
IAS/Park City Mathematics Series
Volume 00, Pages 000–000
S 1079-5634(XX)0000-0

An Introduction to Lattices, Lattice Reduction, and Lattice-Based
Cryptography

Joseph H. Silverman

Abstract. A lattice is a discrete subgroup of Rn. We will discuss the theory of
lattices and describe how they have been used to construct practical public key
cryptosystems and digital signature schemes that are, at least presently, secure
against attacks by quantum computers.

Contents

1 Lattices and Hard Lattice Problems 2
1.1 Lattices: Definitions, Notation, and Basic Properties. 2
1.2 Hard Lattice Problems. 4
1.3 Using a Basis to Try to Solve the CVP: Babai’s Algorithm. 5
1.4 How to Distinguish Good Bases from Bad Bases. 7
1.5 Theory and Practice and a Smidgeon of History. 9
1.6 The Gaussian Heuristic. 9
1.7 Fundamental Domains: The Good, the Bad, and the Voronoi. 11
1.8 Exercises for Lecture 1. 14

2 Lattice Reduction 17
2.1 Introduction. 17
2.2 Lattice Reduction in Dimension 2. 18
2.3 The Size, Quasi-Orthogonality, and Lovász Conditions. 19
2.4 The Basic LLL Algorithm. 20
2.5 Variants and Improvements to LLL. 22
2.6 LLL Bases Are Nice: Proof Sketch. 24
2.7 LLL Runs in Polynomial Time: Proof Sketch. 24
2.8 Exercises for Lecture 2. 26

3 Public Key Cryptography 101 28
3.1 Cryptography in the (pre-1970s) Dark Ages. 28
3.2 Public Key Cryptography to the Rescue. 28
3.3 A Mathematical Formulation. 29
3.4 A Menagerie of Functions that are Ostensibly Hard to Invert. 30

2010 Mathematics Subject Classification. Primary 94A60; Secondary 11Hxx.
Key words and phrases. lattice, shortest vector problem, closest vector problem, public key cryptosys-
tem, digital signature, lattice-based cryptography.

©0000 (copyright holder)

1

2 Lattices and Cryptography

3.5 From Trapdoor Functions to Public Key Cryptosystems. 31
3.6 Digital Signatures. 32
3.7 Cryptographically Secure Hash Functions. 34
3.8 Random Numbers in Cryptography. 34
3.9 How Hard are Hard Problems? 35
3.10 Quantum Computers and Cryptography. 36
3.11 Code Makers Versus Code Breakers, Or, Cryptanalysts Are Very

Clever! 37
3.12 Exercises for Lecture 3. 38

4 Lattice-Based Public Key Cryptosystems 41
4.1 Early Days and the Ajtai-Dwork Lattice-Based Cryptosystem. 41
4.2 The GGH Public Key Cryptosystem. 42
4.3 GGH versus LLL: A Battle for Supremacy! 42
4.4 Convolution Products and Polynomial Quotient Rings. 43
4.5 NTRUEncrypt: The NTRU Public Key Cryptosystem. 44
4.6 NTRU and Lattice Problems. 46
4.7 Recovering an NTRU Private Key via an SVP Problem. 47
4.8 Recovering an NTRU Plaintext via a CVP Problem. 47
4.9 NTRU Operating Characteristics and Variants. 48
4.10 Exercises for Lecture 4. 49

5 Lattice-Based Digital Signatures and Rejection Sampling 52
5.1 Digital Signatures. 52
5.2 CVP Digital Signatures — GGH. 53
5.3 Security of GGH and other CVP-based Digital Signatures. 53
5.4 A Transcript Attack on the GGH Digital Signature Scheme. 54
5.5 Rejection Sampling to the Rescue. 55
5.6 Transcript Security — At A Cost. 55
5.7 An Example of a Lattice Recovery Problem and Rejection Sampling 57
5.8 Exercises for Lecture 5. 65

Acknowledgements. The author would like to thank Mingjie Chen for many
helpful suggestions and corrections to these notes, and for her assistance during
the PCMI graduate summer school. The author would also like to thank the
organizers for inviting him to deliver these lectures.

1. Lattices and Hard Lattice Problems

1.1. Lattices: Definitions, Notation, and Basic Properties.

Definition 1.1.1. A lattice L is a discrete subgroup of Rn.

Joseph H. Silverman 3

Proposition 1.1.2. Let L be a lattice in Rn. Then there exist vectors v1, . . . , vk that are
R-linearly independent and such that

L = Z-linear span of {v1, . . . , vk}.

The set {v1, . . . , vk} is a basis for L, and k is the rank or dimension of L.

Proof. Left for the reader. �

Convention: In these lectures we work almost exclusively with lattices of rank n
in Rn, i.e., with lattices of maximal rank. So unless we specify the contrary, we
use the convention that1

lattice = lattice of maximal rank.

Thus when we say that L is a lattice, we mean that L is the Z-linear span of
an R-basis {v1, . . . , vn} of Rn,

L = {a1v1 + a2v2 + · · ·+ anvn : a1,a2, . . . ,an ∈ Z}.

Important Note: A lattice will have many bases, but some bases are “better” than
others.2 This distinction is a major theme of these lectures.

Definition 1.1.3. Let L be a lattice with basis B = {v1, . . . , vn}. The fundamental
domain for L associated to B is the set3

F(B) = {t1v1 + t2v2 + · · ·+ tnvn : 0 6 ti < 1}.

The determinant (or volume) of L is4

Det(L) = Volume(F(B)).

See Figure 1.1.4 for an example of a fundamental domain for a lattice in R2

Proposition 1.1.5. Let L ⊂ Rn be a lattice, and let

B = {v1, . . . , vn} and B ′ = {v ′1, . . . , v ′n}

be bases for L.

(1) Let

M(B) =
(
v1
∣∣ v2

∣∣ · · · ∣∣ vn) ∈Matn×n(R)

be the matrix whose columns are the vectors v1, . . . , vn. Then

Det(L) =
∣∣detM(B)

∣∣.
1Lattices of non-maximal rank will come up in our proof that the LLL algroithm runs in polynomial
time; see Section 2.7 and Exercise 2.8.2.
2Or, as Orwell’s Napolean might say, “All bases are created equal, but some are more equal than
others.”
3Note the misuse of terminology, since what we have defined is really a fundamental domain for the
quotient space Rn/L. Similarly the “volume” of L is really the volume of the torus Rn/L, which
would more properly be called the co-volume of L.
4People also frequently work with the discriminant of L, which is the square of the volume; i.e.,
Disc(L) = Det(L)2

4 Lattices and Cryptography

F

L

Figure 1.1.4. A 2-dimensional lattice L with fundamental do-
main F

(2) There is a matrix A ∈ SLn(Z) that transforms B to B ′,

M(B ′) = AM(B).

(3) We have

Volume
(
F(B)

)
= Volume

(
F(B ′)

)
.

In particular, Det(L) depends only on L.

Proof. Left for the reader. �

1.2. Hard Lattice Problems. The following is one of the most important and
fundamental computational problems associated to a lattice.

Definition 1.2.1. Let L ⊂ Rn be a lattice. The Shortest Vector Problem (SVP) is
the problem of finding a shortest non-zero vector in L. In other words, the SVP
for L is to find a vector v0 ∈ L satisfying

‖v0‖ = min
v∈Lr0

‖v‖.

Closely related to the SVP is a second important computational lattice problem.

Definition 1.2.2. Let L ⊂ Rn be a lattice. The Closest Vector Problem (CVP) is
the problem of finding, for a given target vector t ∈ Rn, a vector in L that is
closest to t. In other words, the CVP for L with target vector t is to find a vector
v0 ∈ L satisfying

‖v0 − t‖ = min
v∈L
‖v− t‖.

Joseph H. Silverman 5

In full generality, the exact version of both the SVP and the CVP appear to be
very difficult, although for many applications it suffices to find an approximate
solution, as in the following formulation.

Definition 1.2.3. Let L ⊂ Rn be a lattice. The Approximate Closest Vector Prob-
lem (apprCVP) is the problem of finding, for a given target vector t ∈ Rn, a vector
in L that is “reasonably closes” to t. More precisely, for κ > 1, the apprCVPκ is to
find a vector v0 ∈ L satisfying

‖v0 − t‖ 6 κmin
v∈L
‖v− t‖.

1.3. Using a Basis to Try to Solve the CVP: Babai’s Algorithm. Given a lattice L
and a basis B = {v1, . . . , vn} for L, Babai’s Algorithm uses the basis to try to solve
the CVP.

Algorithm 1.3.1 (Babai’s Algorithm: Intuitive Description).
Input: A lattice L ⊂ Rn.

A basis B = {v1, . . . , vn} for L.
A target vector t ∈ Rn.

Compute: Find a lattice vector ṽ so that the translated fundamental do-
main F(B) + ṽ contains the target point t.

Output: The vertex of the closure of F(B) + ṽ that is closest to t will be a
vector in L that one hopes is fairly close to t.

See Figure 1.3.3 for an illustration in R2. Our high-level description of Babai’s
algorithm can be translated into mathematical formulas as follows:5

Algorithm 1.3.2 (Babai’s Algorithm: Precise Formulation).
Input: A lattice L ⊂ Rn.

A basis B = {v1, . . . , vn} for L.
A target vector t ∈ Rn.

Compute: α1, . . . ,αn ∈ R so that t = α1v1 + · · ·+αnvn.

v0 ← bα1ev1 + · · ·+ bαnevn ∈ L.

Output: v0

Babai’s algorithm seems like a very reasonable way to try to solve the apprCVP,
and if you believe Figure 1.3.3, it should work quite well in practice. Unfortu-
nately, Figure 1.3.3 is misleading, because we have used a fundamental domain
that is fairly rectangular. (It is also misleading because pictures in 2 or 3 dimen-
sions fail to convey the complexity of high-dimensional lattices.) In other words,
the vectors in the basis B used to create the fundamental domain F(B) are rea-
sonably orthogonal to one another.

What happens if we choose some other basis whose elements are not so or-
thogonal? Figure 1.3.4 illustrates a lattice with two bases, a “good” somewhat

5We write bαe for the integer k that is closest to α; i.e., the unique k ∈ Z satisfying k− 1
2 6 α <

k+ 1
2 .

6 Lattices and Cryptography

t

Translated fundamental domain containing t

v0

The vertex v0 closest to t is a
candidate for (approximate)
closest vector.

ṽ

L

Figure 1.3.3. Babai’s Algorithm: Using a Basis to Try to Solve the
Closest Vector Problem

orthogonal basis {v1, v2} and a “bad” highly non-orthogonal basis {w1,w2}. If we
try to solve the CVP using the bad basis, Figure 1.3.5 shows what can go wrong.
The closest lattice point in the fundamental domain is not the lattice point that is
closest to the target. And as the dimension goes up, the failure of a bad basis to
solve apprCVP increases exponentially.

v1

v2

w1

w2

Figure 1.3.4. A “good” basis {v1, v2} and a “bad” basis {w1,w2}

Joseph H. Silverman 7

Target Point
Closest Vertex

Closest Lattice Point

Figure 1.3.5. Babai’s Algorithm Fails with a “Bad” Basis

1.4. How to Distinguish Good Bases from Bad Bases. The best possible basis
would be one in which the vectors are pairwise orthogonal (perpendicular) to
one another. It is not common for a lattice to have an orthogonal basis, although
if it does, then its determinant is simply the product of the lengths of the basis
vectors.6 However, even for non-orthogonal bases we get an upper bound.

Theorem 1.4.1 (Hadamard’s Inequality). Let v1, . . . , vn be any basis for a lattice L.
Then

Det(L) 6 ‖v1‖ · ‖v2‖ · · · ‖vn‖,

with equality if and only if v1, . . . , vn are pairwise orthogonal.

Proof. For 1 6 k 6 n− 1, let Hk be the R-linear subspace spanned by the vec-
tors v1, . . . , vk, i.e.,

Hk = {t1v1 + t2v2 + · · ·+ tkvk : ti ∈ R};

and let θk ∈ [0, 1
2π] be the angle between Hk and vk+1. Then

Det(L) = VolumeF(v1, . . . , vn) =
n∏
k=1

‖vk‖ ·
n−2∏
k=1

sin(θk).

Since
∣∣sin(θ)

∣∣ 6 1, we immdediately get Hadamard’s inequality; and there is
equality if and only if every θk = 1

2π, which is equivalent to pairwise orthogonal-
ity of v1, . . . , vn. �

Hadamard’s inequality is an equality if and only if the basis vectors are or-
thogonal to one another. The extent to which it is not an equality measures the

6Think rectangular box. We also note that in this special situation, Babai’s algorithm solves the CVP.

8 Lattices and Cryptography

extent to which the basis is non-orthogonal. A famous theorem of Minkowski
says that every lattice has at least one basis that is reasonably orthogonal, where
the amount of non-orthogonality is bounded solely in terms of the dimension.7

Theorem 1.4.2 (Minkowski). Fix n > 1. There is a constant γ so that every lattice L
of dimension n has a basis v1, . . . , vn satisfying

(1.4.3) ‖v1‖ · ‖v2‖ · · · ‖vk‖ 6 γk/2 Det(L)k/n for all 1 6 k 6 n.

In particular, the inequality (1.4.3) is true for the constant8

γ =
4
π
Γ

(
1
2
n+ 1

)2/n
≈ 2n
πe

.

Proof. See Section 1.7 and Exercise 1.8.8. �

Definition 1.4.4. The first minimum of L, denoted λ1(L), is the length of shortest
non-zero vector in L,

(1.4.5) λ1(L) = inf
v∈Lr0

‖v‖.

More generally, the k’th successive minimum of L, denoted λk(L), is the smallest
number such that L contains k vectors that are linearly independent; i.e.,

λk(L) = inf
{
λ > 0 : dim Span

{
v ∈ L : ‖v‖ 6 λ

}
> k
}

.

With this notation, Theorem 1.4.2 says that

λ1(L)λ2(L) · · · λk(L) 6 γk/2 Det(L)k/n.

And the SVP may be succinctly stated as that of finding a vector v0 ∈ L that
satisfies ‖v0‖ = λ1(L).

Definition 1.4.6. Theorem 1.4.2 says in particular that there is a γ so that for
every n-dimensional lattice L, the shortest non-zero vector in L has length at
most γ1/2 Det(L)1/n. The smallest such γ is denoted γn and is called Hermite’s
constant; i.e.,

γn := sup
Lattices L⊂Rn

λ1(L)
2 ·Det(L)−2/n.

Remark 1.4.7. Theorem 1.4.2 says that γn . 2n/πe. A refined estimate due to
Blichfeldt [5] says that

γn 6
2
π
Γ

(
1
2
n+ 2

)2/n
≈ n

πe
.

The exact value of γn is known only for n 6 8 and n = 24:

n 1 2 3 4 5 6 7 8 24

γnn 1 4
3 2 4 8 64

3 64 28 248

7Note that we cannot hope for an inequality of this sort to hold for every basis B, since Det(L)
is independent of B, but we can make the product

∏
‖vi‖ arbitrarily large by replacing v1 with

v1 +Cv2 and letting C ∈ Z go to∞.
8Here Γ(z) =

∫∞
0 t

z−1e−t dt is the gamma function. The approximation, which is valid for large n,
comes from Stirling’s formula Γ(z+ 1) ≈ (z/e)z ·

√
2πz. As we will see in Sections 1.6 and 1.7, the

gamma function appears because the volume of a unit ball in Rn is πn/2/Γ(1
2n+ 1).

Joseph H. Silverman 9

As we will see in Section 1.6, for a “random” lattice of dimension n we expect
that Theorem 1.4.2 should be true with the even smaller constant γ ≈ n/2πe.

1.5. Theory and Practice and a Smidgeon of History. Lattices and the SVP and
CVP have been intensively studied for more than 100 years, both as intrinsic
mathematical problems and for applications in pure and applied mathematics,
physics and cryptography. The theoretical study of lattices is often called the

Geometry of Numbers,

a name bestowed on it by Minkowski in his 1910 book Geometrie der Zahlen. Stan-
dard references for this subject include [6, 8, 16, 30, 34].

The practical process of finding short(est) or close(st) vectors in lattices is re-
ferred to as the theory of

Lattice Reduction.

The shortest vector problem (SVP) and the closest vector problems (CVP) are
closely related, since an algorithm that solves the SVP in dimension n + 1 can
generally be used to solve the CVP in dimension n; see Exercise 1.8.11. If the
dimension of the lattice L is large, then both the SVP and the CVP seem to be
very hard. Indeed, in full generality, the CVP is known to be NP-hard, and the
SVP is NP-hard under a randomized reduction hypothesis.

The best lattice reduction methods currently known are based on the LLL Al-
gorithm of Lenstra, Lenstra, and Lovász [23], orginally described in Mathematische
Annalen 261 (1982), 515-534. The LLL algorithm and some of its variants will be
the featured actors in Lecture 2. They are able to find moderately short (or close)
lattice vectors in polynomial time, which suffices for many applications. However,
finding very short or very close vectors currently requires time that is exponential
in the dimension n, making SVP and CVP suitable candidates for cryptographic
applications.

Remark 1.5.1. It is worth noting that current lattice reduction algorithms such
as LLL are highly sequential. Thus they are not distributable, although they
are somewhat parallelizable. Further, there are currently no known quantum
algorithms that solve general instances of (approximate) SVP or CVP in anything
faster than exponential time.

1.6. The Gaussian Heuristic. Let L ⊂ Rn be a “random” lattice, and let t ∈ Rn

be a “random” target point. How close might we expect the closest vector of L to
be to t? The following heuristic gives an answer that tends to work reasonably
well in practice. One might try to rigorously justify this heuristic by defining
some sort of probability measure on the space of lattices and targets, but we will
not pursue this in these notes.

Heuristic 1.6.1 (Gaussian Heuristic). Let n be large.

10 Lattices and Cryptography

SVP: Let L ⊂ Rn be a random lattice. Then we expect that the smallest non-zero vector
in L will satisfy

λ1(L) = min
0 6=v∈L

‖v‖ ≈
√

n

2πe
Det(L)1/n.

CVP: Let L ⊂ Rn be a random lattice, and let t ∈ Rn be a random target point. Then
we expect

min
v∈L
‖v− t‖ ≈

√
n

2πe
Det(L)1/n.

Heuristic “Proof”. The proofs of the SVP and CVP versions are similar, so we do
the latter. Let

BnR(t) :=
{
x ∈ Rn : ‖x− t‖ 6 R

}
be the ball of radius R centered at t. The volume of BnR(t) is given by

Volume
(
BnR(t)

)
= Volume

(
B1(0)

)
Rn =

πn/2

Γ
(
n
2 + 1

)Rn ≈ (2πe
n

)n/2
Rn.

Here the first equality is true by homogeneity, the second equality is a standard
calculus exercise using the Gamma function, and the third (approximate) equality
is valid for large n using Stirling’s formula

Γ(z+ 1) ≈
(z
e

)z
·
√

2πz as z→∞.

On the other hand, we know the following facts:

• A fundamental domain F for L has volume Det(L).
• Each tranlated fundamental domain F+ v with v ∈ L contains exactly one

point of L.
• The translated fundamental domains cover Rn.

We thus expect that if we take a random (compact, convex) blob in Rn whose
volume significantly exceeds Det(L), then that blob is likely to contain a point
of L; but if the blob has volume significantly smaller than Det(L), then it probably
won’t contain a point of L.

A short computation shows that

Volume
(
BnR(t)

)
≈ Det(L) ⇐⇒ R ≈

√
n/2πeDet(L)1/n,

which leads us to expect:

R >
√
n/2πeDet(L)1/n =⇒ L∩BnR(t) 6= ∅.

