeed,
since there are 10 orbits total, we see that there must be at least one orbit with ref(O) = O.
Regardless, we can split up the 10 orbits under Cn into two conjugate sets of five. The union
of each collection is a set S of size 15 satisfying ref(S) = S. The counts and constructions
then continue as in Example 4.10, where the assumption ref(S) = S lets us take the forms
g1j in R[t, x+ iy, x− iy]. See [39, Example 3.2.6] for a detailed example of this construction.

6. The Degenerate Case

Theorem 6.1. Let d = qn for some q ∈ Z+ and suppose f ∈ HΓ
d .

(a) If Γ = Cn, then there exists A ∈ CC(n, d) so that f = FA.
(b) If Γ = D2n, then there exists A ∈ CR(n, d) so that f = FA.

Here we deal with assumptions (A1)–(A4) posed in Section 4. To start, we show that the
algebraic assumptions hold generically.

Proposition 6.2. For d = qn and Γ = Cn or D2n, a generic invariant form f ∈ C[t, x, y]Γd
defines a smooth plane curve VC(f) ⊂ P2(C).

Proof. Consider the subvariety X of P(C[t, x, y]Γd )× P2(C) given by

X =
{

(f, p) ∈ P(C[t, x, y]Γd )× P2(C) : ∇f(p) = (0, 0, 0)
}

By the Projective Elimination Theorem (e.g. [26, Theorem 10.6]), its image under the
projection π1(f, p) = f is a subvariety of P(C[t, x, y]Γd ). Therefore the image is either the
whole space, meaning that either every polynomial in C[t, x, y]Γd defines a singular curve, or
belongs to a proper subvariety of C[t, x, y]Γd , meaning that a generic polynomial in C[t, x, y]Γd
defines a smooth curve. To finish the proof, we note that td + (x+ iy)d + (x− iy)d belongs
to C[t, x, y]Γd and defines a smooth plane curve. �

Proposition 6.3. For d = qn and Γ = Cn or D2n and any e ∈ Z+, the plane curves
defined by generic invariant forms f, g ∈ C[t, x, y]Γ with deg(f) = d and deg(g) = e intersect
transversely.

Proof. First, we argue that it suffices to produce one example of a pair of forms f, g in
C[t, x, y]Γ with deg(f) = d, deg(g) = e whose plane curves intersect transversely. This is
because the intersecting transversely is a Zariski-open condition on f, g. More precisely,
consider the subvariety Y ⊂ P(C[t, x, y]Γd )× P(C[t, x, y]Γe )× P2(C) defined by

Y =

{
(f, g, p) : f(p) = 0, g(p) = 0, rank

(
∇f(p)
∇g(p)

)
≤ 1

}
.

Again, by the Projective Elimination Theorem [26, Theorem 10.6], the image of Y under the
projection π(f, g, p) = (f, g) is a Zariski-closed set. By construction, it is the set of pairs
(f, g) for which the intersection VC(f)∩ VC(g) is non-transverse. We need to show that this
does not occur for all pairs.

First we consider the special case d = n and e = 1, 2. Note that since f is invariant under
the action of Cn, it has the form

f(t, x, y) = a(x+ iy)n + b(x− iy)n +

bn/2c∑
j=0

cjt
n−j(x2 + y2)j
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where a, b, c0, . . . , cbn/2c ∈ C and a = b if Γ = D2n. Note that when a, b are non-zero, the
intersection of VC(f) with VC(t) is transverse for non-zero a, b. Also if a, b are nonzero, then
VC(f) and VC(x2 + y2) have no common points with t = 0. Then by Bertini’s theorem, for
generic λ, µ ∈ C, the intersection of VC(f) and VC(λ(x2 + y2) + µt2) is transverse [2].

Now we construct the desired pair f, g ∈ C[t, x, y]Γ with deg(f) = d and deg(g) = e. Let
f be the product of q generic forms in C[t, x, y]Γn of degree n, and let g be the product of
b e

2
c generic quadratic forms C[t, x, y]Γ2 and tδ where δ = 2( e

2
− b e

2
c). Then by the argument

above, VC(f) and VC(g) intersect transversely. �

Proposition 6.4. Let d = qn. For Γ = Cn or D2n and generic invariant forms f, g in
C[t, x, y]Γ with deg(f) = d and deg(g) = d− 1, the number of intersection points on the line
t = 0 is given by

|VC(f, g, t)| =
{

0 if n is odd,

d if n is even.

