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The proposed lecture minicourse of 3 lectures is devoted to the

alternative constructions of weak solutions of the Euler equations.

The existing, most successful constructions provide the full solution

of the problem posed by Onsager: prove that for any α < 1
3 there

exists a weak solution u(x, t) ∈ Cα of 3-d Euler equations such

that its kinetic energy E = 1
2||u||

2
L2

decreases, i.e. there is energy

dissipation in absense of a true (molecular) viscosity. However,

the solutions constructed are excessively ”flexible”: the energy can

not only decrease, but also it can increase, and moreover, it can

be made equal to any prescribed nonnegative function e(t). In

particular, it is possible to construct such solution starting from

zero (the Scheffer’s phenomenon in Cα). This can be related to

the fact that the constructed weak solutions are time-reversible, i.e.

if u(x, t) is such solution, then −u(x,−t) is a solution, too. It

appears that this is a common feature of all solutions obtained by

the convex integration.

This makes it necessary to consider alternative approaches to

construction of dissipative weak solutions which take into account
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more ”physical” aspects of the problem. In the proposed lectures

I’d like to describe several new ideas in this direction. They all are

based on some generalizations of the classical concepts of mechan-

ics like the configuration space, the variational principle, and the

D’Alembert Principle.

Here is a more detailed description of the proposed topics.

1. Variational method. Let A,B be two fluid configura-

tions, defined by diffeomorphisms f, g ∈ SDiff (M) where M is a

bounded 2-d domain, or a compact Riemannian surface. Consider

the following problem: find a path ht ∈ SDiff (M) connecting f

and g such that its L2-action
∫ 1

0 ||ht||
2
L2
dt were minimal among all

the paths connecting f and g. Classical solution of this problem

generally does not exist; however, there exists a weak Lagrangian

solution. This solution is a Generalized Flow (GF) in the sense of

Brenier; however, it possesses a meaningful velocity field which is

a weak solution of 2-d Euler equations. The key to this result is a

careful topological analysis of the GFs which are regarded as con-

tinual analogue of braids. Further development of this theory yields

a construction of a weak solution of constant energy which weakly

tends to zero as t → t0 which is a new example of the Scheffer’s

effect, since it can be continued by zero past t = t0, and form a

weak solution with decreasing energy (in this case in a jump). This

approach also provides a new insight in two recent breakthroughs:

construction of a stationary (time-independent) weak solution with

compact support, and construction of a weak solution in a bounded

domain with arbitrarily knotted flow lines.

2. Variational construction of weak solution in 3-d

using the extended configuration space. In the classical
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mechanics there is no way to extend the Least Action Principle to

the dissipative processes like inelastic collision of material particles.

However, it is possible to restore this possibility by adding some

new, ”invisible” degrees of freedom where a part of the energy can

escape. The extended configuration space has a highly nonlinear

and nonsmooth structure; it is a sort of ”building” B, a collection

of planes in a higher-dimensional Euclidean space joined together

along their intersection. The Least Action Principle now applies

if we put A and B, the initial and the final points of the shortest

path, on the building B, and then consider its projection on the

physical space. We get the evolution of a system of sticky particles

in the Euclidean space.

This approach can be applied to the variational description of a

Generalized Flow with sticky particles, so that the energy is dissi-

pated upon their collision. I construct the corresponding extended

configuration space, the ”building” B. The flow construction re-

quires method in the spirit of convex integration; the resulting weak

solution with monotone decreasing energy looks a more realistic

model of strong turbulence.

3. Turbulent flow as a motion on a rough surface

and the D’Alembert Principle. Let M be a bounded do-

main in Rn, and D = SDiff (M) the group of volume-preserving

diffeomorphisms of M . There is a natural embedding of D into the

Euclidean space X = L2(M,Rn) which is an isometry (w.r.t. the

L2 metric on M); in what follows we regard D as embedded in X .

The classical Euler equations can be formally regarded as the mo-

tion equation of a material point along the ”surface” D following

the D’Alembert Principle: the acceleration at every point of the

particle trajectory is orthogonal to the tanvent space to D at the
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point.

However, the ”surface” D is far from a smooth surface; in fact,

it is pretty rough. Its degree of roughness is comparable with the

graph of a function φ ∈ Cα where α ≈ 2
7. Thus, we are forced to

study the motion of a material point on a rough surface. It should

be noted that at every point f ∈ D of the ”surface” D there exists a

substitute of a tangent plane, Yf ; these planes form a (non-smooth

and non-integrable) distribution on D. So, we have to define the

motion ft of a material point along a nonsmooth surface D, subject

to the nonsmooth and nonholonomic constraint ḟt ∈ Yft. This

problem is solved using the tools of Nonstandard Analysis. I’m

going to sketch the construction.

It should be said that the energy loss in the turbulent flows is

associated with the nonsmoothness of the flow (the dissipation rate

is defined by the Duchon-Robert function which is zero for regular

flows). However, the true cause of dissipation is the nonsmoothness

of the underlying configuration space D! Hence, this effect can be

observed in much simpler cases of condtrained mechanical systems

with nonsmooth constraints. And in fact, I have found 1-dimensinal

systems, namely the motion on some nonsmooth curves in the plane

where this effect is present. These are the curves such that the angle

formed by the tangent vector and the x-axis, as a function of the

length parameter, is (a typical realization of) the Wiener process.

I’ll try to tell as much as possible of the things sketched above.
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