R <
√
n/2πeDet(L)1/n =⇒ L∩BnR(t) = ∅.

Hence the solution to our CVP problem

min
{
‖v− t‖ : v ∈ L

}
is likely to be roughly equal to

√
n/2πeDet(L)1/n. �

Remark 1.6.2. Blichfeldt’s upper bound for Hermite’s constant (Remark 1.4.7)
gives a guaranteed bound for the length λ1(L) of a shortest non-zero vector in L,

Joseph H. Silverman 11

while the Gaussian heuristic gives a likely value for λ1(L) in a random lattice. It
is instructive to see how they compare.(

Upper bound for λ1(L) guaran-
teed by Hermite and Blichfeldt

)
(

Expected length of λ1(L) sug-
gested by the Gaussian heuristic

) =

√
2
π
· Γ
(

2 +
n

2

)1/n
Det(L)1/n

√
1
π
· Γ
(

1 +
n

2

)1/n
Det(L)1/n

≈
√

2.

Thus the Gaussian heuristic suggests that the Blichfeldt–Hermite upper bound,
which is guaranteed to work for all lattices, is only about 1.4 times larger than
what we’d expect to need for most lattices.

1.7. Fundamental Domains: The Good, the Bad, and the Voronoi. Let L be a lat-
tice with a given basis B. We defined the associated fundamental domain F(B) to
be the half-open parallelopiped spanned by the vectors in B; see Definition 1.1.3.
An important property of F(B) is that the natural map F(B) → Rn/L is a bijec-
tion; i.e., every vector in L can be written uniquely as the sum of an element of L
and an element of F(B).

Definition 1.7.1. A (closed) half-plane in Rn is a set of the form{
(x1, . . . , xn) ∈ Rn : a0 + a1x1 + · · ·+ anxn 6 0

}
for some a0, . . . ,an ∈ R with a1, . . . ,an not all 0. A (closed) polytope in Rn is
a compact subset P ⊂ Rn that is the intersection of finitely many (closed) half-
planes.

Definition 1.7.2. Let L ⊂ Rn be a lattice. A (closed polytope) fundamental domain
for L is a closed polytope P ⊂ Rn such that P and its interior P◦ have the following
properties:

(1) P◦ −→ Rn/L is injective. (2) P −→ Rn/L is surjective.

A lattice L has many different fundamental domains having many different
shapes. But they all have one thing in common.

Proposition 1.7.3. Let L ⊂ Rn be a lattice. All closed polytope fundamental domains
for L have the same volume. This volume is called the determinant of L and is de-
noted Det(L).

Proof. Left for the reader. �

The closure of the fundamental domain F(B) associated to a basis is a closed
polytope fundamental domain in the sense of Definition 1.7.2. We now describe
another sort of closed polytope fundamental domain whose very definition en-
codes the closest vector problem.

Definition 1.7.4. Let L ⊂ Rn be a lattice, and let v ∈ L. The (closed) Voronoi cell
around v is the set

V(v) =
{
t ∈ Rn : ‖t− v‖ 6 ‖t−w‖ for all w ∈ Lr {v}

}
.

12 Lattices and Cryptography

Figure 1.7.6. Two lattices and their Voronoi cells V(v), with one
cell shaded

We note that the interior points t ∈ V(v)◦ of the Voronoi cell are exactly the target
points t ∈ Rn such that the CVP for (L, t) has v as its unique solution, while
target points on the boundary t ∈ ∂V(v) have the property that the CVP for (L, t)
has more than one solution.

Remark 1.7.5. The boundary of a Voronoi cell is a union of finitely many (n− 1)-
dimensional polytopes lying in hyperplanes in Rn. More concretely, let v,w ∈ L
be distinct lattice points whose Voronoi cells share a common boundary. The set
of points that are equidistant from v and w form the hyperplane H(v,w) in Rn

that perpendicularly bisects the line segment from v1 to v2, and the common
boundary of the two Voronoi cells is a subset of this hyperplane,

V(v)∩V(w) ⊂ H(v,w).

Figure 1.7.6 illustrates the Voronoi cells for two different lattices in R2. If you
imagine the line segement connecting lattice points in adjacent cells, you will see
that the line segment is perpendicular to the common boundary of the cells.

Proposition 1.7.7. Let L ⊂ Rn be a lattice, and let v ∈ L. The Voronoi cell V(v)
containing v is a fundamental domain for L.

Proof. First suppose that t1, t2 ∈ V(v)◦ have the same image in Rn/L. Our goal
is to prove that t1 = t2, which will show that V(v)◦ → Rn/L is injective. The
assumption says that

t1 − t2 = u for some u ∈ L.

Joseph H. Silverman 13

We suppose that u 6= 0 and use the following calculation to derive a contradiction:

‖t1 − v‖ < min
w∈Lr{v}

‖t1 −w‖ since t1 ∈ V(v)◦,

6
∥∥t1 − (u+ v)

∥∥ since we are assuming that u 6= 0,
so we can take w = u+ v,

= ‖t2 − v‖ since t1 − t2 = u,

= min
w∈L

‖t2 −w‖ since t2 ∈ V(v)◦,

= min
w∈L

∥∥t1 − (u+w)
∥∥ since t1 − t2 = u,

= min
w∈L

‖t1 −w‖ since u ∈ L, so min is the same,

= ‖t1 − v‖ since t1 ∈ V(v)◦.

This strict inequality is a contradiction, which proves that u = 0, and thus t1 = t2.
It remain to show that V(v)→ Rn/L is surjective. Let t̂ ∈ Rn/L be an arbitrary

point, and let Û ⊂ Rn/L be an arbitrary (small) open neighborhood of t̂. Since
the map Rn → Rn/L is a local isomorphism (this uses the fact that L is discrete),
we can find an open set U ⊂ Rn and a point t ∈ Rn such that t 7→ t̂ and such
that the map U→ Û is a bijection.

As explained in Remark 1.7.5, the boundaries of the Voronoi cells in Rn are
pieces of hyperplanes, so they cannot cover the open subset U. Hence there is a
point t ′ ∈ U lying in some (open) Voronoi cell V(w)◦. But then

t ′ −w+ v ∈ V(v)◦,

and hence

t̂
′
= (image of t ′ in Rn/L) ∈ Û.

To recapitulate, we have shown that for every t̂ ∈ Rn/L and every open neighbor-
hood Û ⊂ Rn/L of t̂, the image of V(0)◦ in Rn/L has a point in common with Û.
Hence the image of V(0)◦ is dense in Rn/L, so its closure is all of Rn/L. �

We can use Voronoi cells to prove Theorem 1.4.2 for k = 1, thereby proving a
fundamental upper bound for the shortest non-zero vectors in a lattice.

Proof of Theorem 1.4.2 for k = 1. We are given a lattice L ⊂ Rn, and we want to
show that there is a vector v1 ∈ L satisfying

‖v1‖ 6
2√
π
Γ

(
1
2
n+ 1

)1/n
Det(L)1/n.

We let

λ = λ1(L) = min
{
‖w‖ : w ∈ L, w 6= 0

}
be the length of the shortest non-zero vectors in L. We claim that the open ball

Bλ/2(0) =
{
t ∈ Rn : ‖t‖ < λ/2

}

14 Lattices and Cryptography

is entirely contained within the Voronoi cell V(0) around 0. To see why, suppose
that

t ∈ Bλ/2(0)∩V(v) for some v ∈ L.

Then

‖v‖ 6 ‖t‖+ ‖t− v‖ triangle inequality,

= ‖t‖+ min
w∈L

‖t−w‖ since t ∈ V(v),

6 ‖t‖+ ‖t‖ taking w = 0,

< λ since t ∈ Bλ/2(0).

This strict inequality and the definition of λ tell us that v = 0. Hence the
ball Bλ/2(0) is contained in the closure of the Voronoi cell V(0).

To recapitulate, we have proven that

(1.7.8) Bλ/2(0) ⊆ V(0).

Taking volumes yields

Det(L) = Volume
(
V(0)

)
from Proposition 1.7.3,

> Volume
(
Bλ/2(0)

)
from (1.7.8),

= (λ/2)nVolume
(
B1(0)

)
.

Solving for λ yields the desired inequality,

min
w∈L,w 6=0

‖w‖ = λ 6 2Volume
(
B1(0)

)1/n︸ ︷︷ ︸
This quantity depends only on n.

Disc(L)1/n.

Hence if we set

γ = 2Volume
(
B1(0)

)1/n
=

4
π
Γ

(
1
2
n+ 1

)2/n
≈ 2n
πe

,

then we have proven that every lattice L ⊂ Rn contains a non-zero vector of
length at most γDisc(L)1/n. �

1.8. Exercises for Lecture 1.

Exercise 1.8.1. Prove Proposition 1.1.2, which says that every lattice (discrete sub-
group) of Rn has a finite Z-basis.

Exercise 1.8.2. Prove Proposition 1.1.5 which says that the value of Det(L) does
not depend on the choice of a basis for L.

Exercise 1.8.3. Let L ⊂ Rn be a lattice, let B = {v1, . . . , vn}, let A ∈Matn×n(Z) be
a matrix with det(A) 6= 0, and let L ′ be the lattice spanned by the column vectors
of M(B)A.

(1) Prove that L ′ is a sublattice of L and satisfies

L/L ′ ∼= Zn/AZn and (L : L ′) = |detA|.

(2) Prove that every sublattice L ′ ⊆ L of finite index arises in this way.

Joseph H. Silverman 15

Exercise 1.8.4. Write a computer program implementing Babai’s algorithm and
use it to attempt to solve the following CVP problems.

(1) The lattice L ⊂ R4 is spanned by

v1 = (1,−1, 0, 1), v2 = (0,−1,−1, 1), v3 = (2,−1, 1, 1), v4 = (1,−1, 2, 0),

and the target vector t = (11, 23, 9, 15).
(2) The lattice L ′ ⊂ R4 is spanned by

v ′1 = [−4, 3, 0, 5], v ′2 = [−12, 3,−3, 7], v ′3 = [−6, 5,−3, 3], v ′4 = [0, 7,−1, 1],

and the target vector t = (11, 23, 9, 15).
(3) Let w ∈ L and w ′ ∈ L ′ be the lattice vectors in (1) and (2) that Babai’s

algorithm says are close to the target vector t. Compute the distances

‖w− t‖ and ‖w ′ − t‖.

(4) Prove that the lattice L and L ′ are in fact the same lattice, and use (3) to
deduce that Babai’s algorithm using the good basis in (1) gives a better
solution to the CVP for L and t than using the bad basis in (2).

Exercise 1.8.5. Let L be a lattice, and let B = {v1, . . . , vn} be a basis for L.

(1) Suppose that the vectors in B are pairwise orthogonal; i.e., vi · vj = 0 for
all i 6= j. Prove that Babai’s algorithm solves the CVP for every target
vector.

(2) Prove the converse; i.e., if Babai’s algorithm solves the CVP for every
target vector, then B is an orthogonal basis.

Exercise 1.8.6. Compare Blichfeldt’s upper bound for Hermite’s constant with
the actual values for 1 6 n 6 8 and n = 24, as listed in Remark 1.4.7.

Exercise 1.8.7. Prove Proposition 1.7.3, which says that all fundamental domains
for a lattice L have the same volume.

Exercise 1.8.8. Prove Theorem 1.4.2 for all k. (This is a challenging problem!)

Exercise 1.8.9. Let L ⊂ Rn be a lattice, and let B = {v1, . . . , vn} be a basis for L.
The orthogonality defect of B is the ratio

OD(B) :=
‖v1‖ · ‖v2‖ · · · ‖vn‖

Det(L)
.

Hadamard’s inequality (Theorem 1.4.1) says that OD(B) > 1, with equality if
and only if B is an orthogonal basis, so the size of OD(B) is a measure of the
non-orthogonality of the basis. We define

κn := sup
L⊂Rn

inf
B basis for L

OD(B).

(1) Prove that κn is finite. What explicit uppper bound for κn is provided
by Minkowski’s theorem (Theorem 1.4.2)? How about using Blichfeldt’s
estimate (Remark 1.4.7)?

16 Lattices and Cryptography

(2) Compute the orthogonality defects of the two bases for the lattice L = L ′

in Exercise 1.8.4. How do they compare with the estimate for κ4 in (1)?

Exercise 1.8.10. Let BnR ⊂ Rn be a ball of radius R.

(1) Prove that the volume of BnR is given by the formula

Volume(BnR) = Volume
(
{x ∈ Rn : ‖x‖ 6 R}

)
=

πn/2

Γ
(1

2n+ 1
)Rn,

where Γ is the Gamma function

Γ(z) =

∫∞
0
tze−t

dt

t
.

(2) Prove that the Gamma function satisfies Γ(z+ 1) = zΓ(z), so in particular
if m is an integer, then Γ(m+ 1) = m!.

(3) Use

(Stirling’s Formula) Γ(z+ 1) ≈
(z
e

)z
·
√

2πz as z→∞,

to prove that

Volume(BnR) ≈
(

2πe
n

)n/2
Rn.

Exercise 1.8.11. Let L be a lattice of dimension n, and let t ∈ Rn be a target
vector. Suppose that you have an algorithm that solves SVP in dimension n+ 1.
This exercise explains how to use your SVP solver to try to solve the given CVP.

For each δ > 0, we form a new lattice Lδ in dimension n+ 1 by setting

v ′1 = (v1, 0), . . . , v ′n = (vn, 0), t ′ = (t, δ)

and taking the span,

Lδ := Span(v ′1, . . . , v ′n, t ′) ⊂ Rn+1.

(1) Prove that λ1(Lδ)→ 0 as δ→ 0.
(2) Prove that either λ1(Lδ)→ λ1(L) as δ→∞, or else that some multiple of t

is in L.
(3) Explain why there should be some value of δ for which a smallest non-

zero vector in Lδ has the form

m1v
′
1 + · · ·+mnv

′
n ± t ′,

in which case ±(m1v1 + · · ·+mnvn) is a point in L that is close (closest?)
to t.

(4) Suppose instead that the SVP solver applied to Lδ returns the vector
m1v

′
1 + · · ·+mnv

′
n +m0t

′ with |m0| 6= 1. If m0 = 0, should we increase
or decrease δ before trying again? Same question if |m0| > 2?

(5) Prove that Det(Lδ) = Det(L) · δ.
(6) Use the Gaussian heuristic to show that a good starting value for δ is a

solution to the equation
n+ 1
2πe

·Det(L)2/(n+1) · δ2/(n+1) =
n

2πe
·Det(L)2/n + δ2.

Joseph H. Silverman 17

2. Lattice Reduction: The Practical Problem of Solving Hard Lattice
Problems

2.1. Introduction. We recall the two fundamental lattice problems:

Shortest Vector Problem (SVP)

Find a shortest non-zero vector in L.

Closest Vector Problem (CVP)

Find a vector in L closest to a target t.

As explained in Exercise 1.8.11, an algorithm to solve the SVP can generally be
adapted to solve the CVP in one lower dimension, and we have seen that Babai’s
method (Section 1.3) can solve apprCVP if it is given a good basis; i.e., a basis
whose vectors are reasonably orthogonal. In this lecture we thus concentrate on
the computational problem of constructing a good basis for a given lattice.

Suppose that L is a lattice and that we are given a basis B = {v1, . . . , vn} for L.
The Gram–Schmidt algorithm, which we now recall, transforms B into an orthog-
onal basis B∗ = {v∗1 , . . . , v∗n} for Rn.

Algorithm 2.1.1 (Gram–Schmidt Algorithm).

v∗1 ← v1 and v∗k ← vk −

k−1∑
i=1

vk · v∗i
‖v∗i‖2 v

∗
i for 2 6 k 6 n.

Intuition: v∗k ← Projection of vk onto Span(v1, . . . , vk−1)
⊥.

Thus v∗i is a vector created using vi and making the largest possible angle with
the span of the previous vectors.

Unfortunately, the vectors v∗1 , . . . , v∗n will probably not be in L, due to those
pesky ‖v∗i‖

2 factors in the denominators. If we want to do a Gram–Schmidt type
of process and end up with vectors in L, we can try rounding the coefficients.

Algorithm 2.1.2 (Gram–Schmidt Algorithm with Rounding).

v∗1 ← v1 and v∗k ← vk −

k−1∑
i=1

⌊
vk · v∗i
‖v∗i‖2

⌉
v∗i for 2 6 k 6 n.

Algorithm 2.1.2 creates a basis {v∗1 , . . . , v∗n} for L, and this new basis might be
more orthogonal than the original basis. On the other hand, it might not.

It is worth observing that the output from Algorithm 2.1.2 depends on the or-
der in which the original basis vectors are fed into the algorithm. In particular, it’s
usually best to take v1 to be the smallest of the original vectors. More generally,
sorting the original basis by size and then feeding the vectors from small to large
into the algorithm is likely to give a better output than feeding them in large to
small.

The LLL algorithm intertwines Algorithm 2.1.2 (Gram–Schmidt with Round-
ing) with the operation of swapping pairs of input vectors, leading to a process in

18 Lattices and Cryptography

which one moves up and down the list of basis vectors as they’re being modified.
Remarkably, with appropriate parameters, one can prove that the LLL algorithm
is fast (polynomial time) and that it produces a basis that is pretty good. Further,
there is an extension of LLL called LLL-BKZ in which one modifies larger blocks
instead of swapping pairs. LLL-BKZ can produce better bases than LLL, albeit at
the cost of added processing time.

In this lecture we describe the LLL algorithm, sketch the proof that it produces
a reasonably good basis in polynomial time, and explain the idea behind LLL-
BKZ. We start with dimension 2, where lattice reduction is very fast.

2.2. Lattice Reduction in Dimension 2. The following method of lattice reduc-
tion for 2-dimensional lattices is essentially due to Gauss.

Gauss Lattice Reduction in Dimension 2: Intuition
Alternately subtract multiples of one basis vector from the
other until no further improvement is possible.

This leads to the following algorithm.

Algorithm 2.2.1 (Lattice Reduction in Dimension 2).
[1] Input: A basis {v1, v2} for a lattice L ⊂ R2

[2] If ‖v2‖ < ‖v1‖, then swap v1 and v2. [Swap Step]
[3] m← v1 · v2

/
‖v1‖2.

[4] If bme = 0
[5] Output {v1, v2}

[6] Else

[7] v2 ← v2 − bmev1 [Size Reduction Step]
[8] Go To Step 2

[9] End If

Remark 2.2.2. If we remove the closest integer sign in Step 7 of Algorithm 2.2.1,
then v2 −mv1 is actually orthogonal to v1. So Step 7 does the best that it can,
subject to the requirement that the new v2 must be in L.

Theorem 2.2.3. The output {v1, v2} from Algorithm 2.2.1 has the following properties:

(1) v1 is a solution to the SVP for L.
(2) The angle between v1 and v2 satisfies

π

3
6 θ(v1, v2) 6

2π
3

.

Proof. Left for the reader. �

Size reduction (Step 7 in Algorithm 2.2.1) is illustrated in Figure 2.2.4. In this
picture, the quantity m = v1 · v2/‖v1‖2 is the exact factor that makes

v2 −mv1 perpendicular to v1,

Joseph H. Silverman 19

so

v∗2 = v2 −mv1 = the projection of v2 onto v⊥1 .