Proof. We first prove something slightly different. Let e ∈ Z+ be an integer satisfying
e ∈ 2N+nN where q · e is even. We claim that generic invariant forms f, g ∈ C[t, x, y]Γ with
deg(f) = d and deg(g) = e satisfy VC(f, g, t) = ∅.

By the Projective Elimination Theorem [26, Theorem 10.6], the set of (f, g) ∈ C[t, x, y]Γd ×
C[t, x, y]Γe for which VC(f, g, t) is non-empty is Zariski closed. Therefore it suffices to show
that it is not the whole space.

Let (a, b) ∈ N2 so that 2a+ nb = e. Note that if e is even, then we may take b to be even.
To see this, note that e = 2a + nb implies that at least one of b and n is even. If n = 2k is
even and b is odd, then b ≥ 1 and we may replace the pair (a, b) with (a+ k, b− 1).

For an integer m ∈ Z+, let χ(m) be 0 if m is even and 1 if m is odd. Then consider
polynomials

f = (un+vn)χ(q)

bq/2c∏
j=1

(un+rjv
n)(rju

n+vn) and g = (uv)a(un+vn)χ(b)

bb/2c∏
k=1

(un+skv
n)(sku

n+vn).

where r1, . . . , rbq/2c, s1, . . . , sbb/2c ∈ C\{0, 1} are all distinct and u = x + iy, v = x− iy. We
claim that both f, g are invariant under the dihedral group and have no common roots with
t = 0, so long as χ(q) · χ(b) = 0. Let ω = e2πi/n. For invariance, note that both f , g are
invariant under the change of coordinates (t, u, v) 7→ (t, ωu, ωv), which is the action of rot
in coordinates (t, u, v), as well as the map (t, u, v) 7→ (t, v, u), which is the action of ref.

The zeros of f with t = 0 consist of the points [t : u : v] = [0 : 1 : λω] where ω is
an nth root of unity and λ = 1, rk, 1/rk for k = 1, . . . , bq/2c. Moreover there is only such
a root with λ = 1 if q is odd. Similarly, the zeros of g with t = 0 consist of the points
[t : u : v] = [0 : 1 : 0], [0 : 0 : 1] if a ≥ 1 and [t : u : v] = [0 : 1 : λω] where λ = 1, sk, 1/sk for
k = 1, . . . , bb/2c, where λ = 1 gives a root only if b is odd. Therefore so long as at least one
of q or b is even, VC(f, g, t) is empty.

Now suppose that e = d − 1 = qn − 1 and n is odd. Then qn has the same parity as q,
which is different than the parity of e. Furthermore, e = (n− 1) + (q − 1)n. Since n− 1 is
even, this belongs to 2N + nN. The argument from above then shows that VC(f, g, t) = ∅.

If n is even, then so is d, meaning that d − 1 is odd. By Lemma 4.5, every polynomial
g ∈ C[t, x, y]Γ of degree d− 1 has a factor of t, meaning that it can be written as g = t · h
where h ∈ C[t, x, y]Γd−2. Taking e = d − 2 above shows that VC(f, h, t) = ∅. Therefore
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VC(f, g, t) = VC(f, t). Since f has degree d, this consists of d points generically, as is
achieved by the explicit example f above. �

Having dealt with the algebraic conditions of non-singularity, now we address the semi-
algebraic conditions of hyperbolicity and interlacing.

Theorem 6.5. For d = qn and Γ = Cn or D2n, every polynomial in HΓ
d is a limit of

polynomials f ∈ (H◦)Γ
d for which there exists g ∈ HΓ

d−1 such that

(i) VC(f) is smooth,
(ii) g interlaces f ,

(iii) VC(f) ∩ VC(g) is transverse, and

(iv) |VC(f, g, t)| =
{

0 if n is odd,

d if n is even.

