PCMI GSS Asymptotic Enumeration: Problem Set 3

Lecturer: Jinyoung Park; TA: Bob Krueger

July 10, 2025

The \star 's roughly indicate difficulty. Hints are given as footnotes. Please find a group to work with and don't be afraid to ask questions! Also please continue working on problems from previous problem sets (attached at the end of this document).

1. * Recall of the definition of a ψ -approximation: for $A \subseteq \mathcal{O}$, a ψ -approximation $(S, F) \in 2^{\mathcal{O}} \times 2^{\mathcal{E}}$ is such that $[A] \subseteq S$ ($[A] = \{v : N(v) \subseteq N(A)\}$ is the closure of A), $F \subseteq N(A)$, $d_F(u) \geq d - \psi$ for all $u \in S$, and $d_S(v) \leq \psi$ for all $v \in \mathcal{E} \setminus F$. Show that 1

$$|S| \le |F| + \frac{t\psi}{d - \psi},$$

where t = |N(A)| - |[A]|.

2. ** The goal of this problem is to derive $i(Q_d) \leq (1 + o(1))2\sqrt{e}2^{2^{d-1}}$. Recall that $N := |V(Q_d)| = 2^d$. We will use the three lemmas below for the proof.

Lemma 1. In Q_d , let $\mathcal{G}(a,g)$ be the set of all 2-linked $A \subseteq \mathcal{O}$ such that |[A]| = a, |N(A)| = g. Then there exists a constant c > 0 such that

$$|\mathcal{G}(a,g)| = 2^{d-1} \cdot 2^{g-c(g-a)}.$$

Below are well-known isoperimetric inequalities for Q_d .

Lemma 2. For $A \subseteq \mathcal{O}$,

- (a) If $|A| \le d/10$, then $|N(A)| \ge d|A| |A|^2$.
- $(b) \ \ \textit{If} \ |A| \leq d^{10}, \ then \ |N(A)| \geq d|A|/10.$
- (c) If $|A| < 2^{n-2}$, then $|N(A)| > (1 + \Omega(1/\sqrt{d}))|A|$.

The next lemma is useful for counting connected subsets.

Lemma 3. Let G be a graph of maximum degree at most d, and let $v \in V(G)$. Let $A_v(k) = \{A \subseteq V(G) : v \in A, |A| = k, G[A] \text{ is connected}\}$. Then $|A_v(k)| \leq (ed)^k$.

¹Upper bound $e(S, F) + e(S, N(A) \setminus F) + e(S, \mathcal{O} \setminus N(A))$.

Now, derive $i(Q_d) \leq (1 + o(1))2\sqrt{e}2^{2^{d-1}}$ following the given steps.

(a) Prove that if I is an independent set of Q_d , then either $|I \cap \mathcal{E}|$ or $|I \cap \mathcal{O}|$ is at most $N/4 = 2^{d-2}$. Use this to show that

$$i(Q_d) \le 2 \cdot 2^{N/2} \sum_{\substack{X \subseteq \mathcal{E} \\ |X| \le N/4}} 2^{-|N(X)|}.$$

(b) Using (a), show that²

$$i(Q_d) \le 2 \cdot 2^{N/2} \exp \left(\sum_{\substack{A \subseteq \mathcal{E} \\ A \text{ is 2-linked} \\ 1 \le |A| \le N/4}} 2^{-|N(A)|} \right)$$

- (c) Compute the sum of the terms with |A| = 1.
- (d) Use Lemma 2 and Lemma 3 to show that the sum of the terms with $2 \le |A| \le d/10$ is o(1).
- (e) Use Lemma 1 and Lemma 2 to show that the sum of the remaining terms is o(1).

²Break A up into its '2-linked components' A_1, \ldots, A_k , and use that N(A) is the disjoint union of $N(A_1), \ldots, N(A_k)$.