Rounding m to the nearest integer, we have

bme 6= 0 =⇒ v2 − bmev1 is more orthogonal to v1 than is v2.

v1

v2

v∗2 = v2 −mv1

v2 − bmev1

︸ ︷︷ ︸
m=v1·v2/‖v1‖

2

Figure 2.2.4. Size Reduction for Dimension 2 Lattice Reduction

2.3. The Size, Quasi-Orthogonality, and Lovász Conditions. If some coefficient
in the Gram–Schmidt process satisfies

|vi · v∗j |
‖v∗j ‖2 >

1
2

,

then replacing vi by

vi − avj for an appropriate a ∈ Z

makes the coefficient smaller, thereby increasing the angle. So Algorithm 2.1.2
(Gram–Schmidt with Rounding) helps until the basis has the following property.

Definition 2.3.1. An ordered basis v1, . . . , vn for L satisfies the Size Condition if
the output from the Gram–Schmidt algorithm (Algorithm 2.1.1) satisfies:

(2.3.2) Size Condition:
|vi · v∗j |
‖v∗j ‖2 6

1
2

for all 1 6 j < i 6 n.

On the other hand, we wamt the basis vectors to be at least somewhat orthog-
onal to one another. So we might ask that they also have the following property.

Definition 2.3.3. An ordered basis v1, . . . , vn for L satisfies the Quasi-Orthogonality
Condition if the output from the Gram–Schmidt algorithm (Algorithm 2.1.1) satis-
fies:

(2.3.4) Quasi-Orthogo-
nality Condition:

‖v∗i+1‖ >
√

3
2
‖v∗i‖ for all 1 6 i 6 n− 1.

An elaboration of the proof of Theorem 1.4.2 can be used to prove the following
result.

Theorem 2.3.5. Every lattice has a basis satisfying both the Size Condition (2.3.2) and
the Quasi-Orthogonality Condition (2.3.4).

Proof. Left for the reader. �

20 Lattices and Cryptography

Unfortunately, the best known algorithms to find such a basis take time that is
exponential in the dimension. The innovation of the LLL algorithm is to relax the
Quasi-Orthogonality Condition.

Definition 2.3.6. An ordered basis v1, . . . , vn for L satisfies the Lovász Condition if
the output from the Gram–Schmidt algorithm (Algorithm 2.1.1) satisfies:

(2.3.7) Lovász Condition: ‖v∗i+1‖
2 >

(
3
4
−

|vi+1 · v∗i |
2

‖v∗i‖4

)
‖v∗i‖

2.

Although this looks complicated, it has a natural geometrical description. The
Lovász Condition says that

Projection of vi+1 onto Span(v1, . . . , vi−1)
⊥

>
3
4
· Projection of vi onto Span(v1, . . . , vi−1)

⊥.

Definition 2.3.8. An ordered basis for L satisfying both the Size Condition (2.3.2)
and the Lovász Condition (2.3.7) is called an LLL-Reduced Basis for L.

Theorem 2.3.9. Let {v1, . . . , vn} be an LLL-reduced basis for L.

(1) ‖v1‖ 6 2(n−1)/2λ1(L).

(2)
n∏
i=1

‖vi‖ 6 2n(n−1)/4 Det(L).

Proof. See Section 2.6 for a sketch of the proof. �

Remark 2.3.10. How does an LLL-reduced basis stack up agianst the highly re-
duced basies that we expect from Theorem 1.4.2 or from the Gaussian heuristic?
The earlier results say that every lattice L has a basis v1, . . . , vn satisfying

n∏
i=1

‖vi‖ / nn/2 Det(L) � 2
1
2n log2nDet(L).

So an LLL-reduced basis more-or-less has an extra n in the exponent. This is
typical. All known lattice reduction algorithms either take exponential time, or
else they give vectors whose norms are exponentially worse than optimal in terms
of the dimension.

2.4. The Basic LLL Algorithm. The LLL lattice reduction algorithm is presented
in Figure 2.4.2. We have opted to give a non-optimized version that has the
advantage of being easier to understand and analyze.

Theorem 2.4.3 (Lenstra, Lenstra, Lovász [23]). Algorithm 2.4.1 in Figure 2.4.2 finds
an LLL-reduced basis for L and has running time that is polynomial-time in n = dim(L).
More precisely if the initial basis is {v1, . . . , vn} and if we let B = max ‖vi‖, then the
Swap Step (Step 14) is executed at most O(n2 logB) times.

Proof. See Section 2.7 for a sketch of the proof. �

Remark 2.4.4. Observations for the LLL Algorithm (Algorithm 2.4.1).

Joseph H. Silverman 21

Algorithm 2.4.1.
[1] Input: A basis {v1, . . . , vn} for a lattice L

[2] k← 2
[3] Loop while k 6 n
[4] Loop Down j = k− 1,k− 2, . . . , 2, 1
[5] v∗1 , . . . , v∗k ← v1, . . . , vk [Gram–Schmidt (2.1.1)]
[6] µk,j ← (vk · v∗j)/‖v

∗
j ‖

2

[7] vk ← vk − bµk,jevj [Size Reduction]
[8] End j Loop

[9] v∗1 , . . . , v∗k ← v1, . . . , vk [Gram–Schmidt (2.1.1)]
[10] µk,k−1 ← (vk · v∗k−1)/‖v

∗
k−1‖

2

[11] If ‖v∗k‖
2 >

(
3
4 − µ2

k,k−1

)
‖v∗k−1‖

2 [Lovász Condition]
[12] k← k+ 1
[13] Else

[14] Swap vk−1 and vk [Swap Step]
[15] Set k← max(k− 1, 2)
[16] End If

[17] End k Loop

[18] Output: The LLL-reduced basis {v1, . . . , vn}

Figure 2.4.2. The LLL Lattice Reduction Algorithm (Unopti-
mized)

• At the end of the loop in Steps 4–8, the vectors v1, . . . , vk satisfy the size
condition (2.3.2).

• At Step 11, we already know that v1, . . . , vk−1 satisfy the Lovász condition,
so we just need to check if the Lovász condition is true when we adjoin vk
to the list. If it is, we can go on to vk+1; but if not, then in some sense vk
is “better” than vk−1, so we swap them. But that means that we have to
reconsider the new list of values v1, . . . , vk−1.

• The big outer k-loop from Steps 3 to 17 ends when k = n, at which
point the list of vectors v1, . . . , vn has been size reduced and satisfies the
Lováscz condition, so it forms an LLL-reduced basis.

• We reiterate that Step 12 helps us by incrementing k, but that there is a
countervailing force in Step 15, the Swap Step, that hurts us by decrement-
ing k.

• Later in Section 2.7 we prove that Steps 14 and 15 are executed only
finitely many times, and that the number of executions is bounded by
a polynomial in n. Thus LLL runs in time that is polynomial in n.

Remark 2.4.5. The LLL algorithm finds an LLL-reduced basis, so Theorem 2.3.9
tells us that LLL always finds a non-zero vector v in L that is no more than 2(n−2)/2

22 Lattices and Cryptography

times as long as the shortest non-zero vector. In practice, LLL generally does bet-
ter than this. But also in practice, if n is large, then ‖v‖/λ1(L) will be quite large.

2.5. Variants and Improvements to LLL. Many methods of improving LLL have
been proposed over the years. Often they sacrifice provable polynomial time per-
formance for improved operation on most lattices. One of the most important,
which we briefly discuss, replaces the Swap Step with a more complicated proce-
dure.

Definition 2.5.1. A basis {v1, . . . , vn} is said to be a Korkine–Zolotareff (KZ) Re-
duced Basis if it satisfies both the Size Condition and the following:

For all 1 6 i 6 n, the vector v∗i is the shortest non-zero
vector in the projection of L onto Span(v1, . . . , vi).

There are no known subexponential algorithm for creating a KZ-reduced basis
for all of L. Indeed, the first vector in a KZ-reduced basis for L is a shortest
non-zero vector in L. So instead we use KZ-reduced bases for small sublattices
of L.

Theorem 2.5.2 (LLL-BKZ Algorithm with Blocksize β). (Schnorr–Euchner [32,33])
Rather than swapping vk and vk−1 in Step 14 of LLL (Algorithm 2.4.1), we instead
take the sublattice spanned by a block of vectors vi, vi+1, . . . , vi+β−1 and replace these
vectors with a KZ-reduced basis for the sublattice. The LLL-BKZ algorithm terminates in
no more than O(βaβnb) steps (for some small constants a and b) and finds a non-zero
vector v ∈ L satisfying

‖v‖ 6
(
β

πe

)n−1
β−1

λ1(L).

Proof. We omit the proof. �

Remark 2.5.3. Thus LLL-BKZ solves apprSVP to within an approximation factor
roughly equal to βn/β, as compared to the approximation factor 2n/2 guaranteed
by LLL, but at the cost of a running time that is exponential in β. For example, if
we want to solve apprSVP with an approximation factor nd for some d > 0, then
we need to take βn/β ≈ nd, which forces β ≈ n/d and a running time that is
exponential in n.

Remark 2.5.4. As a practical matter, it is currently possible to run BKZ-LLL with
blocksizes in the 50 to 100 range, but definitely impractical to use blocksize 500.
There has been a considerable amount of research, both theoretical and experi-
mental, devoted to estimating both the time required to run BKZ-LLL with block-
size β and the expected approximation factor for the shortest non-zero vector v
returned by the algorithm. We give some examples of the sorts of results that
appear in the literature, and point the reader to papers such as [2, 7, 28, 31, 35] for
further information.

Joseph H. Silverman 23

First, how long does it take to run BKZ-β, which is our name for BKZ-LLL
run using blocksize β? Conservative estimates currently suggest that running
BKZ-β takes at least 20.292β operations on a classical computer and at least 20.265β

operations a quantum computer.9 Second, how good is the output from BKZ-β.
This is normally measured in terms of the Hermite root factor.

Definition 2.5.5. The Hermite root factor for BKZ-β applied to the n-dimensional lat-
tice L is the quantity

δ(BKZ-β,L) =

(

the length ‖v‖ of the shortest
non-zero vector found by BKZ-β

)
Det(L)1/n

1/(n−1)

.

Expermients and a geometric series heuristic suggest that for a fixed block-
size β > 50 and a random lattice L ⊂ Rn with n significantly larger than β, a
reasonable estimate for the Hermite root factor for BKZ-β is given by

δ(BKZ-β,L) ≈
(
β

2πe
· (βπ)1/β

)1/(2β−2)
.

An interesting alternative method for estimating δ(BKZ-β,L) is the BKZ-simu-
lator of Chen and Nguyen [7, Algorithm 2]. The input to their simulator is the
list of the logarithms of the lengths of the lattice basis vectors converted into
Hermite normal form.10 However, they assume that the lattice is random in some
suitable, but not precisely specified, sense. As the preceding material indicates,
there is much room for further research on the operating characteristics of lattice
reduction algorithms.

Remark 2.5.6. Many lattice-based cryptographic algorithms rely on hiding one
or more small vectors in a lattice. What this means is that the lattice L has a non-
zero vector v whose length ‖v‖ is significantly smaller than the shortest non-zero
length predicted by the Gaussian heuristic described in Section 1.6. For example,
suppose that the quantities

actual shortest vector length︷ ︸︸ ︷
λ1(L) := min

0 6=v∈L
‖v‖ and

expected shortest vector length︷ ︸︸ ︷
γ(L) :=

√
n/2πe · (DetL)1/n satisfy λ1(L) / n

−1/2γ(L).

It turns out that if λ1(L) is exponentially smaller than γ(L), then lattice reduction
algorithms such as LLL-BKZ have a fairly easy time solving the SVP; but if λ1(L)

is only polynomially smaller than γ(L), then it takes exponential time to solve
SVP. Heuristic arguments combined with experiments suggest that for a random

9We will not make the notion of “operation” precise, but we note that in 2022, the world’s fastest
computers operate at roughly 1 exaFLOPS, where FLOPS stands for “floating point operation per
second” and “exa” means 1018. So in terms of floating point operations, the current fastest computers
in the world can perform roughly 259.8 operations per second. This explains why BKZ-β with β = 50
is feasible, but β = 500 is not.
10An invertible square matrix is in column Hermite normal form if it is lower triangular and the
diagonal entries satisfy certain size comparison properties.

24 Lattices and Cryptography

lattice with a hidden small vector, BKZ-β will find the small vector if its Hermite
root factor satisfies either:

λ1(L) 6 3
√
N/2πe · δ(BKZ-β,L)−n ·Det(L)1/n, [15, Section 2.2.1];

λ1(L) 6
√
n/β · δ(BKZ-β,L)−(n−2β) ·Det(L)1/n, [3, 4].

As these very different estimates suggest, we still have a long way to go in un-
derstanding the behavior of lattice reduction algorithms for lattices containing a
vector that is moderately shorter than expected.

2.6. LLL Bases Are Nice: Proof Sketch.

Proof Sketch of Theorem 2.3.9. We prove the second estimate, and leave the first for
you; see Exercise 2.8.4. So our goal is to prove that an LLL-reduced basis satisfies

n∏
i=1

‖vi‖ 6 2n(n−1)/4 Det(L).

The Lovász condition and |µi,i−1| 6
1
2 give

‖v∗i‖
2 >

(
3
4
− µ2

i,i−1

)
‖v∗i−1‖

2 >
1
2
‖v∗i−1‖

2.

Applying repeatedly yields the useful inequality

‖v∗j ‖
2 6 2i−j‖v∗i‖

2.

We now compute

‖vi‖2 =

∥∥∥∥v∗i + i−1∑
j=1

µi,jv
∗
j

∥∥∥∥2
from Gram–Schmidt,

= ‖v∗i‖
2 +

i−1∑
j=1

µ2
i,j‖v

∗
j ‖

2 since v∗1 , . . . , v∗n
are orthogonal,

6 ‖v∗i‖
2 +

i−1∑
j=1

2i−j‖v∗i‖
2

4
since |µi,j| 6

1
2 and

‖v∗j ‖
2 6 2i−j‖v∗i‖

2,

=
1 + 2i−1

2
‖v∗i‖

2

6 2i−1‖v∗i‖
2.

Multiplying over 1 6 i 6 n yields
n∏
i=1

‖vi‖2 6
n∏
i=1

2i−1‖v∗i‖
2 = 2n(n−1)/2

(n∏
i=1

‖v∗i‖
)2

= 2n(n−1)/2 Det(L)2.

�

2.7. LLL Runs in Polynomial Time: Proof Sketch.

Proof Sketch of Theorem 2.4.3. Our goal is to prove that LLL terminates in time that
is polynomial in the dimension n. For ease of exposition, we assume that L ⊆ Zn.

Joseph H. Silverman 25

The idea of the proof is to define a function

D : {bases v1, . . . , vn for L} −→ R>1

that measures the “complexity” of a basis and to prove that D has the following
property for Lováscz swap step:

(2.7.1)

(
Lováscz condi-
tion is false

)
=⇒ D

(
basis after
swap step

)
6

√
3

2
·D

(
basis before
swap step

)
.

Applying this repeatedly, we conclude that

D

(
basis after swap step has
been executed k times

)
6

(√
3

2

)k
D

(
original
basis

)
.

But D(B) > 1 for any basis, so(
number of times that
the swap step is executed

)
6

logD(original basis)
log(2/

√
3)

.

It remains to define a function D satisfying (2.7.1) and to prove that D of the
original basis is O(n2 logB).

Definition 2.7.2. For any basis B = {v1, . . . , vn} of L, we define a sequence of
sublattices

L` := SpanZ{v1, . . . , v`}, 1 6 ` 6 n.

We note that L` is a lattice of rank ` sitting in Zn. It follows that its absolute
determinant satisfies

Det(L`)2 ∈N, and hence in particular that Det(L`) > 1.

(See Exercise 2.8.2.) We define the complexity of the ordered basis B to be the quan-
tity

D(B) :=

n∏
`=1

Det(L`).

Let v∗1 , . . . , v∗n be the orthogonal Gram–Schmidt basis of Rn associated to B;
i.e., the output of applying Algorithm 2.1.1 to B. Then

Det(L`) =
∏̀
i=1

‖v∗i‖, and hence D(B) =

n∏
i=1

‖v∗i‖
n+1−i.

Since each Det(L`) > 1, we find that

1 6 D(B) 6
(

max
16i6n

log ‖v∗i‖
)n(n+1)

2
6
(

max
v∈B

log ‖v‖
)n(n+1)

2
= B

n(n+1)
2 .

Hence in order to complete the proof that LLL terminates in at most O(n2 logB)
steps, we need to prove the Lováscz swap property described in (2.7.1).

We start with the assumption:

The Lováscz Condition is false at iteration k.

26 Lattices and Cryptography

This implies that

‖v∗k‖ <
√

3
4
− µ2

k,k−1 · ‖v
∗
k−1‖ 6

√
3

2
‖v∗k−1‖.

When we perform the swap step, i.e., when we swap vk and vk−1, the basis
of Lk−1 changes from v1, . . . , vk−2, vk−1 to v1, . . . , vk−2, vk. This changes the de-
terminant as follows:

Det(Lnew
k−1) = ‖v

∗
1‖ · ‖v

∗
2‖ · · · ‖v∗k−2‖ · ‖v

∗
k‖

= ‖v∗1‖ · ‖v
∗
2‖ · · · ‖v∗k−2‖ · ‖v

∗
k−1‖ ·

‖v∗k‖
‖v∗k−1‖

= Det(Lold
k−1) ·

‖v∗k‖
‖v∗k−1‖

6

√
3

2
Det(Lold

k−1).

The swap only affects the basis of Lk−1; the bases of all of the other Li are un-
changed. Hence the complexity of the new swapped basis for L is related to the
complexity of the old unswapped basis by

D(Bnew) =

(∏
i 6=k−1

Det(Lold
i)

)
·Det(Lnew

k−1)

6

(∏
i 6=k−1

Det(Lold
i)

)
·
√

3
2

Det(Lold
k−1)

=

√
3

2
D(Bold).

This completes the proof of (2.7.1), and with it, the proof of Theorem 2.4.3. �

2.8. Exercises for Lecture 2.

Exercise 2.8.1. Prove Theorem 2.2.3, which says that the basis of a 2-dimensional
lattice computed by the algorithm described in Algorithm 2.2.1 solves SVP and
gives a second basis vector that is fairly orthogonal to the first basis vector .

Exercise 2.8.2. Let B = {v1, . . . , v`} ⊂ Rn be a linearly independent set of vectors,
and let

LB = SpanZ(v1, . . . , v`)

be the lattice that they span. N.B. We are allowing ` < n. In particular, the
fundamental domain

F(B) := {t1v1 + · · ·+ t`v` : 0 6 ti < 1}

is an `-dimensional paralllelopiped in Rn, and Det(LB) is the `-dimensional vol-
ume of F(B).

Joseph H. Silverman 27

(1) Let v∗1 , . . . , v∗` be the orthgonal vectors that are the output of Gram-Schmidt.
Prove that

Det(LB) =
∏̀
i=1

‖v∗i‖.

(2) Let A be the n-by-` matrix whose columns are v1, . . . , v`, and let tA be the
transpose of A. Prove that

Det(LB)2 = det(tAA) = det
(
(vi · vj)16i,j6`

)
.

(3) Deduce that if LB ⊆ Zn, i.e., if v1, . . . , v` ∈ Zn, then Det(LB) > 1.

Exercise 2.8.3. Prove Theorem 2.3.5, which says that every lattice has a basis
satisfying both the Size Condition (2.3.2) and the Quasi-Orthogonality Condi-
tion (2.3.4). (This is a challenging problem.)

Exercise 2.8.4. Let v1, . . . , vn be an LLL-reduced basis for L. Prove the first part
of Theorem 2.3.9:

‖v1‖ 6 2(n−1)/2λ1(L).

Exercise 2.8.5. Consider the Gram–Schmidt With Rounding algorithm (2.1.2). We
suggested that feeding it a list of vectors in small-to-large order is likely to give a
better output than large-to-small.

