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Abstract

Let us fix a prime p and a homogeneous system of m linear equations aj,1x1 + · · · + aj,kxk = 0 for
j = 1, . . . ,m with coefficients aj,i ∈ Fp. Suppose that k ≥ 3m, that aj,1 + · · ·+ aj,k = 0 for j = 1, . . . ,m
and that every m × m minor of the m × k matrix (aj,i)j,i is non-singular. Then we prove that for any
(large) n, any subset A ⊆ F

n
p of size |A| > C · Γn contains a solution (x1, . . . , xk) ∈ Ak to the given

system of equations such that the vectors x1, . . . , xk ∈ A are all distinct. Here, C and Γ are constants
only depending on p, m and k such that Γ < p.

The crucial point here is the condition for the vectors x1, . . . , xk in the solution (x1, . . . , xk) ∈ Ak to be
distinct. If we relax this condition and only demand that x1, . . . , xk are not all equal, then the statement
would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition
is much harder, and requires a new approach. While all previous combinatorial applications of the slice
rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument
for a non-diagonal tensor in combination with combinatorial and probabilistic arguments.

1 Introduction

Given a linear system of equations with coefficients in Fp for some fixed prime p, what is the largest size of a
subset A ⊆ F

n
p which does not contain a (non-trivial) solution to the given linear system of equations? This

is a fundamental question in additive combinatorics, and it can be viewed as the finite field analog of similar
questions for subsets A ⊆ {1, . . . , N} whose history dates back many decades (see e.g. [8, 14]). For example,
a k-term arithmetic progression can be described by a system of k − 2 linear equations (with k variables),
and bounding the largest possible size of a k-term-progression-free subset in F

n
p is an intensively studied and

still wide open problem [1, 4, 5, 6, 10, 11, 12, 16, 17].

Let us from now on fix a prime p and consider a linear system of m equations in k variables of the form

a1,1x1 + · · ·+ a1,kxk = 0

... (⋆)

am,1x1 + · · ·+ am,kxk = 0

with coefficients aj,i ∈ Fp for j = 1, . . . ,m and i = 1, . . . , k. For large n, we are interested in the largest
possible size of a subset A ⊆ F

n
p such that there is no (non-trivial) solution (x1, . . . , xk) ∈ Ak to (⋆).

If we have aj,1 + · · ·+ aj,k 6= 0 for some j ∈ {1, . . . ,m} (i.e. if for one of the m equations the coefficients do
not sum up to zero), then it is easy to see that there exists a subset A ⊆ F

n
p of size pn−1 = (1/p) · pn such

that the system (⋆) does not have any solutions (x1, . . . , xk) ∈ Ak (indeed, we can take A to be the set of all
vectors in F

n
p whose first coordinate is 1). For fixed p, this means that up to constant factors A can be as
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large as the entire space F
n
p . However, the problem becomes much more interesting when aj,1+ · · ·+ aj,k = 0

for j = 1, . . . ,m.

So let us from now on assume that aj,1 + · · · + aj,k = 0 for j = 1, . . . ,m. Note that then (x . . . , x) is a
solution to the system (⋆) for every x ∈ A. However, we can ask for the largest size of a subset A ⊆ F

n
p

without a solution (x1, . . . , xk) ∈ Ak to (⋆) where x1, . . . , xk are not all equal. It is a highly non-trivial result
to show that we must have |A| = o(pn) as n → ∞ (this can for example be deduced from [15, Theorem 1] or
[26, Theorem 2.2], both of which rely on deep results on hypergraph regularity, and the actual quantitative
bounds obtained this way are very poor).

Building upon a breakthrough of Ellenberg and Gijswijt [5] on bounding the size of 3-term-progression-free
subsets of Fn

p as well as on prior work of Croot, Lev, and Pach [3], Tao [27] introduced a new polynomial
method, which is now called the slice rank polynomial method. This method immediately gives much stronger
upper bounds on the size of A in the question above if we assume that the number k of variables in the system
(⋆) is sufficiently large with respect to the number m of equations. In fact, assuming that k ≥ 2m+1, one can
prove that the size of A needs to be exponentially smaller than pn if there is no solution (x1, . . . , xk) ∈ Ak

to (⋆) where x1, . . . , xk are not all equal.

Theorem 1.1 (Tao). For any fixed integers m ≥ 1 and k ≥ 2m + 1 and a fixed prime p, there exists a
constant 1 ≤ Γp,m,k < p such that the following holds: For any coefficients aj,i ∈ Fp for j = 1, . . . ,m and
i = 1, . . . , k with aj,1 + · · ·+ aj,k = 0 for j = 1, . . . ,m, for any non-negative integer n and any subset A ⊆ F

n
p

of size |A| > (Γp,m,k)
n, the system (⋆) has a solution (x1, . . . , xk) ∈ Ak such that the vectors x1, . . . , xk ∈ A

are not all equal.

As mentioned above, Theorem 1.1 follows immediately from Tao’s slice rank polynomial method [27]. For
the reader’s convenience we will present the proof in Section 3.

Recall that our original question was to bound the size of a subset A ⊆ F
n
p which does not contain a non-

trivial solution to the system (⋆). Obviously, it needs to be specified what we mean by “non-trivial” here. If a
solution (x1, . . . , xk) ∈ Ak is considered non-trivial as soon as x1, . . . , xk ∈ A are not all equal, then Theorem
1.1 provides a strong bound for |A| as long as k ≥ 2m + 1. However, there are also several other notions
of “non-trivial” solutions to a linear equation or a system of linear equations (see for example Ruzsa’s work
[22, 23]), and a particularly natural such notion is to demand for a “non-trivial” solution (x1, . . . , xk) ∈ Ak

to consist of distinct x1, . . . , xk.

In the integer setting, the problem of bounding the largest size of a subset A ⊆ {1, . . . , N} with no solution
(x1, . . . , xk) ∈ Ak to a given linear system of equations where x1, . . . , xk are distinct has already been
considered almost fifty years ago [14]. Here, we consider the same problem in the setting of Fn

p , i.e. we are

asking for the largest size of a subset A ⊆ F
n
p which does not contain a solution (x1, . . . , xk) ∈ Ak to (⋆) with

distinct x1, . . . , xk.

Similar to Theorem 1.1 above, our main result states that if the number k of variables in the system (⋆) is
sufficiently large with respect to the number m of equations and if the system (⋆) is reasonably generic, then
the size of A must be exponentially smaller than pn.

Theorem 1.2. For any fixed integers m ≥ 1 and k ≥ 3m and a fixed prime p, there exist constants Cp,m,k ≥ 1
and 1 ≤ Γ∗

p,m,k < p such that the following holds: Let aj,i ∈ Fp for j = 1, . . . ,m and i = 1, . . . , k be coefficients
with aj,1 + · · ·+ aj,k = 0 for j = 1, . . . ,m such that every m×m minor of the m× k matrix (aj,i)j,i is non-
singular. Then for any non-negative integer n and any subset A ⊆ F

n
p of size |A| > Cp,m,k · (Γ∗

p,m,k)
n, the

system (⋆) has a solution (x1, . . . , xk) ∈ Ak such that the vectors x1, . . . , xk ∈ A are all distinct.

While it may seem at first that it should not make much of a difference whether one demands x1, . . . , xk ∈ A
to be distinct or to be not all equal, it is in fact much more difficult to prove the existence of a solution
(x1, . . . , xk) ∈ Ak with distinct x1, . . . , xk as in Theorem 1.2. In fact, in some cases demanding such a distinct
solution can require qualitatively different bounds for the size of A (see Theorems 2 and 4 in [19], and see also
Theorems 3.2 and 3.3 in [22]). The slice rank polynomial method argument proving Theorem 1.1 completely
breaks down when requiring x1, . . . , xk to be distinct, and new ideas are required in order to prove Theorem
1.2. In particular, our proof uses a variant of the slice rank polynomial method that has not appeared in
combinatorial applications before.
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The problem of bounding the size of a subset of A ⊆ F
n
p not containing a solution with distinct variables to

a given linear equation or system of linear equations has been studied by various authors in the past. In the
case of the single equation x1+ · · ·+xp = 0, which is very closely related to the Erdős-Ginzburg-Ziv problem
in discrete geometry, Naslund [21] proved a bound of the form |A| ≤ Cp ·(Γp)

n for some Γp between 0.84p and
0.92p (the constant Cp was later improved in [9]). The best current bound in this case is |A| ≤ Cp · (2√p)n

due to the author [24].

In the case of a general single linear equation a1x1 + · · · + akxk = 0 with a1 + · · · + ak = 0 (i.e. in the
case of m = 1), Theorem 1.2 has been proved by Mimura and Tokushige [20, Theorem 1], and this case also
follows from [24, Theorem 5.1] with significantly better bounds for Γ∗

p,1,k. Different specfic examples of linear
systems of multiple equations have been considered in [18, 19, 20], but Theorem 1.2 is the first relatively
general result for systems of multiple equations.

It is worth noting that one cannot hope to remove the assumption in Theorem 1.2 on the non-singularity
of the m × m minors of the matrix (aj,i)j,i. Indeed, suppose that the equation x1 − x2 = 0 was part of
the system (⋆) or could be obtained as a linear combination of the equations in (⋆). Then clearly (⋆) does
not have any solutions (x1, . . . , xk) with distinct x1, . . . , xk. It may potentially be possible to weaken the
non-singularity assumption in a way that excludes such situations (see also the discussion in Section 5), but
this example shows that some assumption is necessary.

The proof of Theorem 1.2 relies on probabilistic subspace sampling arguments and combinatorial ideas, as
well as on a new way to apply the slice rank polynomial method. A key step for proving Theorem 1.2 will
be to show the following theorem.

Theorem 1.3. For any fixed integers m ≥ 1, r ≥ 2 and k ≥ 2m + r − 1 and a fixed prime p, there exist
constants Crank

p,m,k,r ≥ 1 and 1 ≤ Γrank

p,m,k,r < p such that the following holds: For any coefficients aj,i ∈ Fp for
j = 1, . . . ,m and i = 1, . . . , k with aj,1+· · ·+aj,k = 0 for j = 1, . . . ,m, for any non-negative integer n and any
subset A ⊆ F

n
p of size |A| > Crank

p,m,k,r ·(Γrank

p,m,k,r)
n, the system (⋆) has a solution (x1, . . . , xk) ∈ Ak such that the

subspace span(x1, . . . , xk) ⊆ F
n
p spanned by the vectors x1, . . . , xk has dimension dim span(x1, . . . , xk) ≥ r.

Theorem 1.3 can be viewed as a “high-rank” generalization of Tao’s slice rank method result in Theorem 1.1
(where one wants to find a solution (x1, . . . , xk) ∈ Ak of high rank). Indeed, taking r = 2 in Theorem 1.3
implies Theorem 1.1. Also note that unlike in Theorem 1.2, in Theorem 1.3 we do not require any genericity
assumption on the matrix (aj,i)j,i.

Organization. In the next section we will deduce Theorem 1.2 from Theorem 1.3. Section 3 contains some
background on the slice rank polynomial method (including a proof of Theorem 1.1), and discusses the new
way in which it will be used in the proof of Theorem 1.3. The proof of Theorem 1.3 is in Section 4. We finish
with some concluding remarks in Section 5.

Notation. As usual, we write [k] = {1, . . . , k}. For a subset I ⊆ [k], an I-tuple of vectors in F
n
p is a tuple

(xi | i ∈ I) indexed by the set I (with xi ∈ F
n
p for all i ∈ I). For example, a [k]-tuple is simply a k-tuple

(x1, . . . , xk) and a {1, 2, 4}-tuple is a tuple (x1, x2, x4).

For a vector space V and a subspace U , we can consider the quotient space V/U . We denote the projection
of a vector x ∈ V onto this quotient space by projV/U (x). Note that projV/U (x) is a vector in V/U and it is
non-zero if and only if x 6∈ U .

2 Proof of Theorem 1.2 assuming Theorem 1.3

We deduce Theorem 1.2 from Theorem 1.3 using an inductive argument. More precisely, we will show the
following theorem by induction on ℓ (where the base case ℓ = m+1 will be obtained from Theorem 1.3, and
the final case ℓ = k will give the desired statement in Theorem 1.2).

Theorem 2.1. For any fixed integers m ≥ 1 and k ≥ 3m and m + 1 ≤ ℓ ≤ k as well as a fixed prime p,
there exist constants C ≥ 1 and 0 < c ≤ 1 such that the following holds: Let aj,i ∈ Fp for j = 1, . . . ,m and
i = 1, . . . , k be coefficients with aj,1 + · · · + aj,k = 0 for j = 1, . . . ,m such that every m × m minor of the
m × k matrix (aj,i)j,i is non-singular. Then for any non-negative integer n and any subset A ⊆ F

n
p of size

|A| > C · p(1−c)n, the system (⋆) has a solution (x1, . . . , xk) ∈ Ak such that dim span(x1, . . . , xk) ≥ m + 1
and such that among x1, . . . , xk ∈ A there are at least ℓ distinct vectors.
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Note that Theorem 1.2 follows from Theorem 2.1 for ℓ = k. Indeed, taking Cp,m,k = C and Γ∗
p,m,k = p1−c < p

(for the constants C and c obtained in Theorem 2.1 for ℓ = k), we can see that every subset A ⊆ F
n
p of size

|A| > Cp,m,k · (Γ∗
p,m,k)

n = C ·p(1−c)n contains a solution (x1, . . . , xk) ∈ Ak to the system (⋆) such that among
x1, . . . , xk ∈ A there are at least k distinct vectors (meaning that the vectors x1, . . . , xk ∈ A are all distinct).