Problem Set 2

- 1. $\star \star \star$ Try to come up with asymptotically accurate lower bounds construction for the following counts. Convince yourself why your construction should be asymptotically best possible.
 - (a) The number of 4-colorings of Q_d .³
 - (b) The number of 5-colorings of Q_d .⁴
 - (c) The number of (rooted) graph homomorphisms from Q_d to \mathbb{Z} . That is, f: $V(Q_d) \to \mathbb{Z}$ with f(0) = 0 and |f(x) - f(y)| = 1 for every edge xy of Q_d .
 - (d) The number of (rooted) '3-Lipschitz functions' on \mathcal{Q}_d , which are functions f: $V(Q_d) \to \mathbb{Z}$ with f(0) = 0 and $|f(x) - f(y)| \le 3$ for every edge xy of Q_d .
- 2. \star Recall that $i(Q_d) = (1 + o(1))2\sqrt{e}2^{2^{d-1}}$. Compute the o(1) error term to order 2^{-d} by considering 'defects' consisting of 1 or 2 nearby vertices. The you're feeling brave, you can compute it to order 2^{-2d} by considering 'defects' of up to 3 nearby vertices. (Be careful not to overcount. There is a systematic/algorithmic way, known as the cluster expansion method from statistical physics, for computing these finer asymptotics.)
- 3. ** In this exercise, you will prove the following container lemma from lecture (without assuming G is bipartite):

Lemma 4. Let G be an n-vertex d-regular graph. For every $\varepsilon > 0$, there exists $\mathcal{C} \subseteq$ $2^{V(G)}$ such that

- for every independent set I of G, there exists $C \in \mathcal{C}$ such that $I \subseteq C$,
- $|\mathcal{C}| \leq \binom{n}{\leq n/\varepsilon d}$, and
- for every $C \in \mathcal{C}$, $|C| \leq \frac{n}{\varepsilon d} + \frac{n}{2-\varepsilon}$.

Recall that $\Delta(G)$ is the maximum degree of G, and G[U] denotes the subgraph of G induced by U.

(a) Let $C \subseteq V(G)$ and $\varepsilon > 0$. Show that if $|C| \ge \frac{n}{2-\varepsilon}$, then $\Delta(G[C]) \ge \varepsilon d$. (This is known as a 'supersaturation' statement: if C is too big, then C must be 'far' from independent, which here is measured by $\Delta(G[C])$. Supersaturation is a necessary ingredient for a container lemma.) Show that the 2 cannot be replaced with 2.1.

³To check your work, the answer is $\sim 2^{2^d} \cdot 6 \cdot e$.

⁴To check your work, the answer is $\sim 6^{2^{d-1}} \cdot 20 \cdot \exp\left((4/3)^{d-1} + \frac{1}{2}\right)$.

 $^{^5\}text{To check your work, the answer is} \sim 2^{2^{d-1}} \cdot 2 \cdot e.$

⁶To check your work, the answer is $\sim 4^{2^d} \cdot 4 \cdot \exp\left(\frac{1}{4}\left(\frac{3}{2}\right)^d + \frac{d(d+1)}{36}\left(\frac{9}{8}\right)^d + \frac{1}{4}\right)$.

⁷To check your work, the answer is $i(Q_d) = (1 + 2^{-d} \frac{3d^2 - 3d - 2}{8} + o(2^{-d}))2\sqrt{e}2^{2^{d-1}}$