(1) Justify this claim rigorously for lattices in R2.
(2) Consider the lattice L in R3 whose basis B consists fo the three vectors

v1 = (9, 3,−11), v2 = (1,−2, 3), v3 = (−190,−87, 140).

Feed this basis into the Gram–Schmidt With Rounding algorithm using
all six permutations of the three basis vectors and compare the outputs
in various ways. For example, compare the shortest vector produced, the
value of the product

∏
‖v∗i‖, and/or the complexity D of the output basis.

Exercise 2.8.6. Write a computer program implementing the LLL algorithm and
do some of the following experiments.

(1) Choose random vectors v1, . . . , v30 in Z30, say with coefficients randomly
selected in the range [−100, 100], and let L be the lattice that they span.
Run LLL on this basis for L and compute the orthogonality defect (Exer-
cise 1.8.9) of the output. What happens if you use the same basis, but
input the basis vectors in a differeent order?

(2) As in (1), but after running LLL, permute the output vectors and then run
them through LLL again? Do you get a better basis, as measured by the
orthogonality defect?

(3) Repeat (1) and (2) for different random v1, . . . , v30 and study the extent to
which the results are different.

(4) Repeat (1) and (2) for a different dimension and/or vectors whose coordi-
nates are in chosen in some other range, and compare the results.

28 Lattices and Cryptography

3. Public Key Cryptography 101: A Brief Introduction

We start with the Fundamental Problem of Cryptography. Two people, say Alice
and Bob11, want to exchange information so that the eavesdropper Eve cannot
read their messages.

3.1. Cryptography in the (pre-1970s) Dark Ages. For thousands of years, cryp-
tography worked as follows:

Private Key Cryptography — A Single Shared Key:
Step 1: Alice and Bob meet and share a Secret Key.
Step 2: Alice and Bob go their separate ways.
Step 3: Bob writes a message, which is called the Plaintext, that he wants to send

to Alice.
Step 4: Bob uses the Secret Key and a publicly available Encryption Algorithm

to encrypt his message. The encrypted message is called the Ciphertext.
Step 5: Bob sends the Ciphertext to Alice.
Step 6: Alice uses the Secret Key and a publicly available Decryption Algorithm

to decrypt Bob’s message.
Step 7: Eve might intercept the Ciphertext, but without the Secret Key, she cannot

decrypt it to recover the Plaintext.

Remark 3.1.1. A fundamental problem with this scenario is that Bob and Alice
cannot send messages until after they’ve met and exchanged a Secret Key. What
if they’ve never met and have no secure way to exchange the key?

Example 3.1.2. Alice is an internet company, and Bob wants to send Alice his
credit card number.

3.2. Public Key Cryptography to the Rescue. Is there some way for Alice and
Bob to securely communicate even if they’ve never met, and even if Eve is privy
to every piece of information that they exchange? Seems unlikely, but in the
mid-1970s Diffie and Hellman [9] proposed creating cryptosystems that use two
keys, a Private Key that Alice keeps secret and a Public Key that she publishes.12

Here’s how a two-key system might work:

Public Key Cryptography — A Tale of Two Keys:
Step 1: Alice creates a two-piece key consisting of a secret Private Key and a

Public Key.
Step 2: Alice publishes her Public Key.

11In cryptography, Alice and Bob feature in an eternal stuggle for security against the eavesdropper
Eve, the opponent Oscar, the malicious attacker Mallory, and an assortment of other evildoers!
12The concept of public key encryption was originally discovered by James Ellis in 1969 while working
at the British Government Communications Headquarters (GCHQ), but his discoveries were classified
by the British government and were not declassified and released until 1997, after his death. Two other
researchers at GCHQ, Malcolm Williamson and Clifford Cocks, discovered the Diffie–Hellman key ex-
change algorithm and the RSA public key encryption system, respectively, before the rediscovery and
public dissemination by Diffie, Hellman, Rivest, Shamir, and Adleman, but again the work Williamson
and Cocks was not published until much later.

Joseph H. Silverman 29

Step 3: Bob choose a Plaintext that he wants to send to Alice.
Step 4: Bob uses Alice’s Public Key and a publicly available Encryption Algo-

rithm to encrypt his message.
Step 5: Bob sends the resulting Ciphertext to Alice.
Step 6: Alice uses her secret Private Key and a publicly available Decryption

Algorithm to decrypt Bob’s message.
Step 7: Eve can intercept the Ciphertext, and she know’s Alice’s Public Key, but

without knowing Alice’s secret Private Key, she cannot decrypt the Ci-
phertext to recover the Plaintext.

This all sounds great, but Diffie and Hellman were not able to propose an
explicit example of such a

Public Key Cryptosystem,

although they did propose a closely related key exchange system.

Remark 3.2.1. In these notes we will continue to refer to private key cryptosystems
in which there is only one key and public key cryptosystems in which there are two
keys. However, we note that they are formally known as symmetric cryptosystems
and asymmetric cryptosystems, since the former have a single key that is used for
both encryption and decryption, while the latter have separate keys for these
purposes.

3.3. A Mathematical Formulation. Before discussing some specific examples of
public key cryptosystems, let’s reformulate everything in mathematical terms.
Keys and texts are elements chosen from certain sets, while encryption and de-
cryption are functions between these sets:

{
Public Keys

}
×
{

Plain Texts
} Encrypt−−−−−→

{
Cipher Texts

}
{

Private Keys
}
×
{

Cipher Texts
} Decrypt−−−−−→

{
Plain Texts

}

Suppose that (PubKey, PrivKey) is a valid public/private key pair. Then for all
plaintexts Msg (messgaes) we want

Decrypt
(

PrivKey,Encrypt
(
PubKey, Msg

))
= Msg.

Further, even though Eve knows the Public Key and the Ciphertext, we insist that
this information does not allow her to recover the Plaintext. Only Alice, who
knows the Private Key, can do that.

We may thus view Decrypt as a function that inverts Encrypt, but in order to
evaluate Decrypt, an extra piece of information, the Private Key, is needed. Here
is an abstract formulation of this idea.

Definition 3.3.1. A Trap Door Function is an invertible function f : X → Y having
the following properties:13

13In these notes we will be somewhat informal about the words “easy” and “hard”. Roughly speaking,
a function whose input is n bits is easy to compute if it can be computed in time that is polynomial

30 Lattices and Cryptography

(1) f(x) is easy to compute.
(2) f−1(y) is hard to compute.
(3) Knowledge of an extra piece of information, the “trapdoor”, makes f−1(y)

easy to compute.

3.4. A Menagerie of Functions that are Ostensibly Hard to Invert. We describe
four mathematical problems that can be used to build trapdoor functions, assum-
ing that the underlying mathematical problems are actually hard.

3.4.1. The Integer Factorization Problem (IFP). Given two large prime numbers
p and q and an exponent e, the exponentiation function

(3.4.1) Z/pqZ −→ Z/pqZ, x 7−→ xe mod pq,

is easy to compute, but hard(?) to invert unless you know p and q.

Remark 3.4.2. We’re cheating a bit, since inverting (3.4.1) isn’t really the Integer
Factorization Problem. We might call it the

Taking Roots Modulo pq Problem.

However, for appropriate choices of p, q, and e, the fastest known algorithm for
finding roots modulo pq is to first solve for p and q.

The IFP is used to build the14[
RSA Public Key Cryptosystem.

Public Key = (pq, e), Private Key = (p,q).

]

3.4.2. The Discrete Logarithm Problem (DLP). Let p be a large prime number,
and let g ∈ F∗p. The powering function

Z/(p− 1)Z −→ F∗p, k 7−→ gk mod p,

is easy to compute, but hard to invert.
The DLP is used to build the[

Elgamal Public Key Cryptosystem.

Public Key = (p,g,gk) Private Key = k.

]
Remark 3.4.3. Again we’ve cheated. Elgamal is actually based on the

Diffie–Hellman Problem: Given g,ga,gb, compute gab.

But again, the fastest general method known for solving the Diffie–Hellman Prob-
lem is to compute a or b, i.e., to solve the DLP.

in n, and preferably not much more than linear in n. It is hard to compute if it takes time that is
exponential, or at least super-polynomial, in n to compute. Depending on the desired security level,
a quantity is currently considered hard to compute if its computation takes at least 280, or 2160, or 2320

operations.
14For added effciency, it suffices for the RSA private key to be an integer d that satisfies the congruence
de ≡ 1 (mod pq−p−q+ 1).

Joseph H. Silverman 31

3.4.3. The Elliptic Curve Discrete Logarithm Problem (ECDLP). Similar to the
DLP, but the multiplicative group F∗p is replaced by the group of points E(Fp) on
an elliptic curve. Thus let p be a large prime number, let E/Fp be an elliptic curve,
and let Q ∈ E(Fp) be a point on E having large order N. Then the multiplication
function

Z/NZ −→ E(Fp), k −→ kQ,

is easy to compute, but hard to invert.
The ECDLP is used to build the[

Elliptic Curve Elgamal Public Key Cryptosystem.

Public Key = (p,E,Q,kQ) Private Key = k.

]
Remark 3.4.4. Why bother using elliptic curves, since additon on E(Fp) takes
a lot more effort than multiplication in F∗p? The answer is that the best known
algorithms to solve the ECDLP are much slower than those for the IFP or the
DLP. This means that keys and ciphertexts using ECDLP-based cryptosystems
are smaller. Thus elliptic curve cryptography is part of the never-ending battle
between contradictory cryptographic goals:

? Be maximally efficient!

? Be maximally secure!

Example 3.4.5. The bar codes on airline boarding passes have a limited number
of bits, so they may use an ECDLP-based digital signature. Similarly, blockchain
applications may need to store and transmit millions of digital signatures, so they
often use ECDLP-based signatures in order to save space and bandwidth.

3.4.4. The Closest Vector Problem (CVP). Let L be a lattice and let Bbad =

{w1, . . . ,wn} be a bad basis for L. Then the function

{0, 1}n −→ Rn,

(ε1, . . . , εn) 7−→ ε1w1 + · · ·+ εnwn + (small random vector)

is easy to compute, but hard to invert.
The CVP is used to build various cryptosystems, including the[

GH Public Key Cryptosystem.

Public Key = a bad basis Bbad Private Key = a good basis Bgood.

]
Cryptosystems built from the CVP are discussed in more detail in Lecture 4.

3.5. From Trapdoor Functions to Public Key Cryptosystems.

3.5.1. From IFP to RSA. The RSA Cryptosystem invented by Rivest, Shamir,
and Adelman, works as follows:

• Private Key: (p,q). Public Key: (pq,e).
• Plaintext: A number M mod pq.
• Ciphertext: The number C ≡Me (mod pq).

32 Lattices and Cryptography

• Decryption: Compute

Cd mod pq where de ≡ 1 (mod pq− p− q+ 1).

3.5.2. From DLP to Elgamal. The Elgamal DLP-Based Cryptosystem introduces
randomness, a topic to which we shall return.

• Private Key: k Public Key: (p,g,gk), where g ∈ F∗p.
• Plaintext: A number M mod p.
• Ciphertext: Choose a a random R mod p− 1. The ciphtertext is the pair

of values

C1 ≡ gR (mod p) and C2 ≡M · (gk)R (mod p).

• Decryption: Compute (Ck1)
−1 ·C2 mod p.

3.5.3. From ECDLP to Elliptic Elgamal. The Elliptic Curve Elgamal Cryptosys-
tem works similarly, with the multiplicative group F∗p replaced by the group of
points on an elliptic curve E(Fp). There are also proposals for quantum secure
public key cryptosystems based on maps (isogenies) between elliptic curves; see
the material by Kristen Lauter in this volume.

3.5.4. From CVP to GGH and NTRU. It’s relatively straightforward to create a
public key cryptosystem from the CVP, where the public key is a bad basis and the
private key is a good basis. However, lattice reduction algorithms such as LLL-
BKZ make such systems insecure unless the dimension, and thus the key size,
is quite large. The use of lattices having additional structure leads to practical
lattice-based cryptosystems. Lectures 4 and 5 are devoted to an introduction to
lattice-based cryptography.

3.6. Digital Signatures. Digital Signatures provide a way for Bob to electroni-
cally sign a digital document. The secure operation of the internet and its atten-
dant businesses relies at least as much on digital signatures as it does on public
key cryptosystems.

Example 3.6.1. Bob is Microsoft or Apple sending an update for Alice’s computer.
Should Alice install it? Only if she can verify that it came from Bob.

3.6.1. Signatures in the Dark Ages. Bob’s written signature on a document af-
firmed that he created the document or was willing to abide by its terms. For
example:

Bobolink Bank of Boston

Pay to Alice Adams $100.00

BOB ROBERTS

The bank can verify Bob’s signature by comparing it to a copy that they have on
file. But suppose that Bob wants to sign a computer file and send it to Alice over

Joseph H. Silverman 33

the internet. How can he do that so that she is able verify his digital signature on
the file?

3.6.2. Digital Signature Schemes: Mathematical Description. Just as with a
public key cryptosystem, a

Digital Signature Scheme

consists of two functions: {Private Keys}×{Digital Docs}
Sign−−−→ {Signatures}

{Public Keys}×{Signatures}×{Digital Docs}
Verify−−−−→ {Yes, No}

These functions are required to have the following properties:

• If (PubKey,PrivKey) is a valid public/private key pair, then for all docu-
ments Doc and potential signatures Sig we have

Verify(PubKey, Sig, Doc) = Yes ⇐⇒ Sig = Sign(PrivKey, Doc).

• Given only PubKey and Doc, it is difficult to create a signature Sig satis-
fying

Verify(PubKey, Sig, Doc) = Yes.

• A list (transcript) of valid signatures

(Sigi, Doci), i = 1, 2, 3, . . . ,n,

for the public key PubKey should not reveal useful information about
the associated private key PrivKey, nor should it allow Eve to sign any
documents other than those already in the list.

3.6.3. Examples of Digital Signature Schemes.

RSA Signatures
• Public Key: (pq,e).
• Private Key: d satisfying de ≡ 1 (mod pq− p− q+ 1).
• Document: A number D mod pq.
• Signing: The number S ≡ Dd (mod pq).
• Verifying: Signature is valid if Se ≡ D (mod pq).

Elgamal Signatures
• Public Parameters: (p,g), where g ∈ F∗p.
• Private Key: k
• Public Key: gk.
• Document: A number D mod p.
• Signing: Choose a random R mod p−1. The signature is the pair of values

S1 ≡ gR (mod p), S2 ≡ (D− k · S1) · R−1 (mod p− 1).

• Verifying: Signature is valid if (gk)S1 · SS2
1 ≡ g

D (mod p).

34 Lattices and Cryptography

Elliptic Elgamal Signatures
• Public Parameters: (p,E, x,Q), whereQ ∈ E(Fp) is a point of (large prime)

order q, and where x is the x-coordinate function on a Weierstrass equa-
tion for E.

• Private Key: k mod q
• Public Key: kQ
• Document: A number d mod q.
• Signing: Choose a random r mod q. The signature is the pair of values

s1 = x(rQ) mod q, s2 = (d+ ks1)r
−1 mod q.

• Verifying: Signature is valid if x
(
ds−1

2 Q+ s1s
−1
2 (kQ)

)
≡ s1 (mod q).

Lattice-Based Signatures
• Lecture 5 gives an introduction to lattice-based digital signature schemes.

3.7. Cryptographically Secure Hash Functions. If Bob’s document Doc is large,
he could break it into pieces

Doc1, Doc2, Doc3, . . .

and sign each piece. But that’s inefficient, as well as leading to security issues.
Instead, Bob signs a cryptographically secure hash of his document.

Definition 3.7.1. Intuitively, a Hash Function takes an arbitrary length input and
creates a fixed length, deterministic, but unpredictable and random looking, out-
put: {

arbitrary length
bit strings

}
Hash−−−−→

{
bit strings
of length b

}
.

The function Hash should have (at least) the following properties:

• For D ∈ {0, 1}∗, computing Hash(D) is very fast.
• Given H ∈ {0, 1}b, it is very hard to find even one

D ∈ {0, 1}∗ satisfying Hash(D) = H.

• It is very hard to find distinct

D1,D2 ∈ {0, 1}∗ satisfying Hash(D1) = Hash(D2).

This property is called Collision Resistance.
• Altering even one bit of D changes Hash(D) unpredictably. We might

formalize this as:

Prob

(
the jth bits of Hash(D)

and Hash(D ′) are equal

∣∣∣∣∣ D and D ′ differ
in exactly one bit

)
= 50%.

3.8. Random Numbers in Cryptography. For RSA, Bob and Alice need to choose
random prime numbers. Elgamal uses random numbers to encrypt and sign. And
even a deterministic cryptosystem such as RSA tends to have security problems
unless some randomness is introduced.

Joseph H. Silverman 35

Example 3.8.1 (Plaintext Padding). The following is only semi-realistic. When
Bob wants to send the message M to Alice, rather than encrypting M directly, he
chooses a random string R and instead sends Alice the concatenated string

M ′ = R ‖ (R xorM).

Then, even if Eve guesses part of the message, she cannot use that knowledge
to help with decryption, since the bits of M have been scrambled by R. Alice
recovers the actual plaintext by first computing M ′, and then computing

(R xorM) xor R =M.

There are sources of bits that people believe are truely random:

• Quantum phenomena, such as radioactive decay.
• Micro-changes in temperature.

Such sources can be used in practice, but they tend to be inefficient.
What Bob and Alice need is a Psuedo-Random Number Generator (PRNG). For

example, they might use a function

Rand : {0, 1}N −→ {0, 1}N

and iterate it starting from a seed value σ0. This gives a sequence of values

σ1 = Rand(σ0), σ2 = Rand(σ1), σ3 = Rand(σ2), . . .

and they would like this sequence to be “indistinguishable” from a sequence of
values chosen randomly and uniformly from {0, 1}N.

Another way to create a pseudo-random number generator is to use a hash
function and a seed value σ0, and compute the list of pseudo-random numbers

σ1 = Hash(σ0 ‖ 1), σ2 = Hash(σ0 ‖ 2), σ3 = Hash(σ0 ‖ 3),

Of course, there is still the problem of generating a random seed σ0 value. And
it must be noted that there have been real-world security breaches arising from
insufficiently random seed values!

Remark 3.8.2. Don’t be fooled by the relatively innocuous definitons in Sec-
tions 3.7 and 3.8. Creating cryptographically secure hash functions and pseudo-
random number generators is hard! The US National Institute of Standards and
Technology (NIST) ran an open competition from 2007 to 2012 to develop an effi-
cient and secure cryptographic hash function. The winner was publised in 2015
and is called Secure Hash Function-3 (SHA-3), although an earlier SHA-2 is also
still widely used.

3.9. How Hard are Hard Problems? So just how hard are famous “hard prob-
lems” such as the IFP, DLP, ECDLP, and CVP?

Honest Answer: No one knows!!! In the sense that we don’t have a proof that
any of these problems are hard.

36 Lattices and Cryptography

Practical Answer: How hard are they to solve using existing algorithms on exist-
ing computers?

Problem
Steps Required to
Solve the Problem

Key/Ciphertext Size
to be Secure

IFP ≈ exp(3
√

logpq) steps 2000 to 4000 bits

DLP ≈ exp(3
√

logp) steps 2000 to 4000 bits

ECDLP ≈ √p steps 300 to 400 bits

CVP ≈ CdimL steps 2000 to 4000 bits

That’s all great. Even 4000 bits isn’t much. But you probably noticed the caveat:

Existing algorithms on existing computers.