In the proof of Theorem 2.1 we will use a probabilistic subspace sampling argument. This will require the
following easy lemma.

Lemma 2.2. Let n > 0 and 0 ≤ d ≤ n be integers, and let y1, . . . , ys ∈ F
n
p be linearly independent vectors in

F
n
p . Then for a uniformly random d-dimensional subspace V ⊆ F

n
p , we have

P[y1, . . . , ys ∈ V ] =
pd − 1

pn − 1
· p

d − p

pn − p
· · · p

d − ps−1

pn − ps−1
≤

(

pd

pn

)s

Proof. Let us first check the inequality between the term in the middle and the term on the right-hand side.
If s > d, then the middle term is zero and therefore the inequality is true. If s ≤ d, then the s factors of the
middle term are all positive and each of them is at most (pd − 1)/(pn − 1) ≤ pd/pn, which also implies the
inequality.

Let us now prove by induction on s that the probability on the left-hand side equals the term in the middle.
For the base case s = 1, note that y1 6= 0 and that each of the pn − 1 non-zero vectors in F

n
p is equally

likely to be contained in V . Since V always contains exactly pd − 1 non-zero vectors, we can conclude that
P[y1 ∈ V ] = (pd − 1)/(pn − 1) as desired.

Now suppose that s ≥ 2 and that we have already proved

P[y1, . . . , ys−1 ∈ V ] =
pd − 1

pn − 1
· p

d − p

pn − p
· · · p

d − ps−2

pn − ps−2
.

Then it suffices to show that P[ys ∈ V | y1, . . . , ys−1 ∈ V ] = (pd − ps−1)/(pn − ps−1). Note that by the
assumption on y1, . . . , ys being linearly independent, the vector ys does not lie in the span of y1, . . . , ys−1.
Furthermore, this span is (s− 1)-dimensional and therefore consists of exactly ps−1 vectors. Hence there are
exactly pn − ps−1 vectors outside span(y1, . . . , ys) and each of these vectors is equally likely to be contained
in V when conditioning on the event y1, . . . , ys−1 ∈ V . Since under this conditioning, V always contains
exactly pd − ps−1 vectors outside span(y1, . . . , ys), we can conclude that P[ys ∈ V | y1, . . . , ys−1 ∈ V ] =
(pd − ps−1)/(pn − ps−1) as desired.

Let us now prove Theorem 2.1 by induction on ℓ, assuming that Theorem 1.3 is true.

Proof of Theorem 2.1. The base case ℓ = m+ 1 follows easily from Theorem 1.3 for r = m + 1. Indeed, we
have k ≥ 3m = 2m + r − 1, so there are constants Crank

p,m,k,m+1 ≥ 1 and 1 ≤ Γrank

p,m,k,m+1 < p such that the

statement in Theorem 1.3 holds. Now, let C = Crank

p,m,k,m+1 and let 0 < c ≤ 1 be such that p1−c = Γrank

p,m,k,m+1.

Then for any subset any subset A ⊆ F
n
p of size |A| > C · p(1−c)n = Crank

p,m,k,m+1 · (Γrank

p,m,k,m+1)
n, the system

(⋆) has a solution (x1, . . . , xk) ∈ Ak such that dim span(x1, . . . , xk) ≥ m + 1. Note that the condition
dim span(x1, . . . , xk) ≥ m + 1 automatically implies that there must be at least ℓ = m + 1 distinct vectors
among x1, . . . , xk. This proves Theorem 2.1 for ℓ = m+ 1.

Now let us assume that m + 2 ≤ ℓ ≤ k and that Theorem 2.1 holds for ℓ − 1 with constants C′ ≥ 1 and
0 < c′ ≤ 1. We will prove that then Theorem 2.1 also holds for ℓ. Let us take

c =
1

(m/c′) + 1

and note that

1− (m+ 1)c =
(m/c′) + 1− (m+ 1)

(m/c′) + 1
= m · (1/c′)− 1

(m/c′) + 1
= (1− c′) · (m/c′)

(m/c′) + 1
= (1− c′)(1 − c). (2.1)

Our goal is to show that the statement in Theorem 2.1 holds for some constant C ≥ 1 only depending on
m, k, ℓ and p. By making the constant C sufficiently large we may assume that n ≥ m/(1 − c). We may
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furthermore assume that 0 6∈ A (otherwise we can delete the zero-vector from A and account for that by
increasing the constant C by 1).

Hence it suffices to prove that for any n ≥ m/(1−c) and any subset A ⊆ F
n
p of size |A| > 2p(C′+k22k)·p(1−c)n

with 0 6∈ A, the system (⋆) has a solution (x1, . . . , xk) ∈ Ak satisfying the conditions in Theorem 2.1.

So let us assume for contradiction that n ≥ m/(1− c) and that A ⊆ F
n
p is a subset of size

|A| > 2p(C′ + k22k) · p(1−c)n

with 0 6∈ A, in which we cannot find a solution (x1, . . . , xk) ∈ Ak to the system (⋆) with dim span(x1, . . . , xk) ≥
m+ 1 and such that among x1, . . . , xk ∈ A there are at least ℓ distinct vectors.

The following definition of an I-interesting I-tuple plays a crucial role for the proof. Roughly speaking, our
strategy will be to sample a random subspace V ⊆ F

n
p of a suitably chosen dimension and to find a fairly

large subset A∗ ⊆ A ∩ V which does not contain any I-interesting I-tuple. On the other hand, given that
A∗ ⊆ V is a large subset of the vector space V , by the induction hypothesis for ℓ − 1, the set A∗ needs
to contain a solution (x1, . . . , xk) ∈ (A∗)k to the system (⋆) with dim span(x1, . . . , xk) ≥ m + 1 and such
that among x1, . . . , xk ∈ A there are at least ℓ − 1 distinct vectors. We will see that having such a solution
(x1, . . . , xk) ∈ (A∗)k will actually force the set A∗ to contain some I-interesting I-tuple. This contradiction
will finish the proof of the induction step.

Definition 2.3. For a subset I ⊆ [k] of size |I| = m + 1, let us say that an I-tuple (xi | i ∈ I) of vectors
xi ∈ A for i ∈ I is I-interesting if the vectors xi for i ∈ I are linearly independent and the I-tuple (xi | i ∈ I)
can be extended to a solution (x1, . . . , xk) ∈ Ak to the system (⋆) such that among the k−m− 1 vectors xj

for j ∈ [k] \ I there are at least ℓ−m− 1 distinct vectors.

The following claim states, roughly speaking, that every solution (x1, . . . , xk) ∈ Ak satisfying the conditions
in the induction hypothesis for ℓ− 1 must contain an I-interesting I-tuple.

Claim 2.4. Let (x1, . . . , xk) ∈ Ak be a solution to the system (⋆) with dim span(x1, . . . , xk) ≥ m + 1 and
such that among x1, . . . , xk ∈ A there are exactly ℓ− 1 distinct vectors. Then there is a subset I ⊆ [k] of size
|I| = m+ 1 such that the I-tuple (xi | i ∈ I) is I-interesting.

Proof. Since ℓ − 1 ≤ k − 1, at least one vector must be repeated among x1, . . . , xk. So let a, b ∈ [k]
be distinct indices such that xa = xb. Note that xa 6= 0 by our assumption that 0 6∈ A. Hence, since
dim span(x1, . . . , xk) ≥ m + 1, we can extend the single vector xa to a list of m + 1 linearly independent
vectors chosen among x1, . . . , xk. In other words, we can find a subset I ⊆ [k] of size |I| = m+ 1 with a ∈ I
such that the vectors xi for i ∈ I are linearly independent (and therefore in particular distinct). It now
suffices to check that among the k − m − 1 vectors xj for j ∈ [k] \ I there are at least ℓ − m − 1 distinct
vectors. Since xa = xb and the vectors xi for i ∈ I are distinct, we have b ∈ [k] \ I. Recall that among
x1, . . . , xk ∈ A there are exactly ℓ − 1 distinct vectors. When omitting the m + 1 vectors xi with i ∈ I, at
most m of these ℓ − 1 distinct vectors disappear (since the vector xa = xb remains even though it is deleted
once, and at most m other vectors get deleted). Hence there are indeed at least ℓ −m − 1 distinct vectors
among the vectors xj for j ∈ [k] \ I.

On the other hand, our assumption on the set A implies the following structural property for certain solutions
(x1, . . . , xk) ∈ Ak to (⋆) containing an I-interesting I-tuple.

Claim 2.5. Let I ⊆ [k] be a subset of size |I| = m + 1, and suppose that (x1, . . . , xk) ∈ Ak is a solution to
the system (⋆) such that the I-tuple (xi | i ∈ I) is I-interesting and such that there are at least ℓ − m − 1
distinct vectors among xj for j ∈ [k] \ I. Then at least one of the vectors xi for i ∈ I also occurs among the
vectors xj for j ∈ [k] \ I.

Proof. By Definition 2.3, the vectors xi for i ∈ I must be linearly independent (and therefore in particular
distinct). Now, dim span(x1, . . . , xk) ≥ dim span(xi | i ∈ I) = m + 1 and by our assumption on the set A
this means that there cannot be ℓ distinct vectors among x1, . . . , xk. Recall that there are at least ℓ−m− 1
distinct vectors among xj for j ∈ [k] \ I and exactly m+ 1 distinct vectors among xi for i ∈ I. If these two
lists of vectors were disjoint, then we would obtain at least ℓ distinct vectors among x1, . . . , xk. Hence some
vector must occur both among xi for i ∈ I and among xj for j ∈ [k] \ I.
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Using Claim 2.5, we can show the following upper bound on the number of I-interesting I-tuples for any
subset I. This bound will enable us to perform the desired subspace sampling argument, obtaining a subset
A∗ ⊆ A without any I-interesting I-tuples.

Lemma 2.6. For each subset I ⊆ [k] of size |I| = m + 1, there are at most k2 · pmn different I-interesting
I-tuples (xi | i ∈ I).

Proof. Let us fix a subset I ⊆ [k] of size |I| = m + 1. For each I-interesting I-tuples (xi | i ∈ I), let us
consider the sums

∑

i∈I at,ixi for t = 1, . . . ,m (in other words, we consider the contributions of the vectors
xi with i ∈ I to the left-hand sides of the equations in the system (⋆)). It suffices to prove that for any choice
of b1, . . . , bm ∈ F

n
p there can be at most k2 different I-interesting I-tuples (xi | i ∈ I) with

∑

i∈I at,ixi = bt
for t = 1, . . . ,m. Indeed, summing over all (pn)m = pmn choices for b1, . . . , bm would then give the desired
bound on the total number of I-interesting I-tuples.

So let us fix b1, . . . , bm ∈ F
n
p , and suppose that there are more than k2 different I-interesting I-tuples

(xi | i ∈ I) with
∑

i∈I at,ixi = bt for t = 1, . . . ,m. Let T be the set of all such I-interesting I-tuples
(xi | i ∈ I), then |T | > k2.

We claim that for any two distinct (xi | i ∈ I), (x′
i | i ∈ I) ∈ T we must have xh 6= x′

h for all h ∈ I. Suppose
that we had xh = x′

h for some h ∈ I. Note that then

∑

i∈I\{h}

at,ixi = bt − at,hxh = bt − at,hx
′
h =

∑

i∈I\{h}

at,ix
′
i

for t = 1, . . . ,m. However, the m×m matrix (at,i)t∈[m],i∈I\{h} is non-singular by the assumption in Theorem
2.1. Hence we can conclude that xi = x′

i for all i ∈ I \ {h} and hence (xi | i ∈ I) = (x′
i | i ∈ I), which is a

contradiction. So for any two distinct (xi | i ∈ I), (xi | i ∈ I) ∈ T we must indeed have xh 6= x′
h for all h ∈ I.

Next, we claim that we can find vectors xj ∈ A for j ∈ [k]\ I such that
∑

j∈[k]\I at,jxj = −bt for t = 1, . . . ,m

and such that there are at least ℓ − m − 1 distinct vectors among xj for j ∈ [k] \ I. Indeed, consider any
(xi | i ∈ I) ∈ T . By Definition 2.3 we can extend (xi | i ∈ I) to a solution (x1, . . . , xk) ∈ Ak to the system
(⋆) such that there are at least ℓ−m−1 distinct vectors among xj for j ∈ [k]\ I. Now, for every t = 1, . . . ,m
we have

∑

j∈[k]\I at,jxj = −∑

i∈I at,ixi = −bt, as desired.

So let us now fix a choice of vectors xj ∈ A for j ∈ [k]\ I such that
∑

j∈[k]\I at,jxj = −bt for t = 1, . . . ,m and

such that there are at least ℓ−m−1 distinct vectors among xj for j ∈ [k]\I. Then for every (xi | i ∈ I) ∈ T ,
the k-tuple (x1, . . . , xk) ∈ Ak satisfies

xt,1x1 + · · ·+ xt,kxk =
∑

i∈I

at,ixi +
∑

j∈[k]\I

at,jxj = bt + (−bt) = 0

for t = 1, . . . ,m. In other words, for every (xi | i ∈ I) ∈ T , the k-tuple (x1, . . . , xk) ∈ Ak is a solution to the
system (⋆). By Claim 2.5 this means that at least one of the vectors xi for i ∈ I must also occur among the
vectors xj for j ∈ [k] \ I. Hence for every (xi | i ∈ I) ∈ T one of the |I| = m+ 1 ≤ k vectors in the I-tuple
(xi | i ∈ I) must be one of the fixed k − |I| ≤ k vectors in the set {xj | j ∈ [k] \ I}. As |T | > k2, by the
pigeonhole principle this implies that there must be two distinct I-tuples (xi | i ∈ I), (x′

i | i ∈ I) ∈ T with
xh = x′

h for some index h ∈ I. But this is a contradiction to what we showed above. This completes the
proof of the lemma.