- (b) Let $\varepsilon > 0$. Greedily construct $S \subseteq V(G)$ such that $|S| \leq \frac{n}{\varepsilon d}$ and $C = V(G) \setminus (S \cup N(S))$ satisfies $|C| \leq \frac{n}{2-\varepsilon}$.
- (c) Let I be an independent set of G. Show that for every $S \subseteq I$, we have $I \setminus S \subseteq V(G) \setminus (S \cup N(S))$.
- (d) Let $\varepsilon > 0$, and let I be an independent set of G. Greedily construct $S \subseteq I$ and C which depends only on S, not I such that $|S| \leq \frac{n}{\varepsilon d}$, $I \setminus S \subseteq C$, and $|C| \leq \frac{n}{2-\varepsilon}$. (Formally, construct functions $f: \mathcal{I}(G) \to \binom{|V(G)|}{\leq n/\varepsilon d}$ and $g: \binom{|V(G)|}{\leq n/\varepsilon d} \to \binom{|V(G)|}{\leq n/(2-\varepsilon)}$ such that for every $I \in \mathcal{I}(G)$, $S \subseteq I$ and $I \setminus S \subseteq C$, where S = f(I) and C = g(f(I)).) (This algorithm is called the graph container algorithm; S is known as the 'certificate.')
- (e) Finish the proof of Lemma 4 by running the algorithm from (d) on all independent sets of G.
- 4. ** Modify Lemma 4 and its proof (steps (a)-(f)) to produce containers for 'nearly' independent sets $I \subseteq V(G)$ with $\Delta(G[I]) \leq b$.
- 5. $\star\star\star$ Refine the analysis of the container algorithm to obtain the following improved version of Lemma 4:¹⁰¹¹

Lemma 5. Let G be an n-vertex d-regular graph. There exists $C \subseteq 2^{V(G)}$ such that

- for every independent set I of G, there exists $C \in \mathcal{C}$ such that $I \subseteq C$,
- $|\mathcal{C}| \le \binom{n}{\le \frac{n}{d} \log_2(d)}$, and
- for every $C \in \mathcal{C}$, $|C| \leq \frac{n}{d} \log_2(d) + \frac{n}{2}$.

Use Lemma 5 to show that $\log i(G) \leq (1 + O(\log^2(d)/d)) n/2$ for every *n*-vertex *d*-regular graph *G*. (Recall that Lemma 4 gives $O(\sqrt{\log(d)/d})$ as the error term, and the entropy argument gives the optimal O(1/d) error.)

 $^{^{8}}$ Use (a).

⁹Taking a cue from (b), we start with $S = \emptyset$, $C = V(G) \setminus (S \cup N(S))$, iteratively find a highest degree vertex v of G[C], and add v to S. But since we require $S \subseteq I$, we may only put v to S if $v \in I$. If $v \notin I$, then we do not add v to S, but we do delete v from C. While it appears that the C constructed here depends on I, you should argue that C only depends on S.

¹⁰Change the exit condition of the container algorithm from $\Delta(G[C]) \leq \varepsilon d$ to $|C| \leq n/2$.

¹¹Iteratively analyze the graph container algorithm, considering several phases, each of which cuts $\Delta(G[C])$ by half.

Problem Set 1

- 1. \star Recall this theorem from the lecture: if G is an n-vertex d-regular bipartite graph, then $\log_2 i(G) \leq (1 + O(1/d)) n/2$. Give an example which shows that the dependence on d is best possible. ($\star\star$ If we've prove this theorem already, try to follow the proof on your example and notice how the inequalities become sharp.)
- 2. $\star \star \star$ You might skim through this exercise if you are already familiar with Shannon entropy. In what follows $\mathbf{X}, \mathbf{Y}, \ldots$ are finitely-supported random variables. Recall that the (binary) entropy of \mathbf{X} is

$$H(\mathbf{X}) = \sum_{x} \mathbb{P}(\mathbf{X} = x) \log \frac{1}{\mathbb{P}(\mathbf{X} = x)},$$

where the log is taken base 2. Entropy is a measure of the 'information' stored in a random variable, here measured in bits; another interpretation is that entropy is the average 'surprise' upon learning the realization of a random variable. Verify the following starting with only the above definition of entropy.

- (a) (Uniform maximizes entropy) Suppose **X** is supported on a finite set S. Show that $H(\mathbf{X}) \leq \log |S|$, with equality if and only if **X** is uniform on S. (This is why entropy is helpful for counting problems: if we want to count |S|, we may equivalently calculate the entropy of the uniform random variable on S.)¹²
- (b) (Chain rule) Recall the definition of conditional entropy:

$$H(\mathbf{X}|\mathbf{Y}) = \sum_{y} \mathbb{P}(\mathbf{Y} = y) \sum_{x} \mathbb{P}(\mathbf{X} = x | \mathbf{Y} = y) \log \frac{1}{P(\mathbf{X} = x | \mathbf{Y} = y)}.$$