3.10. Quantum Computers and Cryptography.

Definition 3.10.1. A quantum computer is a machine in which computation on bits
(0’s and 1’s) is replaced by computation on qubits.

In the popular literature, a qubit is a bit that can take on every real value
between 0 and 1. Slightly more precisely, a qubit is described by a complex
number representing a superposition of 0 and 1 states with certain probabilities.
A quantum computer with n qubits can “perform” a simultaneous computation
on 2n states, achieving an exponential speedup over a classical computer for
certain tasks.

At present, the largest quantum computers built have around 100 qubits. But
governments and businesses are investing huge sums of money to build larger
ones. One might make an analogy:

• First airplane flight — 1903 — flew 852 feet.
• WW I — 1914–18 — airplanes ubiquitous.
• WW-II — 1939–45 — jets flying 500+ MPH.

Here’s the bombshell paper that started all the fuss:

Polynomial-Time Algorithms for Prime Factorization and Discrete Loga-
rithms on a Quantum Computer, Peter W. Shor. Proc. 35th Annual Sym-
posium on Foundations of Computer Science, Santa Fe, NM, Nov.
20–22, 1994

Shor’s quantum algorithms solve the IFP and DLP (and ECDLP) in more-or-
less quadratic time, so a full-scale quantum computer would compromise the secu-
rity of most classical public key systems. This has sparked much current research
on public key systems that cannot (as far as we know) be broken by a quan-
tum computer. These include lattice-based systems discussed in Sections 4 and 5,
isogeny-based systems discussed in Kristen Lauter’s chapter in this volume, and

Joseph H. Silverman 37

systems based on coding theory. People refer to work in this field as:

Post-Quantum Cryptography

3.10.1. What, Me Worry? If large-scale working quantum computers are decades
off, why worry about them now?

• Infrastructure change is slow, time-consuming, and expensive.
• Even if post-quantum cryptosystems are not used now, we should build

them into systems so that we can start using them with the flip of an
(electronic) switch.
• How long do you want to protect your secrets? Your legal documents?

Your blockchains? If for 10 years, then you should probably encrypt and
sign using PQC. If 50 years, then you definitely should.

NIST, esimtates that by 2030 it will cost roughly $1 billion to build a quantum
computer that can break 2048-bit RSA, is in the final stages of running a multi-
year open competition to select and standardize post-quantum cryptosystems.
NIST announced the Round 3 candidates in July 2020. It consists of 4 public
key cryptosystems and 3 digital signatures, together with 8 additional alternate
candidates.

3.11. Code Makers Versus Code Breakers, Or, Cryptanalysts Are Very Clever!
History is littered with the invention of “unbreakable” cryptosystems that were
broken. So before you start touting your own brilliant new cryptosystem, here
are a few lessons that the author has painfully learned over the years:

• Cryptanalysts, those pesky folks who break cryptosystems, are very very
clever people.

• Cryptanalysts don’t play by your rules, they set their own rules. They’ll
try to break your algorithm, they’ll try to break your software implemen-
tation, they’ll try to break the hardware that you’re using!

• Cryptanalysts attack the weakest part of your system or its implementa-
tion, frequently via a method that you hadn’t considered.

• If you modify a cryptosystem to make it more efficient, 99 times out of 100
you’ll end up compromising its security.
• It’s not enough for your system to be based on a problem whose hardest

case is hard. Instead you need “most” of the instances of your problem to
be hard.

• Even if most instances of your problem are hard, you still need to be able
to distinguish, and avoid, the instances that are not hard. And a priori, it’s
often not clear which instances are easy (or easier).

• It is important to be able to prove, under reasonable assumptions, that
an oracle that decrypts or signs is also capable of solving a hard mathe-
matical problem. These are called security reduction proofs. However, they
come with two important caveats:

38 Lattices and Cryptography

– What constitutes a “reasonable assumption”? This is a subtle ques-
tion, and systems that were supposedly secure because of a security
reduction proof have turned out to be insecure due to issues with the
underlying assumptions.

– Since we don’t yet know how to prove that cryptographically useful
math problems are hard, what a security reduction proof demon-
strates is that breaking the cryptosystem is equivalent to solving a
mathematical problem that has been studied intensively for a many
years. Thus the cryptographic security underlying today’s widely
deployed cryptographic constructions is ultimately based on the fol-
lowing principle:

Proof via lack of known algorithms despite much effort

Here are a few examples of non-obvious weaknesses in otherwise ostensibly
hard mathematical problems and secure implementations, where we note that an
integer is said to be smooth if it is a product of small primes.

• For most primes p and q, one expects the IFP for pq to be hard. But it is
easier if p− 1 or q− 1 is sufficiently smooth.

• For most primes p and most generators g ∈ F∗p, one expects the DLP to
be hard. But it is easier if p− 1 is sufficiently smooth.

• For most primes p, most elliptic curves E/Fp, and most points Q ∈ E(Fp),
one expects the ECDLP to be hard. But letting N denote the order of Q in
#E(Fp), the ECDLP is:

– Easier if N is sufficiently smooth.
– Easier if there is a small f such that pf ≡ 1 (mod N).
– Extremely easy if #E(Fp) = p.

• Let (pq, e) be an RSA key. If Eve can steal (or guess) half the bits of p, she
can recover the other bits using lattice reduction!

• A long transcript of classical lattice-based signatures can be used to recon-
struct the fundamental domain of a good basis. And it turns out that in
some cases, the transcript doesn’t even have to be all that long!

• Software and hardware implementations of cryptosystems, especially if
optimized to avoid unnecessary calculations, can often be compromised
by measuring their power consumption or execution time. These are
called power analysis and timing analysis attacks. To see why they might
succeed, note that flipping a bit takes longer and uses more energy than
leaving it unchanged.

3.12. Exercises for Lecture 3.

Exercise 3.12.1. (1) Verify that RSA decryption (Section 3.5.1) works.
(2) Verify that Elgamal decryption (Section 3.5.2) works.
(3) Verify that RSA signature verification (Section 3.6.3) works.
(4) Verify that Elgamal signature verification (Section 3.6.3) works.

Joseph H. Silverman 39

Exercise 3.12.2. (1) Prove that an oracle that solves the Discrete Logarithm
Problem (Section 3.4.2) can be used to solve the Diffie–Hellman problem
(Remark 3.4.3)

(2) Prove that an oracle that solves the Diffie–Hellman problem (Remark 3.4.3)
can be used to break the Elgamal cryptosystem (Section 3.5.2).

(3) Prove that an oracle that decrypts Elgamal ciphertexts (Section 3.5.2) can
be used to solve the Diffie–Hellman problem (Remark 3.4.3).

(4) It is an open question as to whether an oracle that solves the Diffie–
Hellman problem can be used to solve the Discrete Logarithm Problem.
Try to say something about this question.

Exercise 3.12.3. Bob wants to send the message M to Alice. He first computes
the following quantities:

X←M xor Hash1(R) and Y ← R xor Hash2(X).

He encrypts and sends Alice the concatenation M ′ = X ‖ Y.

(1) Show how Alice can recover M from M ′; i.e., show that Aliec can re-
cover M from X and Y.

(2) Assuming that the hash functions are appropriately secure, explain why
Eve needs to know every bit of X in order to recover R from Y, and she
needs to know every bit of R to recover M from X.

This is called optimal asymmetric encryption padding.

Exercise 3.12.4. It is asserted in Sections 3.4.1 and 3.4.2 that raising a given quan-
tity to a given power is easy. However, when implementing systems such as RSA
or Elgamal, one needs to compute an in a ring Z/mZ, where m,a,n may have
hundreds of digits.

(1) If one naively sets a0 = 1 and ai+1 = a · ai, how many multiplications
are required to compute an?

(2) Consider the following square-and-multiply algorithm:
(a) Write n in binary as n = n0 + 2 · n1 + 4 · n2 + · · · + 2t · nt, where

ni ∈ {0, 1}.
(b) Set b0 = a. For i = 1, 2, . . . , t, compute bi = b2

i−1.

(c) Set a0 = 1. For i = 1, 2, . . . , t, compute ai =

{
ai−1 if ni−1 = 0,

ai−1 · bi−1 if ni−1 = 1.
Prove that at = an, and that the computation requires at most 2 log2(n)

multiplications and (roughly) log2(n) storage.
(3) Read about improvements to the square-and-multiply algorithm includ-

ing: (a) Implementations requiring only O(1) storage. (b) Improved per-
formance using precomputation and/or windowing methods. (c) Using a
binary expansion of nwith coefficients in {−1, 0, 1}. This is especially help-
ful for elliptic curve cryptography, where the inversion operation P → −P

is very fast.

40 Lattices and Cryptography

Exercise 3.12.5 (Shanks’s babystep-giantstep algorithm). This exercise describes
a method for solving the DLP. Let g ∈ F∗p have order N, and let h ∈ F∗p. The goal
is to find an exponent k so that gk = h. Consider the following algorithm:15

• Set n← 1 + b
√
Nc.

• Compute u← gn. (If n is large, see Exercise 3.12.4.)
• Create two lists:

List 1: 1,g,g2,g3, . . . ,gn

List 2: h,hu,hu2,hu3, . . . ,hun

• Find an element that’s in both lists, say gi = huj.
• Output i− j mod N.

(1) Prove that the two lists are guaranteed to have an element in common.
(2) Prove that the output is an integer k satisfying gk = h.
(3) Prove that the algorithm requires O(

√
N)) multiplications and O(

√
N)

storage.16

(4) Read about Pollard’s rho method, which also solves the DLP in O(
√
N)

steps, but requires only O(1) storage.

Exercise 3.12.6 (The Pohlig-Hellman algorithm). This exercise illustrates a method
for solving the DLP when the order of the element is highly composite. Let
g ∈ F∗p have order N, and let h ∈ F∗p. The goal is to an exponent k so that gk = h.
For ease of exposition, we suppose that

N = q1q2 with q1 and q2 distinct primes of roughly the same size.

• Let

g1 = gN/q1 , g2 = gN/q2 , h1 = hN/q1 , h2 = hN/q2 .

• Solve the DLP for the pairs (g1,h1) and (g2,h2), i.e., find exponents k1

and k2 so that

g
k1
1 = h1 and g

k2
2 = h2.

• Solve the simultaneous congruences

k ≡ k1 (mod q1) and k ≡ k2 (mod q2).

(1) Prove that the output k from this algorithm satisfies gk = h.
(2) Exercise 3.12.5 describes an algorithm which says that if g has order N,

then we can solve the DLP for the pair (g,h) in time that is proportional
to N1/2. Prove that if we use Exercise 3.12.5 to solve each of the subsidiary
DLPs in the above algorithm, then the time to solve the original DLP is
proportional to N1/4, which represents a substantial savings.

15The powers of g are the “babysteps,” the powers of u are the “giantsteps.”
16We note that there are sorting algorithms that allow one to find a common element in the two lists
in roughly O(logN) steps, which is negligible.

Joseph H. Silverman 41

(3) Generalize to the case that N is a product qe1
1 q

e2
2 · · ·q

et
t of many distinct

primes raised to powers. If it roughly takes time T(n) to solve the DLP for
an element of order n, prove that your algorithm solves the DLP in time
that is roughly the sum

∑t
i=1 T(q

ei
i).

(4) Let q be a prime, and as in (3), suppose that it takes time T(n) to solve
the DLP for pairs (g,h) if g has order n. Let N = qe be a power of a
prime q,and suppose that g has order N. Devise an algorithm to solve the
DLP for (g,h) that takes time roughly eT(q).

Exercise 3.12.7. A smooth number is an integer whose factorization uses only small
primes, e.g., an integer is B-smooth if its factorization is a product of prime pow-
ers using only primes less than B. Many factorization and DLP algorithms exploit
smooth numbers.

(1) Read about the quadratic sieve factorization method, and how it depends
on finding smooth numbers of the form x−y2 mod N.

(2) Read about the number field sieve, a generalization of the quadratic sieve
that is currently the fastest known general factorization method.

(3) Read about Pollard’s p− 1 factorization algorithm, which efficiently fac-
tors N if N has a prime factor p such that p− 1 is smooth.

(4) Read about Lenstra’s elliptic curve factorization algorithm, which is sim-
ilar to Pollard’s p− 1 algorithm, but uses elliptic curve groups E(Fp) in
place of the multiplicative group F∗p.

(5) Read about the index calculus, which is an algorithm to solve the DLP
in F∗p that relies on finding numbers of the form gi and gjh whose lifts to
integers in the interval [1,p− 1] are smooth.

Exercise 3.12.8. Read about hash functions and pseudo-random number genera-
tors. Try to implement one of them.

4. Lattice-Based Public Key Cryptosystems

4.1. Early Days and the Ajtai-Dwork Lattice-Based Cryptosystem. In 1995 Ajtai
and Dwork [1] described a lattice-based public key cryptosystem whose security
relies on the difficulty of solving CVP in a certain set of lattices LAD. They proved
that breaking their system for a random lattice of dimension m in LAD is as diffi-
cult as solving SVP for all lattices in LAD of dimension n, where n < m depends
on m. This average case-worst case equivalence was a theoretical cryptographic mile-
stone, but unfortunately the Ajtai-Dwork cryptosystem is impractical. Inspired
by the work of Ajtai and Dwork, Goldreich–Goldwasser–Halevi [14] proposed a
somewhat more practical lattice-based cryptosystem, while at the same time and
working indpendently, Hoffstein–Pipher–Silverman [19] proposed an even more
efficient system that they dubbed NTRU. In this chapter we describe the GGH
and NTRU public key cryptosystems.

42 Lattices and Cryptography

It is interesting to note that initially the major advantage of these systems was
their speed, since lattice-based systems can be 10 to 100 times faster than RSA
and ECC at equivalent security levels. However, as computers became faster, the
speed differential became less important. Then in an unexpected turn of events,
interest in lattice-based systems flourished due both to their ostensible resistance
to quantum attacks and their adaptability to applications such as Gentry’s homo-
morphic encryption scheme [12].17

4.2. The GGH Public Key Cryptosystem. The GGH lattice-based cryptosystem of
Goldreich, Goldwasser, and Halevi [14] is described in Table 4.2.1.

• Note that the ciphertext vector e is not in the lattice L, but it is close to a
lattice vector, since r is small.

• Bob uses the bad public basis Bbad and a random small vector r to create
the ciphertext.

• Alice uses Babai’s method (Section 1.3) with her good basis Bgood to solve
CVP. In this way she finds a vector v ∈ L that is close to the ciphertext.
Since r is small, when Alice writes v in terms of Bbad, with high probabil-
ity it will be equal to

v = ε1w1 + · · ·+ εnwn.

Form this Alice can read off (ε1, . . . , εn), which is the plaintext.

Private Key = a good basis Bgood for a lattice L
= {v1, . . . , vn}.

Public Key = a bad basis Bbad for the lattice L
= {w1, . . . ,wn}.

Plaintext = a binary vector (ε1, . . . , εn), i.e., εi ∈ {0, 1}.
Ciphertext = ε1w1 + · · ·+ εnwn + r,

where r is a small random vector.

Table 4.2.1. The GGH Lattice-Based Cryptosystem

4.3. GGH versus LLL: A Battle for Supremacy! The security of GGH comes
down to the question of just how well LLL and its variants solve CVP; or alter-
natively, how long it takes LLL-BKZ to find a basis that is good enough to solve
CVP using Babai’s method.

Experimentally, one finds that if n = dim(L) < 100, then LLL easily finds
a basis that’s good enough to break GGH. And even up to n ≈ 200, variants

17Homomorphic encryption is a fascinating area that we will not have time to discuss. Using a
homomorphic encryption scheme, Alice can have Bob run an encrypted algorithm on encrypted input
data to produce encrypted output. Current schemes are impractically slow for most applications, but
research continues to improve the efficiency.

Joseph H. Silverman 43

of LLL-BKZ will break GGH. On the other hand, GGH may well be secure for
500 < n < 1000; and barring some major breakthrough in lattice-reduction meth-
ods, it is likely to be secure for quite a while for (say) 2000 < n < 4000. However,
we must then deal with the following unfortunate fact. If we implement GGH
using a lattice L ⊂ Rn, then the GGH public key consists of n vectors in Rn, and
hence

Size of GGH Public Key = O(n2) bits.

For example, if we take n = 1000, and if we assume that each coordinate of each
vector in the GGH basis is an 8 bit integer, then a GGH public key has length
roughly 8-megabits. This is quite a bit larger than standard 4000 bit RSA keys
or 256 bit ECC keys!

The NTRU Public Key Cryptosystem, which we describe next, solves this prob-
lem by using a special type of lattice that has bases that can be described using
roughly 1

2n log2(n) bits, leading to key sizes that are comparable to RSA keys.

4.4. Convolution Products and Polynomial Quotient Rings. We start with some
mathematical tools that we will need.

Definition 4.4.1. The convolution product of two vectors18

a = (a0,a1, . . . ,aN−1) and b = (b0,b1, . . . ,bN−1)

is the vector

(4.4.2) c = a ?b with ck =
∑

i+j≡k (mod N)

aibj.

Example 4.4.3. Let a = (1, 2, 3) and b = (4,−5, 6). Then

a ?b = (1 · 4 + 2 · 6 − 3 · 5, −1 · 5 + 2 · 4 + 3 · 6, 1 · 6 − 2 · 5 + 3 · 4) = (1, 21, 8).

Proposition 4.4.4. Vector addition and convolution product make the set of vectors into
a ring. In particular,

(a ?b) ? c = a ? (b ? c) Associative Law,

a ? (b+ c) = a ?b+a ? c Distributive Law,

a ?b = b ?a Commutative Law.

Proof. We leave the proof to the reader. �

Remark 4.4.5. There is an alternative way to describe the convolution product
ring that is often useful. The idea is to identify vectors and polynomials via the
association

a = (a0, . . . ,aN−1) ←→ a(X) = a0 + a1X+ · · ·+ aN−1X
N−1.

We view these polynomials as living in the quotient ring

R = Z[X]/(XN − 1),

18We use the word vector loosely to describe an n-tuple of elements chosen from some commutative
ring such as Z or Q or R or Fq.

44 Lattices and Cryptography

so when we multiply polynomials in the quotient ring, we use the rule XN = 1 to
write the result as a polynomial of degree at most N− 1. With this identification,
we have the equivalence

c = a ?b ⇐⇒ c(X) ≡ a(X)b(X) (mod XN − 1),

a calculation that we leave to the reader. In other words, this identification defines
a ring isomorphism

(ZN, +, ?) −→ (R, +, ·),
a 7−→ a(X).

All of the preceding material works if we replace Z by another ring such
as Z/qZ. We will make frequent use of the ring

Rq = (Z/qZ)[X]/(XN − 1),

where we note that the natural map R → Rq obtained by reducing coefficients
modulo q is a ring homomorphism.

Proposition 4.4.6. Let q be a prime. Then there are “many” polynomials a(X) ∈ Rq

that have an inverse in Rq, i.e., such that there exists a polynomial

a(X)−1 ∈ R satisfying a(X)a(X)−1 ≡ 1 (mod q).

More precisely, we have

a(X) ∈ R∗q ⇐⇒ gcd(Z/qZ)[X]

(
a(X),XN − 1

)
= 1.

Proof. Suppose first that a(X) ∈ R∗q, so there is some b(X) ∈ Rq satisfying

a(X)b(X) = 1 in Rq.

Viewing a(X) and b(X) as polynomials in Z[X], this is the same as saying that

a(X)b(X) ≡ 1 (mod XN − 1,q),

so we can find polynomials c(X),d(X) ∈ Z[X] so that

a(X)b(X) − 1 = (XN − 1)c(X) + qd(X).