Proof. For any strictly hyperbolic f ∈ R[t, x, y]d the set of polynomials g ∈ R[t, x, y]d−1 that
interlace f with respect to (1, 0, 0) is a full-dimensional convex cone, whose interior consists
of those g which strictly interlace f . See e.g. [30, Section 6]. Then by Theorem 2.2, the set

I =
{

(f, g) ∈ (H◦d)Γ × R[t, x, y]Γd−1 : g strictly interlaces f with respect to (1, 0, 0)
}

is an open, full-dimensional subset of the affine subspace {(f, g) : coeff(f, td) = 1} in
R[t, x, y]Γd × R[t, x, y]Γd−1. Moreover, the image of I under the projection π(f, g) = f is
all of (H◦d)Γ. By Propositions 6.2, 6.3, and 6.4,

U =
{

(f, g) ∈ R[t, x, y]Γd × R[t, x, y]Γd−1 : conditions (i),(iii), (iv) are satisfied
}

is open and dense in the Euclidean topology on R[t, x, y]Γd × R[t, x, y]Γd−1. Furthermore, we
note that U is invariant under diagonal scaling (f, g) 7→ (λf, g) where λ ∈ R∗. An element
(f, g) can be rescaled to have coeff(f, td) = 1 if and only if the coefficient coeff(f, td) is
nonzero, showing that U is also dense in the subspace given by coeff(f, td) = 1. It follows
that I∩U is dense in I. Since the projection π(I) equals (H◦d)Γ, this gives that the projection
of I ∩ U is dense in (H◦d)Γ. Then, by Theorem 2.2, we see that

π(I ∩ U) = π(I) = (H◦d)Γ = HΓ
d .

Therefore every polynomial in HΓ
d belongs to the closure of the set of polynomials f for

which there exists g ∈ R[t, x, y]Γd−1 with (f, g) ∈ I ∩ U . �

Proof of Theorem 6.1. Let f ∈ HΓ
d . By Theorem 6.5, f is the limit of some sequence (fε)ε

in (H◦)Γ
d satisfying (A1)–(A4). By Theorem 4.1, for each ε, there exists some matrix Aε in

CF(n, d) such that fε = FAε , where F = C for Γ = Cn and F = R for Γ = D2n. Now fε(t,−1, 0)
and fε(t, 0,−i) are the characteristic polynomials of <(Aε) = (Aε + A∗ε)/2 and =(Aε) =
(Aε − A∗ε)/2i. These must converge to the roots of f(t,−1, 0) or f(t, 0,−i) respectively.
Therefore, the eigenvalues of <(Aε) and =(Aε) are bounded, which bounds the sequences
(<(Aε))ε and (=(Aε))ε. Then

(<(Aε))ε + i(=(Aε))ε = (<(Aε) + i=(Aε))ε = (Aε)ε

which is also bounded. Passing to a convergent subsequence gives that lim
ε→0

(Aε)ε = A and

f = det

(
lim
ε→0

(
tId +

x+ iy

2
A∗ε +

x− iy
2

Aε

))
= det

(
tId +

x+ iy

2
A∗ +

x− iy
2

A

)
= FA.

�
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7. Results on the Classical and k-Higher Rank Numerical Range

The authors of [12, 13, 42] were particularly interested in the relationship between the
numerical range and the curve dual to its boundary generating curve. Using this relationship
and Theorem 6.1, we characterize matrices whose numerical range is invariant under rotation.

In this section, we describe the interaction between invariance of the numerical range,
its boundary generating curve, and the dual variety. We also discuss applications to a
generalization of the numerical range. In the special case d = n, these results appear in [31].

Invariance of FA under rotation implies the invariance of W(A) under multiplication by
ω, as discussed in Proposition 3.4. However, the converse does not hold. That is, there are
examples for which W(A) is invariant under multiplication by ω, but FA is not invariant
under the action of Cn. See Example 7.2. As discussed below, the invariance of W(A) only
implies that the invariance of some factor of FA, namely the product of irreducible factors
whose dual varieties contribute to the boundary of W(A). The invariance of the boundary
of W(A) still gives us information about the dual curve VC(FA).

-0.5 0.0 0.5

-0.5

0.0

0.5

-10 -5 0 5 10

-10

-5

0

5

10

Figure 4. The hypersurface VR(FB) in the plane t = 1 for B ∈ C6×6 from
Example 7.2 (right) and W(B) (left). Although the plane curve and its dual
are not invariant under rotation, the numerical range W(B) is.

Theorem 7.1. Let B ∈ Cd×d. If W(B) is invariant under multiplication by ω = e
2πi
n , then

there exists A ∈ CC(n, ndd/ne) such that W(B) =W(A). If in addition, W(B) is invariant
under conjugation, then A can be taken to have real entries (i.e. A ∈ CR(n, ndd/ne).