Show that

$$H(\mathbf{X}, \mathbf{Y}) - H(\mathbf{X}) = H(\mathbf{Y}|\mathbf{X}).$$

- (c) (Additivity for independent variables) We say that \mathbf{X} and \mathbf{Y} are independent if $\mathbb{P}(\mathbf{X} = x, \mathbf{Y} = y) = \mathbb{P}(\mathbf{X} = x)\mathbb{P}(\mathbf{Y} = y)$ for all x and y. Show that if \mathbf{X} and \mathbf{Y} are independent, then $H(\mathbf{Y}|\mathbf{X}) = H(\mathbf{Y})$ and $H(\mathbf{X}, \mathbf{Y}) = H(\mathbf{X}) + H(\mathbf{Y})$.
- (d) (Dropping conditioning) Show that $H(\mathbf{Y}|\mathbf{X}) \leq H(\mathbf{Y})$, and characterize equality.¹³
- (e) (Subadditivity) Show that $H(\mathbf{X}, \mathbf{Y}) \leq H(\mathbf{X}) + H(\mathbf{Y})$. Furthermore $H(\mathbf{X}) \leq \sum_{i} H(\mathbf{X}_{i})$.
- (f) (Dropping conditioning, part 2) Show that $H(\mathbf{Y}|\mathbf{X}, \mathbf{Z}) \leq H(\mathbf{Y}|\mathbf{X})$.
- (g) (Inserting conditioning) Show that $H(\mathbf{X}|\mathbf{Z}) \leq H(\mathbf{X}|\mathbf{Y}) + H(\mathbf{Y}|\mathbf{Z})$.

¹²There is an elementary proof using the inequality $\log(x) \le x - 1$. Alternatively, one can use Jensen's inequality.

¹³Use $\log(x) \le x - 1$ or Jensen's Inequality *judiciously*, in addition to Bayes' Rule.

- (h) (Refinement) If Y determines X, then H(X|Y) = 0 and $H(Z|Y) \le H(Z|X)$.
- (i) (Shearer's Inequality) Let $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_k)$ be a random vector, and let $\alpha : 2^{[k]} \to \mathbb{R}_{\geq 0}$ be such that $\sum_{A\ni i} \alpha(A) \geq 1$ for all $i\in [k]$. Show that

$$H(\mathbf{X}) \le \sum_{A \subseteq [k]} \alpha(A) H(\mathbf{X}_A),$$

where
$$\mathbf{X}_A = (\mathbf{X}_i)_{i \in A}$$
.¹⁴

3. ** Let $0 \le \alpha \le 1/2$. Show that the number of subsets of [n] of size at most αn is at most $2^{h(\alpha)n}$, where $h(\alpha) = \alpha \log_2 \left(\frac{1}{\alpha}\right) + (1-\alpha) \log_2 \left(\frac{1}{1-\alpha}\right)$. Derive that $\binom{n}{\le k} \le \left(\frac{en}{k}\right)^k$. 16

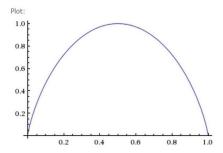


Figure 1: a plot of $h(\alpha)$

- 4. $\star\!\star$ Find a bijection between the following two collections.
 - (proper) 3-colorings of Q_d with the color of a prefixed vertex v_0 is fixed;
 - the graph homomorphisms from Q_d to \mathbb{Z} (in which two vertices a, b are adjacent iff |a b| = 1) with $f(v_0) = 0$.

The For each $A \subseteq [k]$, we have $H(\mathbf{X}_A) = \sum_{i \in A} H(\mathbf{X}_i | \mathbf{X}_{A \cap [i-1]}) \ge \sum_{i \in A} H(X_i | X_{[i-1]})$.

¹⁵Image from D. Galvin, Three tutorial lectures on entropy and counting, arXiv 1406.7872

¹⁶Where have you seen $h(\alpha)$ before? Express the counting problem as an entropy problem and use subadditivity.