Now, let
d = ⌊(1− c)n/m⌋,

and note that d ≥ 1 by our assumption that n ≥ m/(1− c).

Let us consider a uniformly random d-dimensional subspace V ⊆ F
n
p . The following two claims give useful

bounds for the expected number of vectors in A∩ V and the expected number of I-interesting I-tuples in V .

Claim 2.7. E[|A ∩ V |] > (C′ + k22k) · p(1−(m+1)c)n/m.
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Proof. Recall that we assumed 0 6∈ A. So by Lemma 2.2 (applied with s = 1), for each vector x ∈ A we have

P[x ∈ V ] =
pd − 1

pn − 1
≥ pd/2

pn
≥ 1

2p
· p

(1−c)n/m

pn
.

Using |A| > 2p(C′ + k22k) · p(1−c)n, we obtain

E[|A ∩ V |] ≥ 1

2p
· p

(1−c)n/m

pn
· |A| > (C′ + k22k) · p((1−c)n/m)−cn = (C′ + k22k) · p(1−(m+1)c)n/m,

as desired.

Claim 2.8. For each subset I ⊆ [k] of size |I| = m + 1, the expected number of I-interesting I-tuples
(xi | i ∈ I) with xi ∈ V for all i ∈ I is at most k2 · p(1−(m+1)c)n/m.

Proof. Recall from Lemma 2.6 that the number of I-interesting I-tuples (xi | i ∈ I) is at most k2 · pmn. For
each of these tuples (xi | i ∈ I) the m+ 1 vectors xi with i ∈ I are linearly independent (see Definition 2.3),
so by Lemma 2.2 we have

P[xi ∈ V for all i ∈ I] ≤
(

pd

pn

)m+1

≤
(

p(1−c)n/m

pn

)m+1

.

Thus, all in all the expected number of I-interesting I-tuples (xi | i ∈ I) with xi ∈ V for all i ∈ I is at most

(

p(1−c)n/m

pn

)m+1

· k2 · pmn = k2 · p
(1−c)n(m+1)/m

pn
= k2 · p(1−(m+1)c)n/m,

as claimed

Let Z be the total number of I-interesting I-tuples (xi | i ∈ I) with xi ∈ V for all i ∈ I, summed over all
subsets I ⊆ [k] of size |I| = m + 1. Since there are only

(

k
m+1

)

≤ 2k choices for I, Claim 2.8 implies that

E[Z] ≤ 2k · k2 · p(1−(m+1)c)n/m. Hence together with Claim 2.7 we obtain

E[|A ∩ V | − Z] > (C′ + k22k) · p(1−(m+1)c)n/m − 2k · k2 · p(1−(m+1)c)n/m = C′ · p(1−(m+1)c)n/m.

Thus, for the rest of this proof, we can fix an outcome for the random d-dimensional subspace V ⊆ F
n
p for

which we have |A ∩ V | − Z > C′ · p(1−(m+1)c)n/m.

We can now define a subset A∗ ⊆ A ∩ V by deleting one vector from each I-interesting I-tuple (xi | i ∈ I)
with xi ∈ V for all i ∈ I (for all subsets I ⊆ [k] of size |I| = m+ 1). Then

|A∗| ≥ |A ∩ V | − Z > C′ · p(1−(m+1)c)n/m

and there do not exist any I-interesting I-tuples (xi | i ∈ I) with xi ∈ A∗ for all i ∈ I (for any I ⊆ [k] of size
|I| = m+ 1).

On the other hand, (2.1) yields

|A∗| > C′ · p(1−(m+1)c)n/m = C′ · p(1−c′)(1−c)n/m ≥ C′ · p(1−c′)d.

As V ∼= F
d
p, we can interpret A∗ ⊆ V as a subset of Fd

p of size |A∗| > C′ ·p(1−c′)d. By the induction hypothesis
(which states that Theorem 2.1 holds for ℓ − 1 with the constants C′ and c′), we can conclude that there
must be a solution (x1, . . . , xk) ∈ (A∗)k ⊆ Ak to the system (⋆) such that dim span(x1, . . . , xk) ≥ m+ 1 and
such that among x1, . . . , xk ∈ A there are at least ℓ− 1 distinct vectors. By our assumption on A, there must
be exactly ℓ− 1 distinct vectors among x1, . . . , xk ∈ A. But now Claim 2.4 implies that there exists a subset
I ⊆ [k] of size |I| = m+ 1 such that the I-tuple (xi | i ∈ I) is I-interesting. Since xi ∈ A∗ for all i ∈ I, this
is a contradiction. This finally finishes the proof of Theorem 2.1.
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3 Background on the slice rank polynomial method

In this section, we will give some background on Tao’s slice rank polynomial method, and explain the way
in which we will use it in the proof of Theorem 1.3. This involves utiizing a lemma due to Sawin and Tao
[25] (see Lemma 3.5 below), which gives lower bounds on the slice rank of non-diagonal tensors of a certain
form (see Corollary 3.6 below). This leads to Corollary 3.7 below, which will then be used as a black box in
the proof of Theorem 1.3.

Statements like Lemma 3.5 and Corollary 3.6 are hard to use in combinatorial applications, since in practice it
is often difficult to find a (non-diagonal) tensor with the particular structure required in these statements. In
fact, to the author’s knowledge, all previous combinatorial applications of the slice rank polynomial method
relied on diagonal tensors, meaning that this paper is the first to find a way to exploit the strength of Lemma
3.5 for non-diagonal tensors. Doing so requires a careful combinatorial setup and analysis, see Section 4.

Let us start by defining the notion of slice rank, which was introduced by Tao [27] in a blog post and later
given this name. In our setting it will be most convenient to think of k-dimensional tensors as functions
f : [L]k → F for some integer L ≥ 0 and some field F. By considering a vector space V over F with basis
v1, . . . , vL, one can identify such a function with the element

∑

ℓ1,...,ℓk∈[L] f(ℓ1, . . . , ℓk) vℓ1 ⊗ · · · ⊗ vℓk in the

k-fold tensor product V ⊗ · · · ⊗ V . Yet another way to think of such a function f : [L]k → F is to think of a
k-dimensional hypermatrix of size L× · · ·×L with entries in F. However, in our discussion we will formulate
everything just in terms of functions f : [L]k → F.

Definition 3.1 (Tao). Let L ≥ 1 and k ≥ 2 be integers, and let F be a field. A function f : [L]k → F has
slice rank 1, if it can be expressed in the form

f(ℓ1, . . . , ℓk) = g(ℓi) · h(ℓ1, . . . , ℓi−1, ℓi+1, . . . , ℓk)

for some i ∈ [k] and non-zero functions g : [L] → F and h : [L]k−1 → F. The slice rank of an arbitrary
function f : [L]k → F is defined to be the minimum number r such that f can be written as the sum of r
functions of slice rank 1.

In other words, a function f : [L]k → F is defined to have slice rank 1, if it can be written as the product of a
function depending on just one of the k variables and a function depending on the remaining k− 1 variables.
Note that this notion differs from the standard definition of the rank of a tensor, where a function of rank 1
it is required to be a product of k functions depending on one variable each. The slice rank of a function is
always at most as large as its rank according to the standard definition. Also note that the slice rank of any
function f : [L]k → F is at most L. Indeed, for each ℓ ∈ [L], we can take gℓ to be the indicator function of ℓ
and define hℓ(ℓ2, . . . , ℓk) = f(ℓ, ℓ2, . . . , ℓk). Then we have f(ℓ1, . . . , ℓk) =

∑

ℓ∈[L] gℓ(ℓi) · hℓ(ℓ2, . . . , ℓk), which

shows that f : [L]k → F has slice rank at most L.

Tao’s slice rank polynomial method [27] combines his notion of slice rank as in Definition 3.1 with an easy
but very powerful polynomial factoring argument. This argument first appeared in work of Croot, Lev, and
Pach [3] on subsets Z

n
4 without 3-term arithmetic progressions, and was then used again in Ellenberg and

Gijswijt’s breakthrough [5] on the cap-set problem bounding the size of 3-term-progression-free subsets of Fn
3

(and more generally F
n
p for any fixed p). On his blog, Tao [27] gave a reformulation of the proof of Ellenberg

and Gijswijt using the notion of the slice rank (which he introduced in this proof). His reformulation still
uses the same polynomial factoring argument that is also at the heart of the proofs of Ellenberg-Gijswijt and
of Croot-Lev-Pach in the Z

n
4 setting.

In our context of studying solutions to linear systems of equations, this polynomial factoring argument gives
the following lemma. For integers m ≥ 1 and k ≥ 2m+ 1 and a prime p, let us define

Γp,m,k = min
0<z≤1

1 + z + · · ·+ zp−1

z(p−1)m/k
< p. (3.1)

It is not hard to see that this minimum exists. Furthermore, at z = 1 the function on the left-hand size has
value p and positive derivative (since k ≥ 2m+ 1), which implies that indeed Γp,m,k < p. It is also easy to
see that Γp,m,k ≥ 1, so we have 1 ≤ Γp,m,k < p.
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Lemma 3.2 (Croot-Lev-Pach, Tao). Suppose we are given a linear system of equations with coefficients in
Fp and constant terms in F

n
p , consisting of m ≥ 1 equations in k ≥ 2m+ 1 variables. Then for any integer

L and any vectors x
(ℓ)
i ∈ F

n
p for i = 1, . . . , k and ℓ = 1, . . . , L, the function f : [L]k → Fp defined by

f(ℓ1, . . . , ℓk) =

{

1 if (x
(ℓ1)
1 , . . . , x

(ℓk)
k ) is a solution to the given system of equations

0 otherwise.

has slice rank at most k · (Γp,m,k)
n.

Proof. Let the given linear system of equations be of the form

a1,1x1 + · · ·+ a1,kxk = b1

...

am,1x1 + · · ·+ am,kxk = bm,

where aij ∈ Fp for j = 1, . . . ,m and i = 1, . . . , k and bj ∈ F
n
p for j = 1, . . . ,m. Furthermore, for any

vector x ∈ F
n
p , let us write x(1), . . . , x(n) for the coordinates of x (which are elements of Fp). In particular,

x
(ℓ)
i (1), . . . , x

(ℓ)
i (n) are the coordinates of x

(ℓ)
i ∈ F

n
p for i = 1, . . . , k and ℓ = 1, . . . , L and bj(1), . . . , bj(n) are

the coordinates of bj ∈ F
n
p for j = 1, . . . ,m.

Now, we claim that

f(ℓ1, . . . , ℓk) =

m
∏

j=1

n
∏

s=1

(

1− (aj,1x
(ℓ1)
1 (s) + · · ·+ aj,kx

(ℓk)
k (s)− bj(s))

p−1
)

(3.2)

for all ℓ1, . . . , ℓk ∈ [L]. Indeed, if ℓ1, . . . , ℓk ∈ [L] are such that (x
(ℓ1)
1 , . . . , x

(ℓk)
k ) is a solution to the system

of equations above, then we have aj,1x
(ℓ1)
1 + · · · + aj,kx

(ℓk)
k − bj = 0 for all j = 1, . . . ,m and consequently

aj,1x
(ℓ1)
1 (s) + · · ·+ aj,kx

(ℓk)
k (s)− bj(s) = 0 for all j = 1, . . . ,m and s = 1, . . . , n. This means that all factors

on the right-hand side of (3.2) are equal to 1, and therefore the product is indeed equal to f(ℓ1, . . . , ℓk) = 1.

In the other case, where (x
(ℓ1)
1 , . . . , x

(ℓk)
k ) is not a solution to the system of equations, there must be some

j ∈ {1, . . . ,m} and s ∈ {1, . . . , n} such that aj,1x
(ℓ1)
1 (s) + · · · + aj,kx

(ℓk)
k (s) − bj(s) 6= 0. But then we have

(aj,1x
(ℓ1)
1 (s)+ · · ·+aj,kx

(ℓk)
k (s)−bj(s))

p−1 = 1, and so the factor 1−(aj,1x
(ℓ1)
1 (s)+ · · ·+aj,kx

(ℓk)
k (s)−bj(s))

p−1

on the right-hand side of (3.2) is 0. Hence the entire product on the right-hand side is 0 and therefore equal
to f(ℓ1, . . . , ℓk) = 0. Thus, (3.2) is indeed true.

We can now use the polynomial representation of f in (3.2) to show the desired upper bound on the slice
rank of f . Note that the right-hand side of (3.2) is a polynomial of degree mn(p − 1) in the kn vari-

ables x
(ℓi)
i (1), . . . , x

(ℓi)
i (n) for i = 1, . . . , k. Let us imagine that we multiply out the product on the right-

hand side of (3.2). Then we can write f(ℓ1, . . . , ℓk) as a linear combination of monomials in the variables

x
(ℓi)
i (1), . . . , x

(ℓi)
i (n) for i = 1, . . . , k, where each monomial has degree at most mn(p− 1).