Proof. Kippenhahn’s Theorem [29, Theorem 10] states that W(B) equals the convex hull of
{x + iy : [1 : x : y] ∈ VR(FB)∗}. See also [10, 35]. Recall that every compact, convex set is
the convex hull of its extreme points. Let E denote the extreme points of W(B) and let Y
denote the Zarski-closure of {[1 : a : b] : a + ib ∈ E} in P2(R). By extremality of E, we see
that {[1 : a : b] : a+ ib ∈ E} is contained in VR(FB)∗ and so Y ⊆ VR(FB)∗. In particular, Y
is an algebraic variety of dimension ≤ 1 and so is a union of points and irreducible curves.
Moreover, Y contains no lines, since the intersection of E with any line consists of at most
two points. Therefore all irreducible components of the dual variety Y ∗ have dimension one.
Since Y ⊆ VR(FB)∗, we see that Y ∗ ⊆ VR(FB).

Let f denote the minimal polynomial in R[t, x, y]e vanishing on Y ∗. Note that since f
must be a factor of FB, e ≤ d, f is hyperbolic with respect to (1, 0, 0), and f(1, 0, 0) 6= 0, so
we can take coeff(f, te) = 1.

Since W(B) is invariant under multiplication by ω, so is E. It follows that Y and hence
Y ∗ are invariant under the action of Cn. Therefore f ∈ R[t, x, y]Cne . Similarly, if in addition
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W(B) is invariant under conjugation, then so is E. The curves Y and Y ∗ are then invariant
under D2n and so f ∈ R[t, x, y]D2n

e .
Let δ = ndd/ne − e ≥ 0 and consider tδf ∈ R[t, x, y]Cnndd/ne. By Theorem 6.1, there exists

A ∈ CC(n, ndd/ne) such that FA = f . Then VR(FA)∗ = VR(f)∗ and so W(A) = W(B).
Moreover, if f is invariant under D2n, then we can take A to be real. �

Example 7.2. Take B =


0 0 0 1 0 0
0 0 −7− 6i 0 −8− 4i 0
0 0 0 0 0 −1− 2i
−12 0 0 0 0 0

0 0 0 0 0 −10− 2i
0 −5− 10i 0 0 0 0

. Even though B 6∈ CC(3, 6),

its numerical range W(B) is invariant under rotation by the angle 2π/3. Both VR(FB) and
W(B) are shown in Figure 4. For brevity we use u, v to denote the linear forms u = x+ iy
and v = x− iy. Then FB factors as f1f2 where

f1 = (1/8)
(
8t4 − 798t2uv + 1050t(u3 + v3) + 425it(u3 − v3) + 3860(uv)2

)
,

f2 = (1/4)
(
4t2 + 12u2 − 145uv + 12v2

)
,

and VC(f1)∗ contains the boundary ofW(B). Notice that FB is not invariant under rotation
by 2π/3, but the quartic factor f1 is. By Theorem 6.1, we can find a matrix A ∈ CC(3, 6)
such that t2f1 = FA and W(A) =W(B). One such matrix is given by

(11) A =


0 −2 + i 0 0 0 0
0 0 −10 + 5i 0 0 0

−6 + 7i 0 0 −4 + 8i 0 0
0 −2 + 10i 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

.
Theorem 7.1 shows that any invariant numerical range is the numerical range of a block

cyclic weighted shift matrix, of possibly larger size. One possible strengthening of this is to
restrict the the size of this structured matrix.

Conjecture 7.3. If B ∈ Cd×d and W(B) is invariant multiplication by e2πi/n, then there
exists A ∈ CC(n, d) with W(A) =W(B). Moreover, if W(B) is also invariant under conju-
gation, the entries of A can be taken to be real.

Theorem 6.1 also has implications for the following generalization of the numerical range.

Definition 7.4. For k ∈ [d] the k-higher rank numerical range of A ∈ Cd×d is

Wk(A) := {λ ∈ C such that PAP = λP for some rank-k projection P} .
This set is compact and invariant under unitary transformation. Building off of the work

of Choi et. al. [14], Woerdeman [44] showed that Wk(A) is convex. The classical numerical
range is defined by k = 1. Like before, there is a relationship between the geometry ofWk(A)
and the hyperbolic plane curve FA. Chien and Nakazato [11] describe how to computeWk(A)
using FA and the boundary generating curve. They also give conditions for which the k-
higher rank numerical range is not uniquely determined by the numerical range when k > 1.