Reducing modulo q, we see that a(X) and XN−1 can have no non-trivial common
factors in (Z/qZ)[X], so their gcd is 1.

Conversely, suppose that the gcd of a(X) and XN − 1 in (Z/qZ)[X] is 1. The
ring (Z/qZ)[X] is Euclidean. (This is where we use the assumption that q is
prime, since it implies that Z/qZ is a field.) The extended Euclidean algorithm,
which is both effective and extremely efficient, tells us that there are elements
b(X), c(X) ∈ (Z/qZ)[X] satisfying

a(X)b(X) + (XN − 1)c(X) = 1 in (Z/qZ)[X].

Reducing modulo XN − 1, we find that a(X)b(X) = 1 in Rq, so a(X) ∈ R∗q. �

4.5. NTRUEncrypt: The NTRU Public Key Cryptosystem.

Public Parameters: Alice and Bob agree on three public parameters

N, p, q,

Joseph H. Silverman 45

with N prime and with gcd(p,q) = 1.19 It is also important that q be
significantly larger than p.

Key Creation: Alice chooses random polynomials f,g ∈ R with small coefficients.
She computes the inverses of f modulo q and modulo p,

Fq ≡ f−1 (mod q) and Fp ≡ f−1 (mod p).

(If either inverses doesn’t exist, she discards this f and chooses a new one.)
Alice computes the product

h = g · Fq (mod q).

In other words, she computes h = g · f−1 in Rq. Then Alice’s pub-
lic/private key pair is20

Public Key = h, Private Key = f.

Encryption: Bob’s plaintext is an element m ∈ Rp, or more precisely, a polyno-
mial with integer coefficients in the interval (−p/2,p/2]. Bob also chooses
a random polynomial r with small integer coefficients. Bob uses these
quantities to compute his ciphertext

Ciphertext = e ≡ p · r ·h+m (mod q).

Decryption: Alice computes

a ≡ e · f (mod q).

This computation is done in the ring Rq, and then Alice lifts to coefficients
of

a = a0 + a1X+ · · ·+ aN−1X
N−1

so that they are integers satisfying

A 6 ai < A+ q

for an appropriately chosen public quantity A. Alice then reduces the
coefficients modulo p and computes the product

Fp ·a mod p in the ring Rp.

This quantity will equal the plaintext m.

Proposition 4.5.1. If the parameters are chosen appropriately, then NTRU decryption
gives the plaintext; i.e., NTRU works as advertised.

Proof. The first decryption step yields the following polynomial as output:

19In practice, as explained in Exericse 4.10.4, it is also often convenient to take p and q to be primes
that are generators for (Z/NZ)∗, or at least that have large order in that ring, since then the in-
verses Fq and Fp will exist, either certainly or with high probability, provided f(1) 6= 0.
20For efficiency, Alice might also store Fp, but if space is an issue, she can always recompute it from f

and p.

46 Lattices and Cryptography

Computation (mod q) Reason It Works

a ≡ e · f
≡ (p · r ·h+m) · f e ≡ p · r ·h+m

≡ p · r ·g+m · f h · f ≡ g · Fq · f ≡ g

The coefficients of r,g,m, f are small, so the coefficients of

p · r ·g+m · f

will lie in an interval of length less than q.21 Choosing an appropriate interval,
the polynomial

a equals p · r ·g+m · f exactly R, and not merely modulo in Rq.

Now multiply a by Fp and reduce modulo p to get

Fp ·a = Fp · (p · r ·g+m · f)

≡ Fp ·m · f (mod p)

≡m (mod p) since Fp · f ≡ 1 (mod p).

This shows that decryption recovers the plaintext. �

4.6. NTRU and Lattice Problems.

Definition 4.6.1. The Convolution Modular Lattice Lh associated to the N-dimen-
sional vector h and the modulus q is the 2N-dimensional lattice whose basis is
given by the rows of the following matrix:

Lh = RowSpan

1 0 · · · 0 h0 h1 · · · hN−1

0 1 · · · 0 hN−1 h0 · · · hN−2
...

...
. . .

...
...

...
. . .

...

0 0 · · · 1 h1 h2 · · · h0

0 0 · · · 0 q 0 · · · 0

0 0 · · · 0 0 q · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · q

We now given an alternative, very convenient, way to describe Lh.

Proposition 4.6.2. If we identify Z2N with two copies of the convolution product
ring (ZN,+, ?), then

Lh =
{
(a,b) ∈ Z2N : a ?h ≡ b (mod q)

}
.

21For example, if f,g, r,m have coefficients in the set {−1, 0, 1}, then the coefficients of p ·r ·g+m ·f
are guaranteed to lie between −N(p+ 1) andN(p+ 1), so we just need to take q > N(p+ 1) and
A = q/2. In practice, it is highly unlikely that the coefficients will get this large, so a smaller q value
will work with high probability. Added efficiency may also be gained by taking the various small
polynomials to have a specified number of non-zero coefficients, which allows even smaller values of
q to be used.

Joseph H. Silverman 47

Proof. Suppose that (a,b) satisfies

a ?h ≡ b (mod q).

This implies that

u =
b−a ?h

q
∈ ZN

has coordinates in Z. Then we see that

[a0, . . . ,aN−1,b0, . . . ,bN−1]

is equal to the matrix product

[a0, . . . ,aN−1,u0, . . . ,uN−1]

1 · · · 0 h0 · · · hN−1
...

. . .
...

...
. . .

...

0 · · · 1 h1 · · · h0

0 · · · 0 q · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · q

,

which shows that

[a0, . . . ,aN−1,b0, . . . ,bN−1] ∈ Lh.

We leave the opposite inclusion as an exercise. �

Remark 4.6.3. An immediate consequence of Proposition 4.6.2 is that if [a,b] ∈
Lh, then its rotations

(4.6.4) [Xi ?a,Xi ?b] are also in Lh for all 0 6 i < N.

4.7. Recovering an NTRU Private Key via an SVP Problem. An NTRU pub-
lic/private key pair satisfies

(4.7.1) f ?h ≡ g (mod q) where f and g are small;

i.e., f and g are vectors in ZN having small coordinates. Alternatively, we may
view f,g ∈ Z[X] as being polynomials of degree at most N − 1 having small
coefficients. Proposition 4.6.2 and (4.7.1) tell us that the lattice Lh contains the
short (and likely shortest non-zero) vector

[f,g] = [f0, f1, . . . , fN−1,g0,g1, . . . ,gN−1].

For practical choices of parameters, the vector [f,g] and its rotations (4.6.4) are
likely to be the shortest non-zero vectors in Lh, so solving SVP in Lh essentially
recovers the private key f.

4.8. Recovering an NTRU Plaintext via a CVP Problem. An NTRU ciphertext e
has the form

e = pr ?h+m (mod q) where r and m are small.

48 Lattices and Cryptography

We rewrite this relation in vector form as

[0,e] = [0, pr ?h+m mod q]

≡ [r, r ? (ph) mod q] + [−r,m].

The vector [r, r ? (ph) mod q] is in the convolution modular lattice Lph obtained
by using ph in place of h. Further, the vector [−r,m] is quite short. Hence
recovering the plaintextm from the ciphertext e is equivalent to finding the vector
in Lph that is closest to the vector [0,e]. It is then a question of estimating how
hard it is to solve this CVP problem.

4.9. NTRU Operating Characteristics and Variants. Table 4.9.1 gives a rough
comparison of the operating characteristics for naive implementations of RSA, ECC,
and NTRUEncrypt; i.e., with no implementation tricks. But there are many ways
to improve the speed, including:

• Using a small RSA encryption exponent gives encryption speed O(n2).
• One can do precomputation and use windowing techniques to make ECC

encryption and decryption faster, although the former requires some stor-
age.

• Using Karatsuba multiplication or fast Fourier transform techniques, one
can reduce NTRU encryption and decryption times to O(n logn).

RSA ECC NTRU

Encrypt/Decrypt O(n3) O(n3) O(n2)

Key size (bits) n n ≈ 1
2n log2 n

Key Create — O(n3) O(n2)

Typical n 1024 168 502

Table 4.9.1. Operating Characteristic of Vanilla RSA, ECC, NTRU

Remark 4.9.2. There are many variants of NTRU that have been proposed over
the years. For example, one might replace XN − 1 with XN + 1 and take N = 2k

so that XN+ 1 is irreducible in Z[X]. More generally, one can replace XN− 1 with
an arbitrary (monic) polynomial φ(X) ∈ Z[X], which could be irreducible and
must have small coefficients. The key is the fact that if a(X) and b(X) have small
coefficients, then

a(X) ·b(X) mod φ(X) has small’ish coefficients.

The average size of the coefficients of the product depends on the size of the roots
of φ(X), which is why taking φ(X) to be a cyclotomic polynomial is especially
efficient. On the other hand, using XN − 1 introduces symmetries into the lattice
that an attacker might exploit. This hypothetical problem can be eliminated if,
for example, one takes φ(X) = XN −X− 1.

Joseph H. Silverman 49

4.10. Exercises for Lecture 4.

Exercise 4.10.1. Let f(X) ∈ R = Z[X]/(XN−1). We define the reversal (or conjugate)
of f(X) to be the polynomial

f(X)← f(XN−1) ∈ R.

Since XN = 1, we may write this informally as f(X) = f(X−1).

(1) Let

f(X) =

N−1∑
i=0

aiX
i and f(X) =

N−1∑
i=0

aiX
i.

Find a formula for ai in terms of a0, . . . ,aN−1.
(2) Prove that reversal is a ring homomorphism R→ R, i.e., prove that

f+g = f+g and f ·g = f ·g.

(3) Define the sup norm of a polyomial

f(X) =

N−1∑
i=0

aiX
i ∈ R to be ‖f‖∞ := max

06i<N
|ai|,

i.e., ‖f‖∞ is the sup-norm of the vector of coefficients of f. Let B > 0 be
an integer. Compute the values of∑

f∈R,‖f‖∞6B

f(X) and
∑

f∈R,‖f‖∞6B

f(X) · f(X).

The fact that the latter average is non-zero features in various analyses of
NTRU-type cryptographic constructions.

Exercise 4.10.2. Prove the associative, distributive, and commutative laws for +

and ? as described in Proposition 4.4.4.

Exercise 4.10.3. With the identifications described in Section 4.4, prove that

c = a ?b ⇐⇒ c(X) = a(X) ·b(X) in R.

Exercise 4.10.4. Let N and q be primes such that q is a primitive root modulo N;
i.e., assume that qk ≡ 1 (mod N) if and only if N− 1 | k.

(1) Prove that the splitting field of XN − 1 over Z/qZ is a field with qN

elements.
(2) Prove that a(X) ∈ R∗q if and only if a(1) 6≡ 0 (mod q).
(3) Deduce in this case that #R∗q/#Rq = 1/q.
(4) Suppose instead that q has exact order k in (Z/NZ)∗. Modify (a,b,c) to

give correct statements, and prove that those statements are correct.

Exercise 4.10.5. Suppose that the coefficients of the polynomials f and g in an
NTRU private key are randomly selected so that d of the coefficients equal 1 and d

50 Lattices and Cryptography

of the coefficients equal −1 and the remaining coefficients equal 0.22 Suppose
further that the coefficients of r and m lie in {−1, 0, 1}.

(1) Prove that if

q > 2d(p+ 1)

then NTRU decryption always works.
(2) Prove that the number of possible f polynomials is N!/(N− d)!(d!)2, and

similarly for g. Thus N and d must be large enough to preclude an at-
tacker from simply checking all possible f values.23

(3) For a private key chosen as above, compare the length of the target vector
[f,g] in the NTRU lattice Lh to the Gaussian expected shortest length of a
non-zero vector in Lh. (The Gaussian heuristic is described in Section 1.6.)
Express you answer in terms of N,q,d. Then take q ≈ 2d(p+ 1) as in (a),
and show that the target vector is likely to be unique shortest non-zero
vector in Lh.24 More precisely, show that the ratio of private key vector
length to Gaussian expected shortest length is on the order of 1/

√
Np.

Exercise 4.10.6. For a polynomial a(X) =
∑N−1
i=0 aiX

i ∈ R, we define various
norms

(4.10.7) ‖a‖∞ := max |ai|, ‖a‖1 :=
∑

|ai|, ‖a‖2 :=
√∑

a2
i.

For example, the polynomials with norm ‖a‖∞ 6 1 are the polynomials whose
coefficients are in the set {−1, 0, 1}.

(1) Let a,b ∈ R. Prove that

(4.10.8) ‖a ·b‖∞ 6 ‖a‖∞ · ‖b‖1.

Describe the a,b for which (4.10.8) is an equality.
(2) Let a,b ∈ R. Prove that

(4.10.9) ‖a ·b‖2 6 N · ‖a‖∞ · ‖b‖2.

Describe the a,b for which (4.10.9) is an equality.
(3) Let b ∈ R. Prove that

1
3N

∑
‖a‖∞=1

‖a ·b‖2
2 = N · ‖b‖2

2.

This suggests that for most a satisfying ‖a‖∞ = 1, the upper bound (4.10.9)
in (2) is off by a factor of

√
N.

22The astute reader will realize that this will not work, since then f(1) = 0, which means that f(X)
cannot have an inverse in Rq. In practice, one chooses f(X) to have d+ 1 coefficients equal 1 and d
coefficients equal −1. This has a small numerical effect, but little practical effect, on the results of this
problem.
23There are so-called collision algorithms that give a the attacker a square-root advantage; cf. Exer-
cise 4.10.13.
24This cannot be literally true, of course, since the rotations (4.6.4) of [f,g] have the same length as
[f,g]. So the correct conclusion is that these N vectors are most likely the shortest non-zero vectors
in Lh.

Joseph H. Silverman 51

Exercise 4.10.10. Show that NTRU decryption can be described as Babai’s algo-
rithm applied to the short partial basis consisting of [f,g] and its rotations.

Exercise 4.10.11. For NTRU, one generally takes N to be prime. This exercise
illustrates why by describing a potential attack of Craig Gentry [11] when N is
even, say N = 2M. In this case the polynomial XN − 1 factors, and we get a
homomorphism

(4.10.12) Z[X]/(X2M − 1) −→ Z[X]/(XM − 1)×Z[X]/(XM + 1).

(1) What are the kernel and cokernel of the map (4.10.12)?
(2) If a is a small element of Z[X]/(X2M − 1), show that its images in

Z[X]/(XM − 1) and Z[X]/(XM + 1)

are small. (Give a quantitative estimate for the sup norms of the coeffi-
cients.)

(3) Set up a lattice reduction search for an NTRU private key [f,g] as a pair of
lattice searches in two lattices of dimension M. This cuts the dimension
of the relevant lattices in half compared to the lattice in Section 4.6.

Exercise 4.10.13. Any cryptographic construction in which the private key is cho-
sen from a finite set is susceptible to a combinatorial or brute-force attack in which
the attacker simply checks the possible keys. And frequently the attacker can
search for “collisions” to significantly speed up the process. In this exercise we
describe one such attack. We set the notation

Rq[1]←
{
a ∈ Rq : ‖a‖∞ 6 1

}
for the set of polynomials in Rq whose coefficients have size at most 1, i.e., for
the set of polynomials whose coefficients are in {−1, 0, 1}.

(1) Prove that #Rq[1] = 3n.
(2) Suppose that Alice chooses random polynomials f,g ∈ Rq[1] and that

her public key is the polynomial h = g · f−1 in Rq. An attacker tries
to find Alice’s private key by randomly choosing polynomials a ∈ Rq[1]
and checking whether h · a is in Rq[1]. Show that the expected number
of attempts is 1

2 #Rq[1].
(3) We define two sets

Rq[1]0 ←
{ ∑

06i6n/2

aix
i : ai ∈ {−1, 0, 1}

}
,

Rq[1]1 ←
{ ∑
n/2<i6n−1

aix
i : ai ∈ {−1, 0, 1}

}
.

Prove that

#Rq[1]0 ≈ #Rq[1]1 ≈
√

#Rq[1].

52 Lattices and Cryptography

(4) An attacker uses Alice’s public key h to compile the following two lists of
polynomials in Rq:

S0 ←
{
h ·a : a ∈ Rq[1]0

}
and S1 ←

{
h ·a : a ∈ Rq[1]1

}
.

Prove that there exists an h ·a0 ∈ S0 and an h ·a1 ∈ S1 that are very close
to one another; more precisely, they satisfy

‖h ·a0 −h ·a1‖∞ 6 1.

Prove that a0 − a1 is (almost certainly) equal to xj · f for some 0 6 j < n,
an attacker who can compute this “almost collision” between the sets S0

and S1, has broken Alice’s system.
(5) Show that after sorting S0 in some reasonable way, e.g., lexigraphically

by coordinates, it is possible to check whether an element of S1 has an al-
most collision in S0 in roughly O(logn) steps. Deduce that using this
collision-style attack, an attacker can break Alice’s system in roughly
O
(√

#Rq[1] · logn
)

steps, which represents a substantial improvement on
the brute force search described in (2).

Exercise 4.10.14. This exercise asks you to explore Remark 4.9.2.

(1) Generate some data to illustrate Remark 4.9.2. For example, generate a lot
of random polynomials a(X),b(X) of degree at most N− 1 and compare
the largest coefficient of the product a(X) ·b(X) in the rings

Z[X]/(XN − 1), Z[X]/(XN + 1), Z[X]/(XN −X− 1).

Do this for, say, N = 7 and/or N = 23.
(2) Let φ(X) ∈ Z[X] be a monic polynomial of degree N. Give an heuris-

tic argument as to why the largest coefficient of a product a(X)b(X) in
Z[X]/φ(X)Z[X] should depend on the largest root of φ(X) in C. Make
your estimate as quantitative as you can.

5. Lattice-Based Digital Signatures and Rejection Sampling

5.1. Digital Signatures. We recall that a Digital Signature Scheme consists of a
signing function and a verification function:

Joseph H. Silverman 53

Private Key

Document
SignatureSignature

Algorithm

Public Key

Signature

Document

Yes or NoVerification

Algorithm

If (PubKey, PrivKey) is a valid public/private key pair and Doc is a document
and Sig is a purported signature, then we want the following to be true:

Verify(PubKey, Sig, Doc) = Yes ⇐⇒ Sig = Sign(PrivKey, Doc).

5.2. CVP Digital Signatures — GGH. In Section 3.6.3 we briefly discussed dig-
ital signature schemes based on the integer factorization problem (IFP), the dis-
crete logarithm problem (DLP), and the elliptic discrete logarithm problem (ECDLP).
In this section we discuss lattice-based digital signature schemes whose security
relies on the shortest and/or closest vector problem (SVP/CVP).

The prototypical example of a lattice-based digital signature is the GGH digital
signature scheme, which is described in Table 5.2.2. Its public and private keys are
the same as that of the GGH lattice-based cryptosystem:, abd the signature is a
solution to an approximate CVP problem:

Private Key = {v1, . . . , vn} = a good basis Bgood for a lattice L.

Public Key = {w1, . . . ,wn} = a bad basis Bbad for the lattice L.

Document = a vector d that is not in L.

Remark 5.2.1. In practice, the “document” d that Alice signs is the output of a
hash function applied to her actual document concatenated or otherwise com-
bined with some random bits; cf. Section 3.7, Example 3.8.1, and Exercise 3.12.3

5.3. Security of GGH and other CVP-based Digital Signatures. Just as with
CVP-based encryption schemes, there are many security issues that must be ad-
dressed for CVP-based digital signatures:

Cominatorial Security: The spaces of keys and signature must to be large enough
so that an attacker cannot check all their elements. Further, one must
take into account the fact that collision search algorithms often run in
time O(

√
K) on sets of size K; cf. Exercises 4.10.13 and 5.8.10.