Since in Fp we have yp = y for all y ∈ Fp, we can replace each higher power (x
(ℓi)
i (s))d with d ≥ p by a power

(x
(ℓi)
i (s))d

′

with d′ ∈ {1, . . . , p − 1} (and d′ ≡ d mod p − 1). This way we can represent f(ℓ1, . . . , ℓk) as a

linear combination of monomials in the variables x
(ℓi)
i (1), . . . , x

(ℓi)
i (n) for i = 1, . . . , k, where each monomial

has degree at most mn(p− 1) and each individual variable appears with degree at most p− 1.

For each of the monomials in this representation the total degree is at most mn(p − 1), so there must be

some i ∈ [k] such that the monomial has degree at most mn(p − 1)/k in the variables x
(ℓi)
i (1), . . . , x

(ℓi)
i (n).

Hence each monomial is of the form

(x
(ℓi)
i (1))d1 · · · (x(ℓi)

i (n))dn · g(ℓ1, . . . , ℓi−1, ℓi+1, . . . , ℓk)

for some i ∈ [k], some d1, . . . , dn ∈ {0, . . . , p − 1} with d1 + · · · + dn ≤ mn(p − 1)/k and some function

g : [L]k−1 → Fp (where g is a monomial in the variables x
(ℓi′ )
i′ (1), . . . , x

(ℓi′ )
i′ (n) for i ∈ [k] \ {i}).
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By grouping together the monomials with the same i and the same d1, . . . , dn in the above representation,
we now obtain a representation of f(ℓ1, . . . , ℓk) as a sum of terms of the form

(x
(ℓi)
i (1))d1 · · · (x(ℓi)

i (n))dn · h(ℓ1, . . . , ℓi−1, ℓi+1, . . . , ℓk)

for some i ∈ [k], some d1, . . . , dn ∈ {0, . . . , p − 1} with d1 + · · · + dn ≤ mn(p − 1)/k and some function
h : [L]k−1 → Fp (here, the function h is obtained as a linear combination of the functions g that we
previously considered). Note that each such term is a slice rank 1 function. Hence the slice rank of f is at
most

k · |{(d1, . . . , dn) ∈ {0, . . . , p− 1}n | d1 + · · ·+ dn ≤ mn(p− 1)/k}|
Thus, using the following claim, we obtain desired bound for the slice rank of f .

Claim 3.3. |{(d1, . . . , dn) ∈ {0, . . . , p− 1}n | d1 + · · ·+ dn ≤ mn(p− 1)/k}| ≤ (Γp,m,k)
n.

Proof. We need to prove that for a uniformly random choice of (d1, . . . , dn) ∈ {0, . . . , p − 1}n we have
P[d1 + · · ·+ dn ≤ mn(p− 1)/k] ≤ (Γp,m,k)

n · p−n. Indeed, for any 0 < z ≤ 1, by Markov’s inequality we have

P[d1 + · · ·+ dn ≤ mn(p− 1)/k] ≤ P[zd1+···+dn ≥ zmn(p−1)/k]

≤ E[zd1+···+dn ]

zmn(p−1)/k
=

E[zd1 ] · · ·E[zdn ]

zmn(p−1)/k
=

((1 + z + · · ·+ zp−1)/p)n

zmn(p−1)/k
=

(

1 + z + · · ·+ zp−1

z(p−1)m/k

)n

· p−n,

where we used that d1, . . . , dn can be viewed as independent uniformly random elements of {0, . . . , p − 1}.
Hence

P[d1 + · · ·+ dn ≤ mn(p− 1)/k] ≤
(

min
0<z≤1

1 + z + · · ·+ zp−1

z(p−1)m/k

)n

· p−n = (Γp,m,k)
n · p−n,

as desired.

This finishes the proof of Lemma 3.2.

We remark that the proof of Lemma 3.2 is a straightforward generalization of the corresponding arguments
in Tao’s blog post [27] (which are for the case m = 1 and k = 3), apart from the bound for the quantity in
Claim 3.3. This bound as well as the proof of Claim 3.3 appeared for example in [2, Proposition 4.12].

As an example of a typical application of Tao’s slice rank polynomial method, let us now show how Theorem
1.1 can be deduced from Lemma 3.2 and the following lemma due to Tao [27, Lemma 1] stating that diagonal
tensors have large slice rank.

Lemma 3.4 (Tao). Let L ≥ 1 and k ≥ 2 be integers, and let F be a field. Suppose that f : [L]k → F is
a function such that f(ℓ1, . . . , ℓk) 6= 0 whenever ℓ1 = · · · = ℓk and such that f(ℓ1, . . . , ℓk) = 0 whenever
ℓ1, . . . , ℓk ∈ [L] are not all equal. Then the slice rank of f is equal to L.

By combining Lemmas 3.2 and 3.4 one can obtain Theorem 1.1. This proof appeared in Tao’s blog post [27]
in the special case of m = 1, k = 3 and (⋆) being the single equation x1 − 2x2+x3 = 0, which corresponds to
3-term arithmetic progressions (in the same blog post he also introduced the notion of slice rank and proved
Lemma 3.4).

Proof Theorem 1.1. Let A ⊆ F
n
p be such that every solution (x1, . . . , xk) ∈ Ak of the system (⋆) satisfies

x1 = · · · = xk. Let L = |A|, and let A = {x(1), . . . , x(L)}. Now, define the function f : [L]k → Fp by setting

f(ℓ1, . . . , ℓk) =

{

1 if (x(ℓ1), . . . , x(ℓk)) is a solution to (⋆)

0 otherwise.
.

Note that by Lemma 3.2 the slice rank of f is at most k · (Γp,m,k)
n.

On the other hand, whenever ℓ1, . . . , ℓk are such that (x(ℓ1), . . . , x(ℓk)) is a solution to (⋆), then by our
assumption on A we have x(ℓ1) = · · · = x(ℓk) and therefore ℓ1 = · · · = ℓk. Thus, we have f(ℓ1, . . . , ℓk) = 0
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whenever ℓ1, . . . , ℓk ∈ [L] are not all equal. Furthermore, for all ℓ ∈ L, the k-tuple (x(ℓ), . . . , x(ℓ)) is a solution
to (⋆), since we assumed that aj,1 + · · ·+ aj,k = 0 for j = 1, . . . ,m. Hence whenever ℓ1 = · · · = ℓk, we have
f(ℓ1, . . . , ℓk) = 1 6= 0. Thus, by Lemma 3.4 the slice rank of f equals L.

All in all, we obtain |A| = L ≤ k · (Γp,m,k)
n. So we have shown that every set A ⊆ F

n
p with the property that

every solution (x1, . . . , xk) ∈ Ak of the system (⋆) satisfies x1 = · · · = xk must have size |A| ≤ k · (Γp,m,k)
n.

This almost gives Theorem 1.1. In order to prove the theorem, we need to prove |A| ≤ (Γp,m,k)
n instead of

the weaker bound |A| ≤ k · (Γp,m,k)
n. We can use a power trick, as follows.

Suppose that A ⊆ F
n
p is a set with the property that every solution (x1, . . . , xk) ∈ Ak of the system (⋆) satisfies

x1 = · · · = xk. Note that for every positive integer m, the set Am = A × · · · × A ⊆ F
n
p × · · · × F

n
p = F

nm
p

also has this property. Therefore, by what we proved above, we must have |A|m = |Am| ≤ k · (Γp,m,k)
nm and

therefore |A| ≤ k1/m · (Γp,m,k)
n for every positive integer m. Hence |A| ≤ (Γp,m,k)

n, as desired.

The proof of Theorem 1.1 follows the typical pattern of applications of the slice rank polynomial method
in combinatorics: If one wants to bound the size of a combinatorial structure satisfying certain conditions
(here the set A = {x(1), . . . , x(L)}), one defines a function f in terms of this structure in such a way that a
polynomial factoring argument as in the proof of Lemma 3.2 gives an upper bound on the slice rank of f . On
the other hand, the conditions on the combinatorial structure imply that the function f must be of a special
form, giving a lower bound for its slice rank in terms of the size of the structure. Combining both bounds,
one then obtains an upper bound for the size of the combinatorial structure, as desired.

As mentioned above, so far in all combinatorial applications of the slice rank polynomial method, the “special
form” of the function f under consideration was a diagonal tensor as in Lemma 3.4. Not long after Tao’s
original blog post [27], another post by Sawin and Tao [25] appeared on Tao’s blog, proving the following
statement [25, Proposition 4] concerning the slice rank of certain non-diagonal tensors.

Lemma 3.5 (Sawin-Tao). Let L ≥ 1 and k ≥ 2 be integers, and let F be a field. Fix k total orderings
�1, . . . ,�k on the set [L] = {1, . . . , L}, and consider the resulting product partial order � on [L]k. Suppose
that f : [L]k → F is a function such that the set S = {(ℓ1, . . . , ℓk) ∈ [L]k | f(ℓ1, . . . , ℓk) 6= 0} ⊆ [L]k is an
antichain with respect to the partial order �. Then the slice rank of f equals

min
S=S1∪···∪Sk

(|π1(S1)|+ · · ·+ |πk(Sk)|) ,

where the minimum is taken over all partitions S = S1 ∪ · · · ∪ Sk and where πi : [L]k → L denotes the
projection to the i-th factor for i = 1, . . . , k.

The following corollary of Lemma 3.5 gives a slightly more concrete statement about certain tensors having
large slice rank.

Corollary 3.6. Let L ≥ 1 and k ≥ 2 be integers, and let F be a field. Let [k] = J1 ∪ · · · ∪ Jt be a partition
such that |Jh| ≥ 2 for h = 1, . . . , t. Now, suppose that f : [L]k → F is a function such that f(ℓ, . . . , ℓ) 6= 0 for
all ℓ ∈ [L] and such that for any choice of ℓ1, . . . ℓk ∈ [L] with f(ℓ1, . . . , ℓk) 6= 0 we have |{ℓj | j ∈ Jh}| = 1
for h = 1, . . . , t. Then the slice rank of f is equal to L.

Proof. Let us define total orderings �1, . . . ,�k on the set [L] as follows. For each h = 1, . . . , t, choose one
element jh ∈ Jh and define �jh to be the canonical increasing ordering 1 �jh 2 �jh · · · �jh L on [L].
Furthermore, choose a different element ih ∈ Jh (recall that |Jh| ≥ 2) and define the total ordering �ih to
be the opposite total ordering on [L], i.e. the ordering L �ih L− 1 �ih · · · �ih 1. For all remaining elements
j ∈ Jh \ {jh, ih}, define �j to be an arbitrary total ordering on [L].

We claim that the function f : [L]k → F satisfies the assumption in Lemma 3.5 with respect to the total
orderings�1, . . . ,�k we just defined. Indeed, suppose that (ℓ1, . . . , ℓk), (ℓ

′
1, . . . , ℓ

′
k) ∈ [L]k with f(ℓ1, . . . , ℓk) 6=

0 and f(ℓ′1, . . . , ℓ
′
k) 6= 0 are such that (ℓ1, . . . , ℓk) � (ℓ′1, . . . , ℓ

′
k) in the product partial order �. Then ℓi �i ℓ′i

for all i ∈ [k]. We will show that we actually have ℓi = ℓ′i for all i ∈ [k]. So let i ∈ [k], and let h ∈ [t] be such
that i ∈ Jh. By our assumption on f we have |{ℓj | j ∈ Jh}| = 1 and |{ℓ′j | j ∈ Jh}| = 1, which means that

ℓi = ℓjh = ℓih and ℓ′i = ℓ′jh = ℓ′ih for the elements jh, ih ∈ Jh that we fixed above. Hence ℓi = ℓjh �jh ℓ′jh = ℓ′i
in the total ordering �jh , which by the definition of �jh means that ℓi ≤ ℓ′i. On the other hand we have
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ℓi = ℓih �ih ℓ′ih = ℓ′i in the total ordering �ih , which by the definition of �ih means that ℓi ≥ ℓ′i. Thus, we
can conclude that ℓi = ℓ′i for all i ∈ [k], so (ℓ1, . . . , ℓk) = (ℓ′1, . . . , ℓ

′
k).

Hence the set S = {(ℓ1, . . . , ℓk) ∈ [L]k | f(ℓ1, . . . , ℓk) 6= 0} ⊆ [L]k is indeed an antichain with respect to the
partial order �. So Lemma 3.5 applies and we can conclude that the slice rank of f equals

min
S=S1∪···∪Sk

(|π1(S1)|+ · · ·+ |πk(Sk)|) ,

where the minimum is taken over all partitions S = S1 ∪ · · · ∪ Sk.

We claim that for any partition S = S1 ∪ · · · ∪ Sk we must have π1(S1) ∪ · · · ∪ πk(Sk) = [L]. Indeed, for
any ℓ ∈ [L], by the assumption f(ℓ, . . . , ℓ) 6= 0 we have (ℓ, . . . , ℓ) ∈ S and therefore (ℓ, . . . , ℓ) ∈ Si for some
i ∈ [k]. This means that ℓ ∈ πi(Si) ⊆ π1(S1) ∪ · · · ∪ πk(Sk). Hence π1(S1) ∪ · · · ∪ πk(Sk) = [L] and therefore
|π1(S1)|+ · · ·+ |πk(Sk)| ≥ |π1(S1) ∪ · · · ∪ πk(Sk)| = L for any partition S = S1 ∪ · · · ∪ Sk.

Thus, the slice rank of f is at least L. On the other hand, the slice rank of f : [L]k → F is also at most L.
Hence the slice rank of f equals L.