Remark 7.5. If A is a complex matrix for which FA is irreducible in C[t, x, y], then FA
is uniquely determined by its numerical range. That is, if A and B are complex matrices
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for which the polynomials FA and FB are irreducible, then W(A) = W(B) if and only if
FA = FB. By the results of Gau and Wu [21], it follows that W(A) = W(B) if and only if
Wk(A) = Wk(B) for all 1 ≤ k ≤ bd/2c + 1. To see this, note that the W(A) is uniquely
determined by its extreme points E. As in the proof of Theorem 7.1, if Y is the Zariski
closure of points {[1 : a : b] : a + ib ∈ E}, then the minimal polynomial f vanishing on
the dual variety Y ∗ is a factor of FA. If FA is irreducible, then this gives f = FA, which is
uniquely determined by E and thus W(A).

Examples from [9, 15, 25] show there exist matrices A for which FA ∈ C[t, x, y]Cnd , but
A is not unitarily equivalent to any cyclic weighted shift matrix (with positive weights).
Theorem 6.1 proves there must exist some matrix in CC(n, ndd/ne) with the same k-higher
rank numerical range of A ∈ Cd×d, even if the two matrices are not unitarily equivalent.

Corollary 7.6. If FB ∈ C[t, x, y]Cnd for some B ∈ Cd×d, then there exists A ∈ CC(n, ndd/ne)
with Wk(A) =Wk(B) for all 1 ≤ k ≤ bd/2c+ 1.

Proof. Let m = ndd/ne − d. By Theorem 6.1, there exists cyclic weighted shift matrix
A ∈ CC(n, ndd/ne) so that tmFB = FA. Then [21, Theorem 1] implies that Wk(A) =Wk(B)
for all 1 ≤ k ≤ bd/2c+ 1. �

An extension of Theorem 6.1 to arbitrary d would yield the following.

Conjecture 7.7. If FB ∈ C[t, x, y]Cnd for some B ∈ Cd×d, then there exists A ∈ CC(n, d)
with Wk(A) =Wk(B) for all 1 ≤ k ≤ bd/2c+ 1.

8. Open Questions and Further Directions

8.1. Generalizing to Any Degree. One could hope to generalize Construction 4.9 for a
hyperbolic plane curve of any degree. The main obstruction here is with assumption (A1),
specifically the requirement that VC(f) is smooth. For curves with d mod n ≥ 3, it seems
there are always multiple singularities at infinity meaning most of these curves do not satisfy
(A1). More specifically, there are complex singularities at the points [t : x : y] = [0 : 1 : ±i].
We conjecture they each have multiplicity

(
d mod n

2

)
.

To see this recall that monomials in t, x+iy and x−iy form a basis for C[t, x, y]Cnd , namely

(12) C[t, x, y]Cnd = spanC
{
td−j−k(x+ iy)j(x− iy)k : j ≡ k mod n, and j + k ≤ d

}
.

The exponent vectors (j, k) are pictured in Figure 5.

Figure 5. The set of (j, k) for which td−j−k(x + iy)j(x − iy)k ∈ C[t, x, y]Cnd
for (n, d) = (4, 7), (5, 8), (6, 9) (left to right).
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Example 8.1 (d = 7, n = 4). Consider f ∈ C[t, x, y]C4
7 . Then f is a sum of terms of the

form t7−j−k(x + iy)j(x − iy)k where j ≤ 5 and k ≤ 5, shown on the left in Figure 5. This
confirms that [0 : 1 : ±i] are singular points of VC(f).

Another way to try to construct a determinantal representation is to use Theorem 6.1 and
hope to further specialize its structure.

Question 8.2. Let d = qn+m for some q > 1 and m ∈ [n− 1] and suppose f ∈ HΓ
d . Can

we always write tn−mf = FA for some matrix A ∈ CC(n, (q+ 1)n) of the form A =

(
A′ 0
0 0

)
,

where A′ ∈ CC(n, d)?

Example 8.3. Take f = f1 from Example 7.2. This is quartic and invariant under action
of the group C3. Then t2f = FA for the matrix A ∈ CC(3, 6) shown in equation (11). Since
the last two rows and columns of A are zero, f has a determinantal representation f = FA′

where A′ is the leading 4× 4 minor of A.