54 Lattices and Cryptography

• Alice uses Babai’s algorithm (Section 1.3) with Bgood to find a lattice
vector close to d. To do this, she first writes

d = δ1v1 + · · ·+ δnvn with δ1, . . . , δn ∈ R.

Then she rounds the coefficients to get a lattice vector
s = bδ1ev1 + · · ·+ bδnevn ∈ L

that is close to d.
• Alice writes s using the bad basis Bbad,

s = s1w1 + · · ·+ snwn.

Her signature on d is the n-tuple (s1, . . . , sn).
• Bob uses the n-tuple (s1, . . . , sn) and the bad public basis Bbad to recon-

struct s using the formula
s = s1w1 + · · ·+ snwn.

The vector s is automatically in L, and Bob verifies that the signature is
valid by checking that s is sufficiently close to d.

Table 5.2.2. The GGH Lattice-Based Digital Signature Scheme

Lattice Security: Just as with CVP-based public key cryptosystems, one needs to
check that latttice reduction algorithms such as LLL-BKZ cannot solve the
approximate CVP well enough to forge signatures.

Practicality: The GGH digital signature scheme has impractically large public
keys, since a public key is a complete basis of the lattice. One might try to
instead use an NTRU-type construction, although it is not entirely clear
how to do that, since an NTRU lattice only provides a good basis for
a half-dimensional sublattice. However, such a construction is possible;
see [20] for details.

Transcript Security: For digital signature schemes, here is

Yet Another Thing to Worry About!

• Each signature potentially reveals some information about the private key.
• So a long transcript of signatures might compromise security.

5.4. A Transcript Attack on the GGH Digital Signature Scheme. The possibility
of a transcript attack is not an idle threat. A number of people, including Gentry–
Szydlo [13] and Nguyen–Regev [26, 27], developed practical transcript attacks on
GGH and other early CVP-based signature schemes. We describe roughly how
one might use a GGH transcript to recover the private key. A GGH signature s
on a document d reveals a vector in the centered fundamental domain spanned
by the good basis:

s−d ∈ Fgood :=

{
t1v1 + · · ·+ tnvn : −

1
2
6 ti 6

1
2

}
.

Joseph H. Silverman 55

As illustrated in Figure 5.4.1 on page 58, a transcript consisting of only a few
signatures is relatively innocuous, but a long transcript of signatures reveals a lot
of information about the fundamental domain spanned by the good secret basis.

Note that Alice, Bob, and Carl each have their own private good bases, and
that their bases define different fundamental domains. So transcripts of their
signatures fill out their individual private fundamental domains, as illustrated in
Figure 5.4.2 on page 59.

5.5. Rejection Sampling to the Rescue. Rejection sampling is a technique from
statistics in which one starts with a random process whose output has a known
distribution, and by judiciously throwing away (rejecting) some of the output
values, creates a new random process whose output has some other desired dis-
tribution.

Lyubashevsky [24, 25] constructed a lattice-based identification scheme and
digital signature using a technique that he called aborting, which is a version of
rejection sampling.

The basic idea is that Alice generates a signature on her document and checks
if it will leak information about her individual private key. If it will leak informa-
tion, then she rejects that signature and generates another one. She continues to
do this until finding a safe signature, which she publishes.

First Issue: How does Alice generate multiple
signatures on the same document?

Remember that Alice isn’t really signing her document, she’s signing a hash of
her document. In fact, for various reasons, it is advisable that she signs something
like

Hash

(
Alice’s actual document concate-
nated with, say, 160 random bits

)
.

So if Alice generates a signature and decides to reject it, she simply selects a new
random 160 bits and tries again. Her signature would then include the 160 ran-
dom bits that she uses in the signature that she doesn’t reject.

How might this work for GGH? Alice’s signatures give a set of points that
are uniformly distributed in her fundamental domain F

good
Alice. Similarly, Bob’s

signatures give points uniformly distributed in F
good
Bob , and the same for Carl. But

suppose that they fix a region that’s common to all three fundamental domains;
i.e., that is contained in F

good
Alice, Fgood

Bob , and F
good
Carl . Then they reject signatures that

fall outside the common region. This is illustrated in Figure 5.5.1 on page 60,
where the shaded box is common to everyone’s centered fundamental domain.
Hence when Alice, Bob, and Carl reveal sets of equidistributed points in the
shaded box, they are yielding no information about their private bases.

5.6. Transcript Security — At A Cost. Assuming that the hash function and
pseudo-random number generator work as advertised, Alice’s and Bob’s and
Carl’s transcripts will have exactly the same distribution, namely they will be

56 Lattices and Cryptography

1. The public parameters include a cut-off value Bwith the property that ev-
eryone’s centered fundamental domain Fgood contains the centered box{

(x1, . . . , xn) ∈ Rn : −
1
2
B 6 xi 6

1
2
B

}
.

2. Alice computes a vector d to sign:
d← Hash(Alice’s Doc ‖Random Bits).

3. Alice uses her good basis Bgood to find a lattice vector s that is close to d.
4. If

‖s−d‖∞ > B,

then Alice rejects s, returns to Step 2, and selects new random bits.
5. Otherwise Alice accepts and publishes the signature s and the random

bits that she used in Step 2. Note that it is only at this step that s becomes
public, so an attacker never gets to see the rejected signatures.

Table 5.5.2. The GGH Digital Signature Scheme with Rejection
Sampling

equidistributed over the lattice points in the common box. Thus the transcripts
provide no useful information about the private key.

However, we have the added cost of rejection sampling. This leads to the
following imporatant question:

How many signatures are rejected
before one of them is accepted?

For a naive implementation of GGH, the volume of the common box will be very
small compared to the volume of the fundamental domain. So using rejection
sampling is at best inefficient, and at worst, completely impractical.

Lyubashevsky and others use various methods to make it easier to find non-
rejected signatures, while maintaining the property that the distribution of signa-
tures is independent of the private key. For example, a signature scheme called
BLISS devised by Ducas, Durmus, Lepoint, and Lyubashevsky [10] makes use of
an NTRU-like key generation procedure and a bimodal discrete Gaussian noise
distribution to produce compact equidistributed signatures. The efficiency of the
scheme is quite good, especially considering the complexity of sampling discrete
Gaussian distributions.

There are also lattice-based signature schemes for which the simple box rejec-
tion method is practical. These include a variant of NTRU described in [20], and
another older scheme based on partial evaluation of polynomials called PASS [22].
In the next section we use PASS to illustrate how to prove that rejection sampling
gives transcript security, although we will limit ourselves to describing the tran-
script aspects of PASS and leave a full description of the PASS signature scheme
to the exercises.

Joseph H. Silverman 57

5.7. An Example of a Lattice Recovery Problem and Rejection Sampling In this
section we describe how a short basis of a certain type of lattice can be recovered
from a long list of CVP solutions, and how applying rejection sampling to the list
of solutions prevents recovery of the short basis. In the exercises we explain how
these lattices can be used to create a digital signature schemee.

We recall from Remark 4.4.5 that we defined a quotient ring

R = Z[X]/(XN − 1),

and that we identified each element of R with its vector of coefficients in ZN. We
also defined the sup norm of a polyomial to be the maximum of its coefficients,
i.e.,

the sup norm of f(X) =

N−1∑
i=0

aiX
i ∈ R is ‖f‖∞ := max

06i<N
|ai|.

We let

R[b] =
{
f ∈ R : ‖f‖∞ 6 b},

so for example, the polynomials in R[1] have coefficients in the set {−1, 0, 1}.

58 Lattices and Cryptography

A few signatures aren’t much help in re-
constructing Fgood.

With a moderate number of signatures,
the fundamental domain Fgood starts to
emerge.

With lots of signatures, one may be able
to reconstruct the fundamental domain
Fgood.

Figure 5.4.1. Illustrating a Transcript Attack

Joseph H. Silverman 59

A Fundamental Domain F
good
Alice for Alice’s Pri-

vate Basis

A Fundamental Domain F
good
Bob for Bob’s Pri-

vate Basis

A Fundamental Domain F
good
Carl for Carl’s Pri-

vate Basis

Figure 5.4.2. Different Private Good Bases Have Different Tran-
scripts

60 Lattices and Cryptography

Alice’s private fundamental domain
F

good
Alice with common box

Bob’s private fundamental domain
F

good
Bob with common box

Carl’s private fundamental domain
F

good
Carl with common box

Figure 5.5.1. Selecting a Region Common to All Fundamental
Domains

Joseph H. Silverman 61

Algorithm 5.7.1 (Prototypical Rejection Sampling Algorithm).

1. Parameter Selection: Fix a lattice dimension parameter N and a norm bound k.
2. Secret Lattice Creation: Alice chooses a small polynomial f ∈ R[1] that determines

her secret lattice.
3. Random Polynomial Selection: Alice chooses a random polynomial y ∈ R[k].
4. Hash Function: A hash function is applied to certain quantities associated to f and y.

The output from the hash function is a polynomial c ∈ R[1] that depends ran-
domly on the inputs.25

5. Signature Creation: Alice computes the polynomial

s = f ? c+y in the ring R.

6. Rejection Sampling: If

‖s‖∞ > k−N,

then Alice goes back to Step 3 and selects a new value for y.
5. Publication: Alice publishes the pair of polynomials (s, c) as her signature.

Suppose that Alice uses Algorithm 5.7.1 to create a long list of signatures

(s1, c1), (s2, c2), (s3, c3),

We are going to prove that this transcript reveals no information about Alice’s
private key f, but that if Alice were to skip the rejection sampling step, then
information would be revealed. We also estimate the probability that a proposed
signature makes it through the rejction step, since as noted in Section 5.6, rejection
sampling comes a cost, and an excessively high rejection rate could make the
scheme impractical. We also note that the constraint k > N2 in Proposition 5.7.2
must be balanced against the underlying CVP when the system is turned into a
full-fledged digital signature scheme; see Figure 5.8.7 for details.

Proposition 5.7.2. Let

(5.7.3) (s1, c1), (s2, c2), (s3, c3),

be a transcript of signatures created using Algorithm 5.7.1.

(1) If the ci are uniformly and randomly distributed in R[1],26 then the transcript
(5.7.3) reveals no information about the private key f.

(2) If instead the transcript is created skipping the rejection sampling step in Algo-
rithm 5.7.1, then the transcript will contain information allowing recovery of the
private key f.

25Since we are only interested in transcripts at the moment, we will not explain exactly how c depends
on f and y. It suffices to know that c behaves like a random variable uniformly distributed in R[1].
See Figure 5.8.7 for further details.
26We are being somewhat informal here. In a formal security proof we would assume that the al-
gorithm that creates the ci may be modeled as a random oracle whose output is completely unpre-
dictable.

62 Lattices and Cryptography

(3) If k > N2, then the probability that a signature passes the rejection sampling step
in Algorithm 5.7.1 (roughly) satisfies

Prob
(
‖s‖∞ < k−N) ' (1 −

N

2k+ 1

)N
≈ e−N

2/(2k+1).

Proof. (1) What does it mean to say that the transcript reveals no information
about f? The ci polynomials are assumed to be randomly distributed, so the
question is to what extent the si values contain information about fi. We claim
that the probability that any particular valid s shows up in a signature does not
depend on the polynomial f. We can formulate this as a statement in conditional
probability as follows:

Claim. For all f0 ∈ R[1] and all s0 ∈ R[k−N],

Prob

(
a signature (s, c) created
using f satisfies s = s0

∣∣∣ f = f0
)

does not depend on f0.

The probability is computed over the space of randomly chosen polynomi-
als c ∈ R[1] and y ∈ R[k], so we compute

Prob
c∈R[1]
y∈R[k]

(
s = s0

∣∣ f = f0) = 1
#R[1] · #R[k]

· #
{
(c,y) ∈ R[1]×R[k]

∣∣∣ s0 = c · f0 +y
}

=
1

#R[1] · #R[k]
· #
{
c ∈ R[1]

∣∣∣ s0 − c · f0 ∈ R[k]
}

.(5.7.4)

We next use the fact that c and f0 are in R[1] to bound the coefficients of their
product. More generally, for a,b ∈ R, we can use the triangle inequality to prove
the bound27

‖a ?b‖∞ = max
06n<N

∣∣∣∣ ∑
i+j≡n (mod N)

aibj

∣∣∣∣ 6 N‖a‖∞ · ‖b‖∞.

Hence for all s0 ∈ R[k−N] and all c, f0 ∈ R[1] we have∥∥s0 − c · f0
∥∥∞ 6 ∥∥s0

∥∥∞ +
∥∥c · f0∥∥∞

6
∥∥s0
∥∥∞ +N

∥∥c∥∥∞ · ∥∥f0∥∥∞
6 (k−N) +N

= k.

Thus the condition s0 − c ? f0 ∈ R[k] in the conditional probability (5.7.4) is vacu-
ous. This yields

Prob
c∈R[1]
y∈R[k]

(
s = s0

∣∣ f = f0) = 1
#R[1] · #R[k]

· #
{
c ∈ R[1]

}
=

1
#R[k]

.

In particular, the probability does not depend on the choice of f0 ∈ R[1], and
indeed, the probability is also independent of s0 ∈ R[k−N].

27We remark that this estimate also follows from Exercise 4.10.6 combined with the trivial triangle
inequality bound ‖b‖1 6N‖b‖∞.

Joseph H. Silverman 63

(2) Exercise 4.10.1 in Lecture 4 defines the reversal (or conjugate) of a polyno-
mial a(X) ∈ R to be the polynomial

a(X)← a(XN−1) ∈ R.

In that exercise you verified that the map

R −→ R, a 7−→ a,

is a ring automorphism, and you computed the average values

(5.7.5)
1

#R[B]

∑
a∈R[B]

a = 0 and
1

#R[B]

∑
a∈R[B]

a ?a =
2N
3

(B+ 1).

We note in particular that the latter average is a non-zero constant polynomial
in R.

Suppose that we have a transcript that contains T different signatures. For
each signature (si, ci) in the transcript, we multiply si by ci, and then we take
the average over the signatures in the transcript. This yields

1
T

T∑
i=1

si ? ci =
1
T

T∑
i=1

(f ? ci +yi) ? ci

= f ?

(
1
T

T∑
i=1

ci ? ci

)
+

1
T

T∑
i=1

yi ? ci

≈ f ?
(

1
#R[1]

∑
c∈R[1]

c ? c

)
+

(
1

#R[k]

∑
y∈R[k]

y

)
?

(
1

#R[1]

∑
c∈R[1]

c

)
since the ci are uniformly distributed in R[1], the yi
are uniformly distributed in R[k], and the ci and yi
are independent random variables,

= f ?
4N
3

+ 0 applyiing (5.7.5) with (a,B) = (c, 1) and (y,k).

Hence if T is sufficiently large, then rounding the coefficients of

3
4NT

T∑
i=1

si ? ci

to the nearest integer is likely to yield the secret polynomial f.
(3) The idea is that the coefficients of c? f are more-or-less a random sum ofN terms,
where each term is a product of two independent random variables that are uni-
formly distributed in {−1, 0, 1}. Hence each coefficient of c? f is anN-step random
walk, where each step has a 5

9 probability of being 0 and a 2
9 probability of being

either +1 or −1. Hence it is unlikely that there will be a coefficient whose mag-
nitude is much larger than a small multiple

√
N. Since we are assuming that k is

considerably larger than N, the probability that ‖f ? c+y‖∞ 6 k−N is roughly
the same as the probability that y itself satisfies ‖y‖∞ 6 k−N. This allows us to

64 Lattices and Cryptography

estimate

Prob
c←R[1]
y←R[k]

(
‖c ? f+y‖∞ 6 k−N)

≈ Prob
y←R[k]

(
‖y‖∞ 6 k−N)

≈
N−1∏
i=0

Prob
y←R[k]

(∣∣ith coefficient of y
∣∣ 6 k−N)

since the coefficients are more-or-less independent,

=

N−1∏
i=0

2(k−N) + 1
2k+ 1

=

(
1 −

N

2k+ 1

)N
.

We have proven the first estimate, and for the second we use (1 − t)N ≈ e−tN,
which is valid provided that tN is small. �

Remark 5.7.6. In the proof of Proposition 5.7.2(3) we ignored the c ? f term as
being negligible. For those who object to this cavalier attitude, we explain in
more detail what happens if we include the c ? f term. As noted in the proof, the
coefficients of c ? f may be modeled by an 4

9N-step random walk in which each
step is equally likely to be +1 and −1. If we write W for the distance from the
origin at the end of the walk, then a well-known calculation says that the expected
values of the powers of W are

E(W) = 0, E(W2) =
4
9
N, E(W3) = 0, E(W4) ≈ 16

27
N2;

see Exercise 5.8.1. So roughly speaking, we expect that the absolute value of a
random coefficient of c ? f to be around 0.67

√
N, and the standard deviation of

this value to be around 0.63N. The probability that a coefficient has magnitude
that is (say) 8 standard deviations from the mean is vanishingly small. So we
make the reasonable assumption that every coefficient of c ? f is at most 5

√
N.

Then a small modification of our computation yields

Prob
c←R[1]
y←R[k]

(
‖c ? f+y‖∞ 6 k−N) '=

(
1 −

N+ 5
√
N

2k+ 1

)N
.

In practice, the dimension is taken to satisfy at least N > 1000, and we can see
how little difference the the c ? f terms makes by computing

N = 1000 and K = N2

=⇒
(

1 −
N

2k+ 1

)N
≈ 0.606 and

(
1 −

N+ 5
√
N

2k+ 1

)N
≈ 0.560.

As a practical matter, it makes little difference whether Alice has a 60% success
rate or a 56% success rate in her signature generation routine.

Joseph H. Silverman 65

5.8. Exercises for Lecture 5.

Exercise 5.8.1. Let X1,X2,X3, . . . ,Xn be independent random variables with the
property that

Prob(Xi = 1) =
1
2

and Prob(Xi = −1) =
1
2

.

Let

W = X1 +X2 + · · ·+Xn.

Compute the expected values of W, W2, W3, and W4 as functions of n.

Exercise 5.8.2. This exercise illustrates an elementary example of rejection sam-
pling. Suppose that a pair of dice is rolled many times, that we write Rk for the
value of the kth roll, and that we create a value Ak by the rule

Ak =

H if Rk 6 6,

T if Rk > 8,

Reject if Rk = 7.

(1) Prove that the sequence A1,A2,A3, . . . is uniformly distributed on the
set {H, T }. We have thus converted a non-uniformly distributed random
variable R into a uniformly distributed random variable A.

(2) About how many times would we need to sample R in order to expect to
get n samples of A? In other words, about how many dice rolls would we
need in order to simulate n coin flips?

(3) Generalize as much as you can!

Series of Exercises for the PASS Digital Signature Scheme
Exercises 5.8.4–5.8.8 describes a transcript secure digital signature scheme called

PASS28 that is based on partial evaluation of polynomials that have small coeffi-
cients. The transcript security was proved in Section 5.7, so we concentrate on
describing how PASS works and why there is an underlying lattice problem. For
those interested in the history of such schemes, the original idea of using partial
evaluation of small polynomials appears in [17], and simplifications and meth-
ods to improve efficiency were described in [18, 21]. Then, after the introduction
of rejection sampling methods to achieve transcript security in lattice-based sig-
nature schemes, it was noted in [22] that such methods are particularly easy to
implement for PASS.

We assume for Exercises 5.8.4–5.8.8 that the following (public) parameters have
been fixed:

N = a moderate size prime, say 500 < N < 5000

q = a prime satisfying q ≡ 1 (mod N)

ζ = a generator (primitive Nth root of unity) in F∗q

28For those who are curious, PASS is an acronymn for Polynomial Authentication and Signature
Scheme.