Note that Corollary 3.6 can be viewed as a generalization of Lemma 3.4 for diagonal tensors by considering
the partition of [k] into a single set J1 = [k]. The slice rank polynomial method has had many interesting
applications in combinatorics (see for example Grochow’s survey [13]), but all of them rely on using a diagonal
tensor (meaning that they proceed via Lemma 3.4). This paper gives the first combinatorial application that
uses the additional strength of Corollary 3.6 for non-diagonal tensors.

Being able to use Corollary 3.6 in the proof of Theorem 1.3 requires new combinatorial ideas and a rather
technical inductive setup. In order to not further complicate the presentation of the proof of Theorem 1.3
in Section 4, we record the following statement here, which combines Corollary 3.6 with Lemma 3.2. This
statement will then be used in the proof of Theorem 1.3 as black box, so that no discussion of slice rank
arguments is required in Section 4 anymore.

Corollary 3.7. Suppose we are given a linear system of equations with coefficients in Fp and constant terms

in F
n
p , consisting of m ≥ 1 equations in k ≥ 2m + 1 variables. Let (x

(ℓ)
1 , . . . , x

(ℓ)
k ) ∈ (Fn

p )
k for ℓ = 1, . . . , L

be solutions in F
n
p to this system of equations. Suppose that there exists a partition [k] = J1 ∪ · · · ∪ Jt with

|Jh| ≥ 2 for h = 1, . . . , t such that the following condition holds: For any choice of ℓ1, . . . ℓk ∈ [L] such that

(x
(ℓ1)
1 , . . . , x

(ℓk)
k ) is a solution to the given system of equations, we have |{ℓj | j ∈ Jh}| = 1 for all h = 1, . . . , t.

Then we must have L ≤ k · (Γp,m,k)
n.

Proof. Let us define the function f : [L]k → Fp as in Lemma 3.2, then the slice rank of f is at most
k · (Γp,m,k)

n. On the other hand, the function f satisfies the assumptions in Corollary 3.6, so the slice rank
of f is equal to L. Hence L ≤ k · (Γp,m,k)

n, as desired.

Remark 3.8. We remark hat the constant factor k can be removed from the bound L ≤ k · (Γp,m,k)
n in

Corollary 3.7 by a power trick similar to the one in the proof of Theorem 1.1. However, since this power trick
is notationally cumbersome in this setting and since the bound L ≤ k · (Γp,m,k)

n suffices for our purposes,
we stated Corollary 3.7 with this weaker bound.

4 Proof of Theorem 1.3

4.1 Inductive setup

Somewhat similar to our approach in Section 2, we will also an inductive argument to prove Theorem 1.3.
However, this induction requires a somewhat technical setup. We will associate a certain weight to each
solution (x1, . . . , xk) to the system (⋆), and then induct on this quantity.

Let us fix positive integers m and k, a prime p and coefficients aj,i ∈ Fp for the system (⋆) such that the
assumption aj,1+ · · ·+aj,k = 0 for j = 1, . . . ,m in Theorem 1.3 is satisfied. We start by making the following
definitions.

12



Definition 4.1. Let V be a vector space over Fp. For a given solution (x1, . . . , xk) ∈ (V \ {0})k to the
system (⋆), let us say that a subset I ⊆ [k] is admissible if it satisfies the following two conditions:

(i) The vectors xi for i ∈ I are linearly independent.

(ii) For all j ∈ [k] \ I we have xj 6∈ span(xi | i ∈ I).

Note that the empty set I = ∅ always satisfies the conditions for being admissible (here, we use that the
vectors x1, . . . , xk are all non-zero). In particular, for every solution (x1, . . . , xk) ∈ (V \ {0})k to the system
(⋆) there exists some admissible subset I ⊆ [k].

Definition 4.2. Let V be a vector space over Fp. For a given solution (x1, . . . , xk) ∈ (V \ {0})k to the
system (⋆), let us define the weight of an admissible subset I ⊆ [k] as follows: Letting U = span(xi | i ∈ I),
we define the weight of I with respect to (x1, . . . , xk) to be

(k + 1) · |I|+
∣

∣

∣

{

span(projV/U (xj))
∣

∣

∣
j ∈ [k] \ I

}∣

∣

∣
.

The second summand in the expression above for the weight of I counts the number of different subspaces
of the quotient space V/U that are of the form span(projV/U (xj)) for some j ∈ [k] \ I. Note that we clearly
have |{span(projV/U (xj)) | j ∈ [k] \ I}| ≤ k − |I| ≤ k.

Definition 4.3. Let V be a vector space over Fp. For a solution (x1, . . . , xk) ∈ (V \ {0})k to the system
(⋆), let us define the weight ω(x1, . . . , xk) of (x1, . . . , xk) to be the maximum weight of any admissible subset
I ⊆ [k] with respect to (x1, . . . , xk). Furthermore, let us define I(x1, . . . , xk) ⊆ [k] to be an admissible subset
I ⊆ [k] for (x1, . . . , xk) where this maximum weight is attained (if there are several choices for I attaining
the maximum weight, we choose one arbitrarily).

Note that the weight ω(x1, . . . , xn) is clearly a non-negative integer. Also note that for a vector spaces V ⊆ V ′

over Fp, and a solution (x1, . . . , xk) ∈ (V \ {0})k ⊆ (V ′ \ {0})k to the system (⋆), the weight ω(x1, . . . , xk) of
(x1, . . . , xk) does not depend on whether x1, . . . , xk are interpreted as vectors in V or in V ′.

Claim 4.4. Let V be a vector space over Fp, and let (x1, . . . , xk) ∈ (V \ {0})k be a solution to the system
(⋆). Then we have ω(x1, . . . , xk) 6∈ {0, (k + 1), 2 · (k + 1), . . . , (k − 1) · (k + 1)},

|I(x1, . . . , xk)| = ⌊ω(x1, . . . , xk)/(k + 1)⌋,

and
dim span(x1, . . . , xk) ≥ ω(x1, . . . , xk)/(k + 1).

Proof. Let I = I(x1, . . . , xk), and let U = span(xi | i ∈ I). Then ω(x1, . . . , xk) equals the weight of I with
respect to (x1, . . . , xk). In other words,

ω(x1, . . . , xk) = (k + 1) · |I|+
∣

∣

∣

{

span(projV/U (xj))
∣

∣

∣
j ∈ [k] \ I

}
∣

∣

∣
. (4.1)

First, let us consider the case I = [k]. Then we have |I(x1, . . . , xk)| = |I| = k and ω(x1, . . . , xk) = (k+1) · k,
and dim span(x1, . . . , xk) ≥ dim span(xi | i ∈ I) = |I| = k (here, we used condition (i) in Definition 4.1).
Hence the statements in the claim are satisfied in the case I = [k].

Now let us assume that I 6= [k]. Then there is at least one vector xj with j ∈ [k] \ I, and so from (4.1) we
obtain

(k + 1) · |I|+ 1 ≤ ω(x1, . . . , xk) ≤ (k + 1) · |I|+ k.

This in particular implies ⌊ω(x1, . . . , xk)/(k + 1)⌋ = |I| = |I(x1, . . . , xk)|. It furthermore implies that
ω(x1, . . . , xk) is not divisible by k + 1 and hence ω(x1, . . . , xk) 6∈ {0, (k+ 1), 2 · (k + 1), . . . , (k − 1) · (k + 1)}.
Finally, recall from condition (i) in Definition 4.1 that the vectors xi for i ∈ I are linearly independent.
Furthermore, there is some j ∈ [k] \ I and by condition (ii) in Definition 4.1 we have xj 6∈ span(xi | i ∈ I) .
Thus, dim span(x1, . . . , xk) ≥ |I|+ 1 ≥ ω(x1, . . . , xk)/(k + 1).
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The following proposition is similar to Theorem 1.3, but instead of finding a solution (x1, . . . , xk) ∈ Ak to (⋆)
with dim span(x1, . . . , xk) ≥ r, it aims to find a solution (x1, . . . , xk) ∈ Ak with large weight ω(x1, . . . , xk).
We will prove Proposition 4.5 by induction on w, and we will deduce Theorem 1.3 by considering w =
(r − 1)(k + 1)− 1. Recall that we are assuming aj,1 + · · ·+ aj,k = 0 for j = 1, . . . ,m.

Proposition 4.5. Fix a non-negative integer w and assume that k ≥ 2m + 1 + ⌊w/(k + 1)⌋. Then there
exist constants C ≥ 1 and 0 < c ≤ 1 such that the following holds: For any non-negative integer n and any
subset A ⊆ F

n
p \ {0} of size |A| > C · p(1−c)n, the system (⋆) has a solution (x1, . . . , xk) ∈ Ak with weight

ω(x1, . . . , xk) > w.

Let us now deduce Theorem 1.3 from Proposition 4.5.

Proof of Theorem 1.3. As in the theorem statement, let r ≥ 2 and assume that k ≥ 2m + r − 1. Now, let
w = (r − 1)(k + 1) − 1, and note that then ⌊w/(k + 1)⌋ = r − 2 and therefore k ≥ 2m + 1 + r − 2 =
2m+ 1 + ⌊w/(k + 1)⌋. Let us define Crank

p,m,k,r = C + 1 and Γrank

p,m,k,r = p1−c < p, where C ≥ 1 and 0 < c ≤ 1
are the constants obtained from Proposition 4.5.

Now, let n be a non-negative integer and let A ⊆ F
n
p be a subset of size |A| > Crank

p,m,k,r · (Γrank

p,m,k,r)
n. Then we

have
|A \ {0}| ≥ |A| − 1 > (Crank

p,m,k,r − 1) · (Γrank

p,m,k,r)
n = C · p(1−c)n.

Thus, by Proposition 4.5 applied to A \ {0}, there exists a solution (x1, . . . , xk) ∈ (A \ {0})k ⊆ Ak to the
system (⋆) with weight ω(x1, . . . , xk) > w = (r − 1)(k + 1) − 1, Note that this means that ω(x1, . . . , xk) ≥
(r − 1)(k + 1). However, as 2 ≤ r ≤ k − 1, the first statement in Claim 4.4 implies that ω(x1, . . . , xk) 6=
(r − 1)(k + 1). Hence ω(x1, . . . , xk) > (r − 1)(k + 1) and consequently by the last statement in Claim 4.4
we have dim span(x1, . . . , xk) ≥ ω(x1, . . . , xk)/(k + 1) > r − 1. This means that dim span(x1, . . . , xk) ≥ r, as
desired.

We will prove Proposition 4.5 in the following subsection. In the proof, we will use the following lemma,
giving a structural property for the spans span(projV/U (xj)) appearing in Definition 4.2.

Lemma 4.6. Let V be a vector space over Fp, and let (x1, . . . , xk) ∈ (V \ {0})k be a solution to the system
(⋆). Furthermore, let I = I(x1, . . . , xk) and U = span(xi | i ∈ I). Then there exists a partition [k] \ I =
J1 ∪ · · · ∪ Jt with |Jh| ≥ 2 for h = 1, . . . , t and distinct one-dimensional subspaces W1, . . . ,Wt ⊆ V/U such
that span(projV/U (xj)) = Wh for all h = 1, . . . , t and all j ∈ Jh.

Proof. Recall that the set I = I(x1, . . . , xk) is admissible for (x1, . . . , xk), and that therefore by condition
(ii) in Definition 4.1 we have xj 6∈ span(xi | i ∈ I) = U for all j ∈ [k] \ I. Hence for every j ∈ [k] \ I, the
projection projV/U (xj) is a non-zero vector in V/U and therefore span(projV/U (xj)) is a one-dimensional
subspace of V/U .

Let W1, . . . ,Wt ⊆ V/U be the list of all distinct one-dimensional subspaces of V/U that are of the form
span(projV/U (xj)) for some j ∈ [k]\I. Furthermore, for each h = 1, . . . , t, let Jh ⊆ [k]\I be the set of indices
j ∈ [k] \ I such that span(projV/U (xj)) = Wh. Then [k] \ I = J1 ∪ · · · ∪ Jt is a partition.

It remains to show that we have |Jh| ≥ 2 for h = 1, . . . , t. Note that this is equivalent to showing that for
each j ∈ [k] \ I there exists some j′ ∈ [k] \ I with j′ 6= j and span(projV/U (xj)) = span(projV/U (xj′ )).

So let us fix some j ∈ [k] \ I, and suppose for contradiction that span(projV/U (xj′ )) 6= span(projV/U (xj)) for
all j′ ∈ [k] \ (I ∪ {j}). As both span(projV/U (xj′ )) and span(projV/U (xj)) are one-dimensional subspaces of
V/U , this means that projV/U (xj′ ) 6∈ span(projV/U (xj)) for all j′ ∈ [k] \ (I ∪ {j}). In other words, we have
xj′ 6∈ U +span(xj) = span(xi | i ∈ I ∪{j}) for all j′ ∈ [k] \ (I ∪{j}). Hence the set I ∪{j} satisfies condition
(ii) in Definition 4.1.

Furthermore, recall that the vectors xi for i ∈ I are linearly independent by condition (i) in Definition 4.1.
Now, xj 6∈ U = span(xi | i ∈ I) implies that xj is also linearly independent from these vectors. In other
words, the vectors xi for i ∈ I ∪ {j} are linearly independent and the set I ∪ {j} satisfied condition (i) in
Definition 4.1. Thus, we can conclude that the set I ∪ {j} is admissible for (x1, . . . , xk).
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Let us now compare the weights of the admissible sets I and I ∪ {j} with respect to (x1, . . . , xk). Since
I = I(x1, . . . , xk) must have the maximum weight among all admissible sets with respect to (x1, . . . , xk), the
weight of I ∪ {j} can be at most as large as the weight of I. However, the weight of I is

(k + 1) · |I|+
∣

∣

∣

{

span(projV/U (xj))
∣

∣

∣
j ∈ [k] \ I

}
∣

∣

∣
≤ (k + 1) · |I|+ k < (k + 1) · |I ∪ {j}|,

which means that the weight of I ∪ {j} is actually larger than the weight of I. This is a contradiction.