8.2. Higher Dimensions. One can also consider invariant hyperbolic polynomials and de-
terminantal representations in more than three variables. Suppose that Γ ⊂ GL(Rn) is
a finite group that fixes a point e ∈ Rn and let HΓ

d denote the set of polynomials in
f ∈ R[x1, . . . , xn]d invariant under Γ, hyperbolic with respect to e, and with f(e) = 1,
as in Section 2.

Question 8.4. Is the analogue of Theorem 2.2 true in higher dimensions? That is, are both
HΓ
d and its interior contractible?

As shown in Theorem 6.1, hyperbolic polynomials invariant under Cn and D2n have deter-
minantal representations that certify their invariance. More generally, let ρ : Γ → GL(Cd)
be a representation of the group Γ. This defines an action of Γ on the set of d × d Her-
mitian matrices by conjugation, γ · A = ρ(γ)Aρ(γ)∗. We say that a d × d linear matrix
A(x) =

∑
i xiAi is invariant with respect to Γ and ρ if for every γ ∈ Γ,

(13) A(γ · x) = ρ(γ)A(x)ρ(γ)∗.

The determinant f = det(A(x)) is then invariant under the action of Γ. Indeed, since Γ is
finite, the determinant of ρ(γ) is a root of unity and so the determinants of ρ(γ) and ρ(γ)∗

multiply to 1. This shows that the determinants of A(γ ·x) and A(x) are equal for all γ ∈ Γ.

Example 8.5. The elementary symmetric function en−1(x1, . . . , xn) =
∑n

k=1

∏
j 6=k xj is hy-

perbolic with respect to the vector e = (1, . . . , 1) and invariant under the natural action of
the symmetric group Sn. Sanyal [38] shows that the form en−1(x) has a determinantal repre-
sentation A(x) = diag(x1, . . . , xn−1) +xnJ , where J is the all-ones matrix of size n−1. This
representation is invariant with respect to Sn and the representation ρ : Sn → GL(Cn−1)
obtained by restricting Sn to the hyperplane of points with coordinate sum one. Specifically,
we take the representation ρ(π) = (vπ(1), . . . , vπ(n−1)) where for j = 1, . . . , n, vj is the jth unit
coordinate vector in Rn−1 and vn is the constant vector −1. Specializing e7(x1, . . . , x8) and
its determinantal representation to the eight linear forms xj = t± x± y ± z gives a surface
in P3(R) that is hyperbolic and invariant under the octahedral group, shown in Figure 6.

For n > 3, most forms in R[x1, . . . , xn]d do not have d× d determinantal representations,
so a verbatim generalization of Theorem 6.1 is false. However, there are two other natural
ways of generalizing to more variables. One is to restrict to polynomials that are already
determinantal:



22 FAYE PASLEY SIMON AND CYNTHIA VINZANT

Figure 1. Nodal septic surface with octahedral symmetry bounding a spectrahedron

Figure 2. Cayley cubic overlaid with 3 ⇥ 3 minors of a 4 ⇥ 4 matrix

Figure 6. A hyperbolic surface in P3(R) invariant under the octahedral group
with an invariant definite determinantal representation given in Example 8.5.

Question 8.6. For every finite group Γ ⊂ GL(Rn), is there a representation ρ : Γ→ GL(Cd)
so that every determinantal hyperbolic polynomial f ∈ HΓ

d has a definite determinantal rep-
resentation f = det(A(x)) that is invariant with respect to Γ and ρ, as in (13)?

A more ambitious goal would be to show that every invariant hyperbolic polynomial has
determinantal representation certifying its hyperbolicity and invariance. For this, we use
the terminology of hyperbolicity cones. If a polynomial f ∈ R[x1, . . . , xn] is hyperbolic with
respect to e ∈ Rn, its hyperbolicity cone, C(f, e) is defined to be the connected component
of Rn\VR(f) containing e. The Generalized Lax Conjecture states that for every hyperbolic
polynomial f , there is some multiple f · g with a definite determinantal representation so
that the hyperbolicity cones of f and f · g agree. This is still open. The discussion above
suggests the following invariant version:

Question 8.7 (Invariant Generalized Lax Conjecture). Is every invariant hyperbolic poly-
nomial a factor of an invariant determinant? That is, for f ∈ HΓ

d , does there exist e ∈ N,
g ∈ HΓ

e , and a representation ρ : Γ → GL(Cd+e) so that the product f · g has an invariant,
definite determinantal representation f · g = det(A(x)) with C(f, e) = C(f · g, e)?
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