66 Lattices and Cryptography

We recall from Definition 4.4.2 that we defined the convolution product of two
vectors by the formula (4.4.2), and that Proposition 4.4.4 says that coordinate-wise
addition and convolution product give a ring structure to FNq , i.e.,

(FNq , +, ?) is a ring.

Alternatively, Exercise 4.10.3 says that if we identify the elements of FNq with the
coefficients of polynomials of degree N− 1, then the convolution product is given
by polynomial multiplication in the quotient ring

Rq = Fq[X]/(X
N − 1).

We observe that there is another, easier, way to make FNq into a ring, namely
via coordinate-wise multiplication. We define

a�b = (a0b0, a1b1, . . . , aN−1bN−1),

and then

(5.8.3) (FNq , +, �) is a ring.

We use the generator ζ ∈ F∗q to define the discrete Fourier transform (DFT) map

F : Rq −→ FNq , F
(
f(X)

)
←
(
f(ζi)

)
06i<N.

Exercise 5.8.4. Prove that F is a ring isomorphism, where FNq is given a ring
structure via (5.8.3).

The idea underlying PASS is to that the secret key is a polynomial f having
small coefficients, and the public key is a subset of the coordinates of the DFT
of f. There will be many elements of Rq having those DFT coordinates, but very
few of them will themselves have small coefficients. This leads to the following
problem

Definition 5.8.5. Fix a subset Ω ⊂ {0, 1, . . . ,N− 1}. The small partial DFT inversion
problem is as follows: For a given set of values (bi)i∈Ω, find a polynomial f(X) ∈
Rq satisfying

f has small coefficients and f(ζi) = bi for all i ∈ Ω,

or prove that no such f(X) exists. To ease notation, we let

t = #Ω, and we write FΩ : Rq −→ Ftq, FΩ(f) =
(
f(ζi)

)
i∈Ω,

for the partial DFT associated to the set §.

Exercise 5.8.6. (1) Prove that

FΩ : Rq = FNq −→ Ftq

is a surjective Fq-linear transformation
(2) We compose FΩ with the reduction modulo q map and consider the func-

tion

FΩ : ZN
reduction−−−−−−→
modulo q

FNq = Rq
FΩ−−−−→ Ftq.

Joseph H. Silverman 67

Prove that

Null(FΩ) :=
{
f ∈ ZN : FΩ(f) = 0

}
is an N-dimensional lattice in ZN. (Hint. Note that Null(FΩ) contains the
lattice (qZ)N.)

(3) Prove that

Det
(
Null(FΩ)

)
= qt.

(4) Use (3) and (4) and the Gaussian heuristic (Section 1.6) to estimate the
length of the shortest non-zero vector in Null(FΩ)

Private Key Creation: Alice’s private key is a small polynomial f ∈ Rq, say satis-
fying ‖f‖∞ 6 1.

Public Key Creation: Alice’s public key is F := FΩ(f) ∈ Ftq, the partial DFT of f.
Signing: Alice wants to sign the document Doc for her public key F.

(1) (Commitment) Alice chooses a random small polynomial y ∈ Rq, say
satisfying ‖y‖∞ 6 k.

(2) (Challenge) Alice uses a hash function to compute a small polynomial
c := Hash

(
Doc,FΩ(y), F

)
,

where say ‖c‖∞ 6 1. (Note how c serves to tie Alice’s signature to
her document, her public key, and her random commitment.)

(3) (Response) Alice computes
s := c ? f+y.

(4) (Rejection Sampling) If ‖s‖∞ is large, say ‖s‖∞ > k−N, then Alice
goes back to Step (2) and chooses a new random commitment poly-
nomial.

(5) Alice publishes her signature
(s, c) on the document Doc for the public key F.

Verification: Bob wants to check the validity of the signature (s, c) on the docu-
ment Doc for Alice’s public key F.
(1) Bob computes

Y := FΩ(s) −FΩ(c)� F.

(2) Bob accepts the signature as valid if the following two statements are
true:
• s is small, say ‖s‖∞ < k−N.
• c is equal to Hash(Doc,Y , F).

Figure 5.8.7. The PASS Digital Signature Scheme

Exercise 5.8.8. The PASS Digital Signature Scheme is described in Figure 5.8.7.
Prove that if Alice uses the signing procedure in Figure 5.8.7, then Bob will accept
her signature as valid.

Exercise 5.8.9. This exercise explains how to formulate the small partial DFT
inversion problem (Definition 5.8.5) as a closest vector problem in a certain lattice

68 References

of dimensionN and discriminant qt. So we assume that we are given a vector F ∈
Ftq, and that we are told that there is a vector f ∈ ZN satisfying

‖f‖∞ 6 1 and FΩ(f) = F,

where FΩ is the map described in Exercise 5.8.6. Our goal is to find f.

(1) Explain why it is easy to find a vector f0 ∈ ZN satisfying FΩ(f0) = F,
provided that we do not require that f0 be small.

(2) Prove that {
g ∈ ZN : FΩ(g) = F

}
= f0 + Null(FΩ).

(3) Suppose that the length of the shortest non-zero vector in Null(FΩ) is
given by the Gaussian heuristic; see Exercise 5.8.6. Prove that f0 − f solves
the CVP for the lattice Null(FΩ) and the target vector f0.

Exercise 5.8.10. This exercise describes a collision algorithm to solve the small
partial DFT inversion problem; cf. Exericse 4.10.13. We suppose that there is an
unknown polynomial f(X) ∈ R[1], i.e., having coefficients in {−1, 0, 1}, and we
further suppose that we are given the value of FΩ(f). We define two sets

R[1]0 :=

{ ∑
06i6n/2

aix
i : ai ∈ {−1, 0, 1}

}
,

R[1]1 :=

{ ∑
n/2<i6n−1

aix
i : ai ∈ {−1, 0, 1}

}
,

whose size is roughly
√

#R, and we use them to create two lists

S0 :=
{
FΩ(a) : a ∈ R[1]0

}
and S1 :=

{
FΩ(f) −FΩ(a) : a ∈ R[1]1

}
.

(1) Prove that S0 ∩ S1 6= ∅.
(2) Prove that if

FΩ(a0) ∈ S0 and FΩ(f) −FΩ(a1) ∈ S1

satisfy

FΩ(a0) = FΩ(f) −FΩ(a1),

then (almost certainly) f = a0 +a1.
(3) For a given element of S1, explain how to check whether it is in the set S0

in roughly O(logn) steps. Deduce that one can recover f in roughly
O
(√

#R[1] logn
)

steps.

References
[1] M. Ajtai and C. Dwork, A public-key cryptosystem with worst-case/average-case equivalence, STOC ’97

(El Paso, TX), ACM, New York, 1999, pp. 284–293. MR1715640←41
[2] M. R. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E. W. Postlethwaite, and M. Stevens, The

general sieve kernel and new records in lattice reduction, Advances in cryptology—EUROCRYPT 2019.
Part II, Lecture Notes in Comput. Sci., vol. 11477, Springer, Cham, 2019, pp. 717–746. MR3964651
←22

http://www.ams.org/mathscinet-getitem?mr=MR1715640
http://www.ams.org/mathscinet-getitem?mr=MR3964651

References 69

[3] M. R. Albrecht, F. Göpfert, F. Virdia, and T. Wunderer, Revisiting the expected cost of solving uSVP
and applications to LWE, Advances in cryptology—ASIACRYPT 2017. Part I, Lecture Notes in
Comput. Sci., vol. 10624, Springer, Cham, 2017, pp. 297–322. MR3747701←24

[4] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwab, Post-quantum key exchange: A new hope, 25th
USENIX Conference on Security Symposium, SEC16, USENIX Association, 2016, pp. 327343.
←24

[5] H. F. Blichfeldt, The minimum value of quadratic forms, and the closest packing of spheres, Math. Ann.
101 (1929), no. 1, 605–608, DOI 10.1007/BF01454863. MR1512555←8

[6] J. W. S. Cassels, An introduction to the geometry of numbers, Classics in Mathematics, Springer-
Verlag, Berlin, 1997. Corrected reprint of the 1971 edition. MR1434478←9

[7] Y. Chen and P. Q. Nguyen, BKZ 2.0: better lattice security estimates, Advances in cryptology—
ASIACRYPT 2011, Lecture Notes in Comput. Sci., vol. 7073, Springer, Heidelberg, 2011, pp. 1–20.
MR2934994←22, 23

[8] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren der
mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290,
Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J.
Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR1662447←9

[9] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory IT-22
(1976), no. 6, 644–654, DOI 10.1109/tit.1976.1055638. MR437208←28

[10] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky, Lattice signatures and bimodal Gaussians,
Advances in cryptology—CRYPTO 2013. Part I, Lecture Notes in Comput. Sci., vol. 8042, Springer,
Heidelberg, 2013, pp. 40–56. MR3126416←56

[11] C. Gentry, Key recovery and message attacks on NTRU-composite, Advances in cryptology—
EUROCRYPT 2001 (Innsbruck), Lecture Notes in Comput. Sci., vol. 2045, Springer, Berlin, 2001,
pp. 182–194. MR1895433←51

[12] C. Gentry, Fully homomorphic encryption using ideal lattices, STOC’09—Proceedings of the 2009
ACM International Symposium on Theory of Computing, ACM, New York, 2009, pp. 169–178.
MR2780062←42

[13] C. Gentry and M. Szydlo, Cryptanalysis of the revised NTRU signature scheme, Advances in
cryptology—EUROCRYPT 2002 (Amsterdam), Lecture Notes in Comput. Sci., vol. 2332, Springer,
Berlin, 2002, pp. 299–320. MR1975541←54

[14] O. Goldreich, S. Goldwasser, and S. Halevi, Public-key cryptosystems from lattice reduction problems,
Advances in cryptology—CRYPTO ’97 (Santa Barbara, CA, 1997), Lecture Notes in Comput. Sci.,
vol. 1294, Springer, Berlin, 1997, pp. 112–131, DOI 10.1007/BFb0052231. MR1630399←41, 42

[15] F. Göpfert, Securely Instantiating Cryptographic Schemes Based on the Learning with Errors Assumption,
2016. Thesis (Ph.D.)–Technische Universität Darmstadt.←24

[16] P. M. Gruber and C. G. Lekkerkerker, Geometry of numbers, 2nd ed., North-Holland Mathematical
Library, vol. 37, North-Holland Publishing Co., Amsterdam, 1987. MR893813←9

[17] J. Hoffstein, B. S Kaliski Jr, D. B. Lieman, M. J. B. Robshaw, and Y. L. Yin, Secure user identification
based on constrained polynomials, Filed October 1997, Issued June 2000. US Patent 6,076,163.←65

[18] J. Hoffstein, D. Lieman, and J. H. Silverman, Polynomial rings and efficient public key authentication,
International Workshop on Cryptographic Techniques and E-Commerce (CrypTEC ‘89) (Hong
Kong, 1989).←65

[19] J. Hoffstein, J. Pipher, and J. H. Silverman, NTRU: a ring-based public key cryptosystem, Algorithmic
number theory (Portland, OR, 1998), Lecture Notes in Comput. Sci., vol. 1423, Springer, Berlin,
1998, pp. 267–288, DOI 10.1007/BFb0054868. MR1726077←41

[20] J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, and W. Whyte, Transcript secure signatures
based on modular lattices, Post-quantum cryptography, Lecture Notes in Comput. Sci., vol. 8772,
Springer, Cham, 2014, pp. 142–159. MR3278400←54, 56

[21] J. Hoffstein and J. H. Silverman, Polynomial rings and efficient public key authentication. II, Cryp-
tography and computational number theory (Singapore, 1999), Progr. Comput. Sci. Appl. Logic,
vol. 20, Birkhäuser, Basel, 2001, pp. 269–286. MR1944732←65

[22] J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, and W. Whyte, Practical signatures from
the partial Fourier recovery problem, Applied cryptography and network security, Lecture Notes in
Comput. Sci., vol. 8479, Springer, Cham, 2014, pp. 476–493. MR3219007←56, 65

[23] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, Factoring polynomials with rational coefficients, Math.
Ann. 261 (1982), no. 4, 515–534, DOI 10.1007/BF01457454. MR682664←9, 20

http://www.ams.org/mathscinet-getitem?mr=MR3747701
http://www.ams.org/mathscinet-getitem?mr=MR1512555
http://www.ams.org/mathscinet-getitem?mr=MR1434478
http://www.ams.org/mathscinet-getitem?mr=MR2934994
http://www.ams.org/mathscinet-getitem?mr=MR1662447
http://www.ams.org/mathscinet-getitem?mr=MR437208
http://www.ams.org/mathscinet-getitem?mr=MR3126416
http://www.ams.org/mathscinet-getitem?mr=MR1895433
http://www.ams.org/mathscinet-getitem?mr=MR2780062
http://www.ams.org/mathscinet-getitem?mr=MR1975541
http://www.ams.org/mathscinet-getitem?mr=MR1630399
http://www.ams.org/mathscinet-getitem?mr=MR893813
http://www.ams.org/mathscinet-getitem?mr=MR1726077
http://www.ams.org/mathscinet-getitem?mr=MR3278400
http://www.ams.org/mathscinet-getitem?mr=MR1944732
http://www.ams.org/mathscinet-getitem?mr=MR3219007
http://www.ams.org/mathscinet-getitem?mr=MR682664

70 References

[24] V. Lyubashevsky, Lattice-based identification schemes secure under active attacks, Public key
cryptography—PKC 2008, Lecture Notes in Comput. Sci., vol. 4939, Springer, Berlin, 2008,
pp. 162–179. MR2570228←55

[25] V. Lyubashevsky, Fiat-Shamir with aborts: applications to lattice and factoring-based signatures, Ad-
vances in cryptology—ASIACRYPT 2009, Lecture Notes in Comput. Sci., vol. 5912, Springer,
Berlin, 2009, pp. 598–616. MR2593089←55

[26] P. Q. Nguyen and O. Regev, Learning a parallelepiped: cryptanalysis of GGH and NTRU signatures, J.
Cryptology 22 (2009), no. 2, 139–160. MR2496387←54

[27] P. Q. Nguyen and O. Regev, Learning a parallelepiped: cryptanalysis of GGH and NTRU signatures,
Advances in cryptology—EUROCRYPT 2006, Lecture Notes in Comput. Sci., vol. 4004, Springer,
Berlin, 2006, pp. 271–288. MR2423548←54

[28] P. Q Nguyen, Hermite’s constant and lattice algorithms, The LLL algorithm, 2010, pp. 19–69.
MR2722178←22

[29] P. Q. Nguyen and B. Vallée (eds.), The LLL algorithm, Information Security and Cryptography,
Springer-Verlag, Berlin, 2010. Survey and applications. MR2722178←

[30] W. M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics, vol. 785, Springer,
Berlin, 1980. MR568710←9

[31] C. P. Schnorr, Lattice reduction by random sampling and birthday methods, STACS 2003, Lecture Notes
in Comput. Sci., vol. 2607, Springer, Berlin, 2003, pp. 145–156. MR2066588←22

[32] C.-P. Schnorr and M. Euchner, Lattice basis reduction: improved practical algorithms and solving subset
sum problems, Math. Programming 66 (1994), no. 2, Ser. A, 181–199, DOI 10.1007/BF01581144.
MR1297061←22

[33] C.-P. Schnorr and M. Euchner, Lattice basis reduction: improved practical algorithms and solving subset
sum problems, Fundamentals of computation theory (Gosen, 1991), Lecture Notes in Comput. Sci.,
vol. 529, Springer, Berlin, 1991, pp. 68–85. MR1136071←22

[34] C. L. Siegel, Lectures on the geometry of numbers, Springer-Verlag, Berlin, 1989. Notes by B. Fried-
man; Rewritten by Komaravolu Chandrasekharan with the assistance of Rudolf Suter; With a
preface by Chandrasekharan. MR1020761←9

[35] Y. Yu and L. Ducas, Second order statistical behavior of LLL and BKZ, Selected areas in
cryptography—SAC 2017, Lecture Notes in Comput. Sci., vol. 10719, Springer, Cham, 2018, pp. 3–
22. MR3775576←22

Department of Mathematics, Box 1917, Brown University, Providence, RI 02912 USA
Email address: joseph silverman@brown.edu

http://www.ams.org/mathscinet-getitem?mr=MR2570228
http://www.ams.org/mathscinet-getitem?mr=MR2593089
http://www.ams.org/mathscinet-getitem?mr=MR2496387
http://www.ams.org/mathscinet-getitem?mr=MR2423548
http://www.ams.org/mathscinet-getitem?mr=MR2722178
http://www.ams.org/mathscinet-getitem?mr=MR2722178
http://www.ams.org/mathscinet-getitem?mr=MR568710
http://www.ams.org/mathscinet-getitem?mr=MR2066588
http://www.ams.org/mathscinet-getitem?mr=MR1297061
http://www.ams.org/mathscinet-getitem?mr=MR1136071
http://www.ams.org/mathscinet-getitem?mr=MR1020761
http://www.ams.org/mathscinet-getitem?mr=MR3775576

	Lattices and Hard Lattice Problems
	Lattices: Definitions, Notation, and Basic Properties.
	Hard Lattice Problems.
	Using a Basis to Try to Solve the CVP: Babai's Algorithm.
	How to Distinguish Good Bases from Bad Bases.
	Theory and Practice and a Smidgeon of History.
	The Gaussian Heuristic.
	Fundamental Domains: The Good, the Bad, and the Voronoi.
	Exercises for Lecture 1.

	Lattice Reduction
	Introduction.
	Lattice Reduction in Dimension 2.
	The Size, Quasi-Orthogonality, and Lovász Conditions.
	The Basic LLL Algorithm.
	Variants and Improvements to LLL.
	LLL Bases Are Nice: Proof Sketch.
	LLL Runs in Polynomial Time: Proof Sketch.
	Exercises for Lecture 2.

	Public Key Cryptography 101
	Cryptography in the (pre-1970s) Dark Ages.
	Public Key Cryptography to the Rescue.
	A Mathematical Formulation.
	A Menagerie of Functions that are Ostensibly Hard to Invert.
	From Trapdoor Functions to Public Key Cryptosystems.
	Digital Signatures.
	Cryptographically Secure Hash Functions.
	Random Numbers in Cryptography.
	How Hard are Hard Problems?
	Quantum Computers and Cryptography.
	Code Makers Versus Code Breakers, Or, Cryptanalysts Are Very Clever!
	Exercises for Lecture 3.

	Lattice-Based Public Key Cryptosystems
	Early Days and the Ajtai-Dwork Lattice-Based Cryptosystem.
	The GGH Public Key Cryptosystem.
	GGH versus LLL: A Battle for Supremacy!
	Convolution Products and Polynomial Quotient Rings.
	NTRUEncrypt: The NTRU Public Key Cryptosystem.
	NTRU and Lattice Problems.
	Recovering an NTRU Private Key via an SVP Problem.
	Recovering an NTRU Plaintext via a CVP Problem.
	NTRU Operating Characteristics and Variants.
	Exercises for Lecture 4.

	Lattice-Based Digital Signatures and Rejection Sampling
	Digital Signatures.
	CVP Digital Signatures — GGH.
	Security of GGH and other CVP-based Digital Signatures.
	A Transcript Attack on the GGH Digital Signature Scheme.
	Rejection Sampling to the Rescue.
	Transcript Security — At A Cost.
	An Example of a Lattice Recovery Problem and Rejection Sampling
	Exercises for Lecture 5.