4.2 Proof of Proposition 4.5

Let us now prove Proposition 4.5 by induction on w.

For the base case w = 0, we can take C = 1 and c = 1. Then for any subset A ⊆ F
n
p \ {0} of size

|A| > C ·p(1−c)n = 1, we can pick some vector x ∈ A and consider the k-tuple (x1, . . . , xk) = (x, . . . , x) ∈ Ak.
Note that by our assumption aj,1 + · · ·+ aj,k = 0 for j = 1, . . . ,m made at the beginning of this section, this
k-tuple (x1, . . . , xk) is a solution to the system (⋆). Furthermore, by the first statement in Claim 4.4 we have
ω(x1, . . . , xk) 6= 0. Hence ω(x1, . . . , xk) > 0 and we have proved the base case w = 0.

Now let us assume that w ≥ 1 and that Proposition 4.5 holds for w−1 with constants C′ ≥ 1 and 0 < c′ ≤ 1.
Also recall that we made the assumption k ≥ 2m+ 1 + ⌊w/(k + 1)⌋ in the statement of Proposition 4.5.

First, consider the case that w ∈ {0, (k + 1), 2 · (k + 1), . . . , (k − 1) · (k + 1)}. In this case, we can take
C = C′ and c = c′. Indeed, for any subset A ⊆ F

n
p \ {0} of size |A| > C · p(1−c)n = C′ · p(1−c′)n, by the

induction hypothesis the system (⋆) has a solution (x1, . . . , xk) ∈ Ak with weight ω(x1, . . . , xk) > w − 1.
Since ω(x1, . . . , xk) 6∈ {0, (k + 1), 2 · (k + 1), . . . , (k − 1) · (k + 1)} by Claim 4.4, we have ω(x1, . . . , xk) 6= w
and therefore ω(x1, . . . , xk) > w. This shows the desired statement in Proposition 4.5 for w.

We may therefore from now on assume that w 6∈ {0, (k+1), 2 ·(k+1), . . . , (k−1) ·(k+1)}. By the assumption
k ≥ 2m+ 1 + ⌊w/(k + 1)⌋, we have w < k · (k + 1). Hence w is not divisible by k + 1.

Since k ≥ 2m + 1 + ⌊w/(k + 1)⌋, we have k − ⌊w/(k + 1)⌋ ≥ 2m+ 1, so the constant Γp,m,k−⌊w/(k+1)⌋ < p
considered in Section 3 is well-defined. Let us write Γ = Γp,m,k−⌊w/(k+1)⌋, then 1 ≤ Γ < p.

Now, p/Γ > 1 and c′ > 0, so there is some c > 0 such that pc = (p/Γ)c
′/(k−1). Note that c ≤ 1 since c′ ≤ 1

and Γ ≥ 1. So 0 < c ≤ 1, as desired.

We need to prove that there exists a constant C ≥ 1 such that for any non-negative integer n and any
subset A ⊆ F

n
p \ {0} of size |A| > C · p(1−c)n, the system (⋆) has a solution (x1, . . . , xk) ∈ Ak with weight

ω(x1, . . . , xk) > w.

Note that by making the constant C large enough, we may assume that n is sufficiently large such that
(p/Γ)n > (2kp2)(2k+1)(k−1).

Hence it suffices to prove that for any n with (p/Γ)n > (2kp2)(2k+1)(k−1) and any subset A ⊆ F
n
p \ {0} of size

|A| > 4C′(2kp)2k+1 · p(1−c)n, there is a solution (x1, . . . , xk) ∈ Ak to (⋆) with ω(x1, . . . , xk) > w.

So let us assume for contradiction that (p/Γ)n > (2kp2)(2k+1)(k−1) and |A| > 4C′(2kp)2k+1 · p(1−c)n and that
every solution (x1, . . . , xk) ∈ Ak the system (⋆) of has weight ω(x1, . . . , xk) ≤ w.

Since pc = (p/Γ)c
′/(k−1) by the definition of c, we have

|A| > 4C′(2kp)2k+1 · p(1−c)n = 4C′(2kp)2k+1 · pn ·
(

Γ

p

)c′n/(k−1)

(4.2)

Using that 0 < c′ ≤ 1 and Γ < p and C′ ≥ 1, this furthermore implies

|A| > 4C′(2kp)2k+1 · pn ·
(

Γ

p

)c′n/(k−1)

≥ 4C′(2kp)2k+1 · pn ·
(

Γ

p

)n

≥ (2kp)2k+1 · Γn. (4.3)

Our proof strategy is somewhat similar to the proof of Theorem 2.1 in Section 2, again using a probabilistic
subspace sampling argument. We will again consider a random subspace V ⊆ F

n
p of a suitably chosen

dimension. This time, our goal is to find a fairly large subset A∗ ⊆ A ∩ V such that there are no solutions
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(x1, . . . , xk) ∈ (A∗)k to the system (⋆) of weight ω(x1, . . . , xk) = w. By our assumption on A, this means
that every solution (x1, . . . , xk) ∈ (A∗)k to the system (⋆) must satisfy ω(x1, . . . , xk) ≤ w − 1. We will then
obtain a contradiction by applying the induction hypothesis for w − 1 to the set A∗.

In order to be able to obtain the desired set A∗ ⊆ A∩V not containing any solutions (x1, . . . , xk) ∈ (A∗)k to
(⋆) with ω(x1, . . . , xk) = w, we will bound the total number of solutions (x1, . . . , xk) ∈ Ak to (⋆) in the set A
with ω(x1, . . . , xk) = w. More precisely, since the relevant probabilities for the subspace sampling argument
depend on the dimension dim span(x1, . . . , xk) for each solution (x1, . . . , xk) ∈ Ak, we will actually bound
the number of solutions (x1, . . . , xk) ∈ Ak to (⋆) with ω(x1, . . . , xk) = w and dim span(x1, . . . , xk) = r for
every possible value of this dimension r. The next claim analyzes these possible values.

Claim 4.7. For every solution (x1, . . . , xk) ∈ Ak to the system (⋆) of weight ω(x1, . . . , xk) = w, we have
|I(x1, . . . , xk)| = ⌊w/(k + 1)⌋ and ⌊w/(k + 1)⌋+ 1 ≤ dim span(x1, . . . , xk) ≤ k.

Proof. Fix a solution (x1, . . . , xk) ∈ Ak to (⋆) with ω(x1, . . . , xk) = w. By Claim 4.4 we have |I(x1, . . . , xk)| =
⌊ω(x1, . . . , xk)/(k + 1)⌋ = ⌊w/(k + 1)⌋.
For the second part of the claim, the upper bound dim span(x1, . . . , xk) ≤ k is clear. For the lower bound,
note that by Claim 4.4 we have

dim span(x1, . . . , xk) ≥ ω(x1, . . . , xk)/(k + 1) = w/(k + 1) > ⌊w/(k + 1)⌋,

where in the last step we used that w is not divisible by k + 1. Hence we must have dim span(x1, . . . , xk) ≥
⌊w/(k + 1)⌋+ 1, as desired.

We remark that one can actually obtain a stronger upper bound for dim span(x1, . . . , xk) than the bound in
the claim above by taking into account the linear relations imposed by the system (⋆). However, the trivial
upper bound dim span(x1, . . . , xk) ≤ k suffices for our argument.

In light of Claim 4.7, for every r = ⌊w/(k + 1)⌋ + 1, . . . , k, we need to bound the number of solutions
(x1, . . . , xk) ∈ Ak to (⋆) with ω(x1, . . . , xk) = w and dim span(x1, . . . , xk) = r. We will count these solutions
by distinguishing all possibilities for the set I(x1, . . . , xk), noting that by Claim 4.7, I(x1, . . . , xk) ⊆ [k] is
always a subset of size ⌊w/(k + 1)⌋.
The following lemma is the key step in order to obtain the desired bound. It gives a structural property
for solutions (x1, . . . , xk) ∈ Ak to (⋆) with ω(x1, . . . , xk) = w where I(x1, . . . , xk) = I for some fixed set
I ⊆ [k] (of size |I| = ⌊w/(k + 1)⌋) and where the vectors xi ∈ A for i ∈ I are fixed. In the proof of this
lemma, we will use the slice rank polynomial method in the form of Corollary 3.7. Recall that we defined
Γ = Γp,m,k−⌊w/(k+1)⌋ < p.

Lemma 4.8. Fix a subset I ⊆ [k] of size |I| = ⌊w/(k + 1)⌋, and fix vectors xi ∈ A for i ∈ I. Let

U = span(xi | i ∈ I). Suppose that (x
(ℓ)
1 , . . . , x

(ℓ)
k ) ∈ Ak for ℓ = 1, . . . , L is a list of solutions to the system

(⋆) such that for all ℓ = 1, . . . , L we have ω(x
(ℓ)
1 , . . . , x

(ℓ)
k ) = w and I(x(ℓ)

1 , . . . , x
(ℓ)
k ) = I and x

(ℓ)
i = xi for all

i ∈ I. Furthermore, suppose that the sets {span(proj
Fn
p/U

(x
(ℓ)
j )) | j ∈ [k] \ I} are disjoint for all ℓ = 1, . . . , L.

Then we must have L ≤ kk+1 · Γn.

Proof. Suppose for contradiction that L > kk+1 · Γn. For each ℓ = 1, . . . , L we can apply Lemma 4.6 to

(x
(ℓ)
1 , . . . , x

(ℓ)
k ) and obtain a partition [k] \ I = J

(ℓ)
1 ∪ · · · ∪ J

(ℓ)
tℓ

with |J (ℓ)
h | ≥ 2 for h = 1, . . . , tℓ and distinct

one-dimensional subspaces W
(ℓ)
1 , . . . ,W

(ℓ)
tℓ ⊆ F

n
p/U such that span(proj

Fn
p/U

(x
(ℓ)
j )) = W

(ℓ)
h for all h = 1, . . . , tℓ

and all j ∈ J
(ℓ)
h . Note that by the condition |J (ℓ)

h | ≥ 2 for h = 1, . . . , tℓ, the sets J
(ℓ)
h are all non-empty and

we have tℓ ≤ k for all ℓ = 1, . . . , L.

Let us now distinguish all possibilities for the partitions [k] \ I = J
(ℓ)
1 ∪ · · · ∪ J

(ℓ)
tℓ

. Since tℓ ≤ k, there are at

most kk possibilities for such a partition. Hence, as L > kk+1 · Γn, for more than k · Γn different ℓ we must

obtain the same partition [k]\I = J
(ℓ)
1 ∪· · ·∪J

(ℓ)
tℓ

. In other words, there exists a partition [k]\I = J1∪· · ·∪Jt
which occurs for more than k · Γn different ℓ. By relabeling, we may assume that this partition occurs for
ℓ = 1, . . . , L′ for some L′ > k · Γn.
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To summarize, we now have a fixed partition [k] \ I = J
(ℓ)
1 ∪ · · · ∪ J

(ℓ)
t with |Jh| ≥ 2 for h = 1, . . . , t and for

each ℓ = 1, . . . , L′ (where L′ > k · Γn) we have distinct one-dimensional subspaces W
(ℓ)
1 , . . . ,W

(ℓ)
t ⊆ F

n
p/U

such that span(proj
Fn
p/U

(x
(ℓ)
j )) = W

(ℓ)
h for all h = 1, . . . , t and all j ∈ Jh. Now, for each ℓ = 1, . . . , L′ we

have {span(proj
Fn
p/U

(x
(ℓ)
j )) | j ∈ [k] \ I} = {W (ℓ)

1 , . . . ,W
(ℓ)
t } and by the assumptions in the lemma these sets

are disjoint for all ℓ = 1, . . . , L′. This means that the subspaces W
(ℓ)
h ⊆ F

n
p/U are distinct for all h = 1, . . . , t

and all ℓ = 1, . . . , L′.

Recall that for every ℓ = 1, . . . , L′ we have I(x(ℓ)
1 , . . . , x

(ℓ)
k ) = I. In particular, this means that the set I is

admissible for (x
(ℓ)
1 , . . . , x

(ℓ)
k ). Hence, recalling that x

(ℓ)
i = xi for all i ∈ I, by condition (ii) in Definition 4.1

we have x
(ℓ)
j 6∈ span(xi | i ∈ I) = U for all j ∈ [k] \ I and all ℓ = 1, . . . , L′. Furthermore, using that L′ ≥ 1

as L′ > k · Γn, condition (i) in Definition 4.1 implies that the vectors xi for i ∈ I are linearly independent.

For the moment, choose any ℓ ∈ {1, . . . , L′} (using that L′ ≥ 1). Since we have I(x(ℓ)
1 , . . . , x

(ℓ)
k ) = I and

ω(x
(ℓ)
1 , . . . , x

(ℓ)
k ) = w, the weight of the admissible set I with respect to (x

(ℓ)
1 , . . . , x

(ℓ)
k ) must be equal to w.

On the other hand, this weight is

(k + 1) · |I|+
∣

∣

∣

{

span(proj
Fn
p/U

(x
(ℓ)
j ))

∣

∣

∣
j ∈ [k] \ I

}∣

∣

∣
= (k + 1) · |I|+

∣

∣

∣

{

W
(ℓ)
1 , . . . ,W

(ℓ)
t

}∣

∣

∣
= (k + 1) · |I|+ t.

Hence we can conclude that
t = w − (k + 1) · |I|. (4.4)

For ease of notation, let us assume for the rest of the proof of this lemma that the set I ⊆ [k] consists of the last
|I| = ⌊w/(k+1)⌋ indices, i.e. I = {k−|I|+1, . . . , k} (otherwise we can just relabel the indices). Given the fixed
vectors xi ∈ A for i ∈ I = {k− |I|+1, . . . , k}, we can now interpret (⋆) as a (non-homogeneous) system of m

linear equations in the k−|I| variables x1, . . . , xk−|I|. For each ℓ = 1, . . . , L′ the (k−|I|)-tuple (x
(ℓ)
1 , . . . , x

(ℓ)
k−|I|)

is a solution to this system of equations, since (x
(ℓ)
1 , . . . , x

(ℓ)
k−|I|, xk−|I|+1, . . . , xk) = (x

(ℓ)
1 , . . . , x

(ℓ)
k ) is a solution

to (⋆) (recall the assumption that x
(ℓ)
i = xi for all i ∈ I).

Our goal is now to apply Corollary 3.7 to this system of equations and the solutions (x
(ℓ)
1 , . . . , x

(ℓ)
k−|I|) for

ℓ = 1, . . . , L′. The following claim states that the condition in the statement of Corollary 3.7 is satisfied.

Claim 4.9. We have |{ℓj | j ∈ Jh}| = 1 for h = 1, . . . , t for any choice of ℓ1, . . . , ℓk−|I| ∈ [L′] such that

(x
(ℓ1)
1 , . . . , x

(ℓk−|I|)

k−|I| ) is a solution to (⋆) when interpreted as a system in the first k − |I| variables after fixing

the given xi ∈ A for i ∈ I = {k − |I|+ 1, . . . , k}.

Before proving this claim, let us first finish the rest of the proof of the lemma. Recall that k − |I| =
k − ⌊w/(k + 1)⌋ ≥ 2m+ 1. We can therefore apply Corollary 3.7 to the system of of m linear equations in
the k − |I| variables x1, . . . , xk−|I| obtained from (⋆) after fixing the given xi ∈ A for i ∈ I. By Claim 4.9

the solutions (x
(ℓ)
1 , . . . , x

(ℓ)
k−|I|) for ℓ = 1, . . . , L′ to this system and the partition [k] \ I = J1 ∪ · · · ∪ Jt satisfy

the conditions in Corollary 3.7. Hence the corollary implies that L′ ≤ k · Γn
p,m,k−⌊w/(k+1)⌋ = k · Γn. This

contradicts the lower bound L′ > k ·Γn from above. This contradiction finishes the proof of the lemma, apart
from proving Claim 4.9.

Proof of Claim 4.9. Let us fix ℓ1, . . . , ℓk−|I| ∈ [L′] such that (x
(ℓ1)
1 , . . . , x

(ℓk−|I|)

k−|I| ) is a solution to this system,

meaning that (x
(ℓ1)
1 , . . . , x

(ℓk−|I|)

k−|I| , xk−|I|+1, . . . , xk) is a solution to the original system (⋆). By our assumption

on the set A, this solution (x
(ℓ1)
1 , . . . , x

(ℓk−|I|)

k−|I| , xk−|I|+1, . . . , xk) ∈ Ak to (⋆) must have weight

ω(x
(ℓ1)
1 , . . . , x

(ℓk−|I|)

k−|I| , xk−|I|+1, . . . , xk) ≤ w. (4.5)

We claim that the set I = {k − |I|+ 1, . . . , k} is admissible for (x
(ℓ1)
1 , . . . , x

(ℓk−|I|)

k−|I| , xk−|I|+1, . . . , xk). Indeed,

as shown above the vectors xi for i ∈ I are linearly independent, so condition (i) in Definition 4.1 is satisfied.

We also proved above that x
(ℓ)
j 6∈ span(xi | i ∈ I) = U for all j ∈ [k] \ I and all ℓ = 1, . . . , L′. In
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particular, x
(ℓj)
j 6∈ span(xi | i ∈ I) for all j ∈ [k] \ I and so condition (ii) is satisfied as well. Hence the set

I = {k − |I|+ 1, . . . , k} is admissible for (x
(ℓ1)
1 , . . . , x

(ℓk−|I|)

k−|I| , xk−|I|+1, . . . , xk).

Now, by (4.5) the weight of the admissible set I = {k − |I| + 1, . . . , k} with respect to the solution

(x
(ℓ1)
1 , . . . , x

(ℓk−|I|)

k−|I| , xk−|I|+1, . . . , xk) to (⋆) is at most w. Hence

w ≥ (k + 1) · |I|+
∣

∣

∣

{

span(proj
Fn
p/U

(x
(ℓj)
j ))

∣

∣

∣
j ∈ [k] \ I

}∣

∣

∣
= (k + 1) · |I|+

∣

∣

∣

∣

∣

t
⋃

h=1

{

W
(ℓj)
h

∣

∣ j ∈ Jh

}

∣

∣

∣

∣

∣

Here, for the second step we used that [k]\I = J1∪· · ·∪Jt is a partition and that span(proj
Fn
p/U

(x
(ℓ)
j )) = W

(ℓ)
h

for all h = 1, . . . , t, all j ∈ Jh and all ℓ = 1, . . . , L′. Together with (4.4) this yields

t = w − (k + 1) · |I| ≥
∣

∣

∣

∣

∣

t
⋃

h=1

{

W
(ℓj)
h

∣

∣ j ∈ Jh

}

∣

∣

∣

∣

∣

=

t
∑

h=1

|{ℓj | j ∈ Jh}|,

where in the last step we used that the spaces W
(ℓ)
h ⊆ F

n
p/U are distinct for all h = 1, . . . , t and all ℓ =

1, . . . , L′. Since the sets Jh for h = 1, . . . , t are non-empty (as |Jh| ≥ 2), we have |{ℓj | j ∈ Jh}| ≥ 1 for
h = 1, . . . , t. Hence the previous inequality implies that we must have |{ℓj | j ∈ Jh}| = 1 for all h = 1, . . . , t,
as desired.

This finishes the proof of Lemma 4.8.

Lemma 4.8 states that for a fixed subset I ⊆ [k] (of size |I| = ⌊w/(k+1)⌋) and fixed vectors xi ∈ A for i ∈ I,
there cannot be too many solutions (x1, . . . , xk) ∈ Ak to (⋆) with ω(x1, . . . , xk) = w and I(x1, . . . , xk) = I
such that the sets {span(proj

Fn
p/U

(xj)) | j ∈ [k] \ I} are disjoint for all of these solutions. We will now use

this lemma to bound the total number of solutions (x1, . . . , xk) ∈ Ak to (⋆) with ω(x1, . . . , xk) = w and
I(x1, . . . , xk) = I for fixed I and fixed xi ∈ A for i ∈ I (more precisely, we bound the number of such solution
with dim span(x1, . . . , xk) = r for each fixed r), as stated in the following lemma. Roughly speaking, the
proof strategy for this lemma is to choose a maximal collection of solutions (x′

1, . . . , x
′
k) of the desired form

for which the sets {span(proj
Fn
p/U

(x′
j)) | j ∈ [k] \ I} are disjoint, and then to use that for every solution

(x1, . . . , xk) satisfying the desired conditions we must have proj
Fn
p/U

(xt) ∈ {span(proj
Fn
p/U

(x′
j)) | j ∈ [k] \ I}

for some t ∈ [k] \ I and some (x′
1, . . . , x

′
k) in the chosen collection. This means that there are only relatively

few possibilities for xt ∈ A, and we will be able to derive the desired bound on the number of possible
(x1, . . . , xk).

Lemma 4.10. Fix a subset I ⊆ [k] of size |I| = ⌊w/(k + 1)⌋, and fix vectors xi ∈ A for i ∈ I. Furthermore,
fix an integer r with ⌊w/(k + 1)⌋ + 1 ≤ r ≤ k. Then the number of solutions (x1, . . . , xk) ∈ Ak to (⋆) with
ω(x1, . . . , xk) = w , I(x1, . . . , xk) = I and dim span(x1, . . . , xk) = r is at most kk+32kprk · Γn · |A|r−|I|−1.

Proof. Let U = span(xi | i ∈ I). Furthermore, let us fix a list of solutions (x
(ℓ)
1 , . . . , x

(ℓ)
k ) ∈ Ak for ℓ = 1, . . . , L

to (⋆) of maximum possible length L such that for all ℓ = 1, . . . , L we have ω(x
(ℓ)
1 , . . . , x

(ℓ)
k )) = w and

I(x(ℓ)
1 , . . . , x

(ℓ)
k )) = I and x

(ℓ)
i = xi for all i ∈ I, and such that the sets {span(proj

Fn
p/U

(x
(ℓ)
j )) | j ∈ [k] \ I}

are disjoint for all ℓ = 1, . . . , L.

Then by Lemma 4.8 we must have L ≤ kk+1 · Γn (and in particular, such a list of maximum possible length
exists). For every ℓ = 1, . . . , L and every j ∈ [k] \ I, define

W
(ℓ)
j = span(x

(ℓ)
i | i ∈ I ∪ {j}) = span(xi | i ∈ I) + span(x

(ℓ)
j ) = U + span(x

(ℓ)
j ),

and note that each W
(ℓ)
j is a subspace of Fn

p of dimension at most |I|+ 1 = ⌊w/(k + 1)⌋+ 1 ≤ r. Hence the

union
⋃L

ℓ=1

⋃

j∈[k]\I W
(ℓ)
j is a subset of Fn

p of size

∣

∣

∣

∣

∣

∣

L
⋃

ℓ=1

⋃

j∈[k]\I

W
(ℓ)
j

∣

∣

∣

∣

∣

∣

≤ L · k · pr ≤ kk+1 · Γn · k · pr = kk+2pr · Γn. (4.6)
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Claim 4.11. Suppose xj ∈ A for j ∈ [k] \ I are vectors such that (x1, . . . , xk) ∈ Ak is a solution to (⋆) with
ω(x1, . . . , xk) = w , I(x1, . . . , xk) = I and dim span(x1, . . . , xk) = r. Then there exists an index t ∈ [k] \ I
and a subset S ⊆ [k] \ (I ∪ {t})of size |S| = r − |I| − 1 such that xt ∈ ⋃L

ℓ=1

⋃

j∈[k]\I W
(ℓ)
j and such that

x1, . . . , xk ∈ span(xi | i ∈ I ∪ {t} ∪ S).

Proof. By maximality of our chosen list of solutions (x
(ℓ)
1 , . . . , x

(ℓ)
k ), it cannot be possible to extend this list

by taking (x
(L+1)
1 , . . . , x

(L+1)
k ) = (x1, . . . , xk). Since (x1, . . . , xk) satisfies all of the other conditions, this

means that we must have

{span(proj
Fn
p/U

(xj)) | j ∈ [k] \ I} ∩ {span(proj
Fn
p/U

(x
(ℓ)
j )) | j ∈ [k] \ I} 6= ∅

or some ℓ ∈ [L]. Hence we can find t ∈ [k] \ I and j ∈ [k] \ I and ℓ ∈ [L] such that span(proj
Fn
p/U

(xt)) =

span(proj
Fn
p /U

(x
(ℓ)
j )). In particular, we have proj

Fn
p/U

(xt) ∈ span(proj
Fn
p/U

(x
(ℓ)
j )). This means that xt ∈

U + span(x
(ℓ)
j ) = W

(ℓ)
j .

Thus, we have found the desired index t ∈ [k] \ I with xt ∈ ⋃L
ℓ=1

⋃

j∈[k]\I W
(ℓ)
j . It remains to find a set

S ⊆ [k] \ (I ∪ {t}) with the desired conditions.

Since I(x1, . . . , xk) = I, the set I is admissible for (x1, . . . , xk), and so by condition (i) in Definition 4.1
the vectors xi for i ∈ I are linearly independent. Furthermore, by condition (ii) in Definition 4.1 we have
xt 6∈ span(xi | i ∈ I) = U . Hence the vectors xi for i ∈ I∪{t} are linearly independent. We can therefore find
a subset S ⊆ [k]\(I∪{t}) such that the vectors xi for i ∈ I∪{t}∪S form a basis of the space span(x1, . . . , xk).
Then we clearly have x1, . . . , xk ∈ span(xi | i ∈ I ∪ {t} ∪ S). Furthermore, as dim span(x1, . . . , xk) = r, we
also have |S| = r − |I| − 1, as desired.

In order to prove the lemma, we need to show that the number of choices for (xj | j ∈ [k] \ I) satisfying the
conditions in Claim 4.11 is at most kk+32kprk ·Γn · |A|r−|I|−1. We will count by distinguishing all possibilities
for the index t ∈ [k] \ S and the set S ⊆ [k] \ (I ∪ {t}) obtained from Claim 4.11. There are clearly at most
k possibilities for t and at most 2k possibilities for S.

Hence it suffices to prove that for every fixed t ∈ [k] \ S and every fixed set S ⊆ [k] \ (I ∪ {t}) of size
|S| = r − |I| − 1 there are at most kk+2prk · Γn · |A|r−|I|−1 possibilities for choosing vectors xj ∈ A for

j ∈ [k] \ I such that xt ∈
⋃L

ℓ=1

⋃

j∈[k]\I W
(ℓ)
j and x1, . . . , xk ∈ span(xi | i ∈ I ∪ {t} ∪ S).

By (4.6) the number of possibilities for xt is at most kk+2pr ·Γn. For every j ∈ S, the number of possibilities
for xj ∈ A is at most |A|. Finally, after making all these choices, for each of the remaining j ∈ [k]\(I∪{t}∪S),
we have at most pr choices for xj , since xj ∈ span(xi | i ∈ I ∪ {t} ∪ S) and dim span(xi | i ∈ I ∪ {t} ∪ S) ≤
|I|+1+ |S| = r (recall that the vectors xi for i ∈ I are fixed). Thus, the number of possibilities for choosing
xj ∈ A for j ∈ [k] \ I with the above properties is indeed at most

kk+2pr · Γn · |A||S| · (pr)k−|I|−|S|−1 = kk+2pr · Γn · |A|r−|I|−1 · (pr)k−r ≤ kk+2prk · Γn · |A|r−|I|−1.

This finishes the proof of the lemma.

By adding up the bound in Lemma 4.10 over all possible choices of the subset I ⊆ [k] and the vectors xi ∈ A
for i ∈ I, we can show the following corollary.

Corollary 4.12. For any fixed r with ⌊w/(k+1)⌋+1 ≤ r ≤ k, the number of solutions (x1, . . . , xk) ∈ Ak to
the system (⋆) with ω(x1, . . . , xk) = w and dim span(x1, . . . , xk) = r is at most (2k)2kprk · Γn · |A|r−1.

Proof. By Claim 4.7 every such solution (x1, . . . , xk) satisfies |I(x1, . . . , xk)| = ⌊w/(k + 1)⌋.
We claim that for each set I ⊆ [k] with |I| = ⌊w/(k + 1)⌋, there are at most kk+32kprk · Γn · |A|r−1

solutions (x1, . . . , xk) ∈ Ak to the system (⋆) with ω(x1, . . . , xk) = w and dim span(x1, . . . , xk) = r and
I(x1, . . . , xk) = I. Indeed, there are |A||I| possibilities to choose vectors xi ∈ A for i ∈ I, and after fixing these
vectors the desired number of solutions (x1, . . . , xk) ∈ Ak is by Lemma 4.10 at most kk+32kprk ·Γn · |A|r−|I|−1.
So in total we have indeed at most |A||I| · kk+32kprk · Γn · |A|r−|I|−1 = kk+32kprk · Γn · |A|r−1 solutions for
any given I.
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Since the number of possible subsets I ⊆ [k] with |I| = ⌊w/(k + 1)⌋ is clearly at most 2k, the number of
solutions (x1, . . . , xk) ∈ Ak as in the statement of the corollary is at most

2k · kk+32kprk · Γn · |A|r−1 ≤ (2k)2kprk · Γn · |A|r−1.

Here, we used that k ≥ 3 since k ≥ 2m+ 1 + ⌊w/(k + 1)⌋ and m ≥ 1.

As mentioned above, we now perform a random subspace sampling argument. Choose the unique integer d
such that

1

(2k)2k+1 · p2k+1
·
( p

Γ

)n/(k−1)

< pd ≤ 1

(2k)2k+1 · p2k ·
( p

Γ

)n/(k−1)

. (4.7)

Claim 4.13. We have 2 ≤ d ≤ n.

Proof. Recall that we assumed that (p/Γ)n > (2kp2)(2k+1)(k−1). Hence

pd >
1

(2k)2k+1 · p2k+1
· (2kp2)2k+1 = p2k+1,

and consequently d ≥ 2k+1 ≥ 2. For the upper bound on d, recall that 1 ≤ Γ < p, so pd ≤ (p/Γ)n/(k−1) ≤ pn

and therefore d ≤ n.

Let us now consider a uniformly random d-dimensional subspace V ⊆ F
n
p . The following claims give useful

bounds for the expected number of vectors in A∩ V and the expected number of solutions (x1, . . . , xk) ∈ Ak

with ω(x1, . . . , xk) = w and x1, . . . , xk ∈ V .

Claim 4.14. We have

E[|A ∩ V |] > 3

4
· p

d

pn
· |A|.

Proof. Recall that 0 6∈ A. So by Lemma 2.2 (applied with s = 1), for each vector x ∈ A we have

P[x ∈ V ] =
pd − 1

pn − 1
>

3

4
· p

d

pn
.

Here we used that pd − 1 ≥ (3/4)pd since p ≥ 2 and d ≥ 2 (see Claim 4.13). Now, adding this up over all
x ∈ A gives the desired bound.

Claim 4.15. For any r with ⌊w/(k+ 1)⌋+1 ≤ r ≤ k, the expected number of solutions (x1, . . . , xk) ∈ Ak to
(⋆) with ω(x1, . . . , xk) = w and dim span(x1, . . . , xk) = r such that x1, . . . , xk ∈ V is at most

1

2k
· p

d

pn
· |A|

Proof. By Corollary 4.12, the total number of solutions (x1, . . . , xk) ∈ Ak to (⋆) with ω(x1, . . . , xk) = w and
dim span(x1, . . . , xk) = r is at most (2k)2kprk ·Γn · |A|r−1. For each of these solutions, by Lemma 2.2 (applied
to a list of r linearly independent vectors among x1, . . . , xk), the probability of having x1, . . . , xk ∈ V is at
most (pd/pn)r.

Thus, in the case r ≥ 2 the expected number of solutions in the claim statement is by |A| ≤ pn and (4.7) at
most

(2k)2kprk · Γn · |A|r−1 ·
(

pd

pn

)r

≤ 1

2k
· (2k)2k+1prk · Γn · |A| · (pn)r−2 ·

(

pd

pn

)r−1

· p
d

pn

=
1

2k
· p

d

pn
· |A| · (2k)2k+1prk · Γ

n

pn
· (pd)r−1

≤ 1

2k
· p

d

pn
· |A| · (2k)2k+1prk ·

(

1

(2k)2k+1 · p2k
)r−1

·
(

Γ

p

)n·(1− r−1

k−1
)
≤ 1

2k
· p

d

pn
· |A|
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where in the last step we used that Γ < p. It remains to consider the case r = 1. In this case the expected
number of solutions as in the claim statement is at most

(2k)2kprk · Γn · |A|r−1 ·
(

pd

pn

)r

= (2k)2kpk · Γn · p
d

pn
≤ 1

2k
· |A| · p

d

pn
,

where we used that |A| ≥ (2kp)2k+1 · Γn ≥ (2k)2k+1pk · Γn by (4.3).

Corollary 4.16. The expected number of solutions (x1, . . . , xk) ∈ Ak to (⋆) with ω(x1, . . . , xk) = w and
x1, . . . , xk ∈ V is at most

1

2
· p

d

pn
· |A|.

Proof. By Claim 4.7, for every solution (x1, . . . , xk) ∈ Ak to (⋆) with ω(x1, . . . , xk) = w we must have
⌊w/(k + 1)⌋+ 1 ≤ dim span(x1, . . . , xk) ≤ k. Hence, the claim follows from Claim 4.15 by summing over all
integers r with ⌊w/(k + 1)⌋+ 1 ≤ r ≤ k (noting that there are at most k possibilities for r).

Let Z be the number of solutions (x1, . . . , xk) ∈ Ak to (⋆) with ω(x1, . . . , xk) = w and x1, . . . , xk ∈ V . By
Corollary 4.16, we have E[Z] ≤ (1/2) · (pd/pn) · |A|. Together with Claim 4.14 this yields

E[|A ∩ V | − Z] >
3

4
· p

d

pn
· |A| − 1

2
· p

d

pn
· |A| = 1

4
· p

d

pn
· |A|.

So let us fix an outcome for the d-dimensional subspace V ⊆ F
n
p such that |A∩ V | −Z > (1/4) · (pd/pn) · |A|.

We can now define a subset A∗ ⊆ A ∩ V by deleting one vector from each solution (x1, . . . , xk) ∈ Ak to (⋆)
with ω(x1, . . . , xk) = w and x1, . . . , xk ∈ V . Then

|A∗| ≥ |A ∩ V | − Z >
1

4
· p

d

pn
· |A|

and there do not exist any solutions (x1, . . . , xk) ∈ (A∗)k to (⋆) with ω(x1, . . . , xk) = w.

Our goal is now to obtain a contradiction by applying the induction hypothesis for w − 1 to A∗ ⊆ V ∼= F
d
p.

Note that using (4.2) and (4.7), we have

|A∗| > 1

4
· p

d

pn
·|A| ≥ 1

4
· p

d

pn
·4C′(2kp)2k+1 ·pn ·

(

Γ

p

)c′n/(k−1)

≥ C′ ·pd ·(2kp)c′(2k+1) ·
(

Γ

p

)c′n/(k−1)

≥ C′ ·p(1−c′)d.

Since V ∼= F
d
p, we can interpret A∗ ⊆ V as a subset of Fd

p. As |A∗| > C′ ·p(1−c′)d, by the induction hypothesis

for w−1, there must be a solution (x1, . . . , xk) ∈ (A∗)k to the system (⋆) with ω(x1, . . . , xk) > w−1. By our
construction of A∗, we have ω(x1, . . . , xk) 6= w. This means that we must have ω(x1, . . . , xk) > w, but since
(x1, . . . , xk) ∈ (A∗)k ⊆ Ak this is a contradiction to our assumption on the set A. This finishes the inductive
proof of Proposition 4.5.

5 Concluding Remarks

Recall that in our main result, Theorem 1.2, we assumed that every m×m minor of the m×k matrix (aj,i)j,i
is non-singular. As discussed in the introduction, it is not possible to remove this assumption completely,
but it may be possible to weaken it in some ways.

In order for the conclusion of Theorem 1.2 to hold, it is certainly necessary to assume that no equation of the
form xi − xi′ = 0 for distinct i, i′ ∈ [k] is in the span of the equations in the system (⋆), since otherwise there
do not exist any solution (x1, . . . , xk) ∈ (Fn

p )
k to (⋆) where x1, . . . , xk are distinct. In other words (using

our other assumption that aj,1 + · · ·+ aj,k = 0 for j = 1, . . . ,m, which is also necessary as discussed in the
introduction), in Theorem 1.2 we certainly need to assume that the row-span of the m × k matrix (aj,i)j,i
does not contain any vector with exactly two non-zero entries.
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If we assume that aj,1 + · · · + aj,k = 0 for j = 1, . . . ,m and that the row-span of the m × k matrix (aj,i)j,i
does not contain any vector with exactly two non-zero entries, then every subset A ⊆ F

n
p not containing

solution (x1, . . . , xk) ∈ Ak to (⋆) with distinct x1, . . . , xk must have size |A| = o(pn) as n → ∞ (where p, m
and k are fixed). This follows from an arithmetic removal lemma for solutions to systems of linear equations
due to Král’, Serra, and Vena [15, Theorem 1] and independently Shapira [26, Theorem 2.2]. It would be
plausible that one also has a bound of the form |A| ≤ Cp,m,k · (Γ∗

p,m,k)
n with Γ∗

p,m,k < p under these weaker
assumptions, i.e. it would be plausible that Theorem 1.2 also holds with these weaker assumptions.

However, proving Theorem 1.2 under these weaker assumptions is most likely extremely difficult. In fact,
proving such a statement (even with an assumption that the number of variables is very large in terms of
the number of equations) would imply a bound of the form |A| ≤ Cp,k · (Γ∗

p,k)
n with Γ∗

p,k < p for the size
of a k-term-progression-free subset A ⊆ F

n
p . Indeed, for any (large) K, one can take (⋆) to be the system

of k − 1 equations in k +K variables consisting of the equations xi − 2xi+1 + xi+2 = 0 for i = 1, . . . , k − 2
as well as the equation Kxk − xk+1 − · · · − xk+K = 0. Then aj,1 + · · · + aj,k = 0 for j = 1, . . . , k − 1 and
the row-span of the (k − 1)× (k +K) matrix (aj,i)j,i does not contain any vector with exactly two non-zero
entries. But for any solution (x1, . . . , xk+K) ∈ Ak+K with distinct x1, . . . , xk+K , the vectors x1, . . . , xk form
a non-constant k-term arithmetic progression. Hence any k-term-progression-free subset A ⊆ F

n
p in particular

does not contain a solution (x1, . . . , xk+K) ∈ Ak+K to this system of equations with distinct x1, . . . , xk.

For k ≥ 4, proving that a k-term-progression-free subset A ⊆ F
n
p has size |A| ≤ Cp,k · (Γ∗

p,k)
n with Γ∗

p,k < p
is a big open problem, that has received the attention of many researchers, especially after Ellenberg and
Gijswijt [5] proved such a statement for k = 3. Weakening the assumptions on the matrix (aj,i)j,i in Theorem
1.2 in the way discussed above is at least as difficult a problem, and therefore seems to be out of reach of
current methods.

A more tractable problem might be to improve upon the value of the constant Γ∗
p,m,k < p in Theorem 1.2 that

our proof obtains. Given the inductive nature of the proof with the repeated subspace sampling arguments,
this value is likely not optimal. It would be extremely interesting to determine whether one can take Γ∗

p,m,k

to be equal to the constant Γp,m,k in Theorem 1.1 as defined in (3.1). Even in the case where (⋆) consists
only of one equation (i.e. in the case m = 1) this is a widely open problem, and in the special case of the
equation x1 + · · ·+ xp = 0 it has applications to bounding Erdős-Ginzburg-Ziv constants (see [9, 21, 24]).
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