# Lecture 4: Learning classes of quantum states 

Srinivasan Arunachalam (IBM Quantum)

## Learning interesting quantum states

Fundamental drawback of almost all results so far in the last lecture

- For tomography on $n$ qubits, the sample complexity is $O\left(2^{2 n}\right)$
- For shadow tomography, PAC learning the sample complexity is poly $(n)$ but the time complexity is large

```
Is it possible to time or sample-efficiently learn interesting states?
```

In this lecture.

- Learning Gibbs states of local Hamiltonians
- Learning stabilizer states
- Statistical learning


## Hamiltonian Learning Problem

Learning Hamiltonians. Given Gibbs states of Hamiltonians, learn the Hamiltonian?
Problem definition. Let $H$ be a $\kappa$-local Hamiltonian acting on $n$ qubits written as $H=\sum_{i=1}^{m} \mu_{i} E_{i}$ for an orthonormal $k$-local basis $\left\{E_{i}\right\}$. Given $T$ copies of a Gibbs state

$$
\rho=\frac{e^{-\beta H}}{\operatorname{Tr}\left(e^{-\beta H}\right)},
$$

output $\mu^{\prime}=\left(\mu^{\prime}{ }_{1}, \ldots, \mu_{m}^{\prime}\right)$ such that $\left\|\mu^{\prime}-\mu\right\|_{2} \leq \varepsilon$.
Motivation for this problem. Physics perspective, verification of quantum systems, Machine learning, Experimental motivation
Result [AAKS'20]: No. of copies of $\rho$ to solve HLP is $\widetilde{\Theta}\left(\operatorname{poly}\left(e^{\beta+\kappa}, 1 / \beta, 1 / \varepsilon, n^{3}\right)\right.$.

## Quantum proof: First idea

Recall: Given copies of $\rho_{\mu}=\frac{1}{z_{\beta}} e^{-\beta H}$ where $H=\sum_{i} \mu_{i} E_{i}$, output approximation of $\mu$
Sufficient statistics: Just use shadow tomography
(1) Suppose we have approximations $e_{i}^{\prime}$ of

$$
e_{i}=\operatorname{Tr}\left(E_{i} \rho_{\mu}\right) \quad \text { for all } i \in[m]
$$

satisfying $\left|e_{i}^{\prime}-e_{i}\right| \leq \varepsilon$, can we recover $\mu$ ? Using [Aar'18, HKP'20, BO'20]?
(2) Classical post-processing produces $\rho^{\prime} \approx \rho_{\mu}$, but that doesn't even imply $\rho^{\prime}$ is a Gibbs state $e^{-\beta H^{\prime}}$, so approximating $\mu$ is unclear!
Observation 1: suppose we maximize over $\rho_{\lambda}=e^{-\beta H}$ where $H=\sum_{i} \lambda_{i} E_{i}$ s.t.

$$
\operatorname{Tr}\left(\rho_{\lambda} E_{i}\right)=\operatorname{Tr}\left(\rho_{\mu} E_{i}\right) \quad \text { for every } i \in[m],
$$

then $\rho_{\lambda}=\rho_{\mu}$ which implies $\lambda=\mu$. Isn't this "hard"?
Observation 2: Maximum entropy principle $\rightarrow$ Cast as an optimization problem

$$
\begin{array}{ll}
\max _{\sigma} & S(\sigma) \\
\text { s.t. } & \operatorname{Tr}\left[\sigma E_{i}\right]=e_{i}, \quad \forall i \in[m]  \tag{1}\\
& \sigma \succcurlyeq 0, \quad \operatorname{Tr}[\sigma]=1 .
\end{array}
$$

where $S(\sigma)=-\operatorname{Tr}[\sigma \log \sigma]$ is the quantum entropy of $\sigma$. Optimum of (1) equals $\rho_{\mu}$

## Quantum proof: First idea (continued)

Recall: Given copies of $\rho_{\mu}=\frac{1}{z_{\beta}} e^{-\beta H}$ where $H=\sum_{i} \mu_{i} E_{i}$, output approximation of $\mu$
Maximum entropy principle: $\sigma$ with equal marginals $\left\{e_{i}\right\}$ \& maximum entropy is $\rho_{\mu}$ Given approximations $e_{i}^{\prime}$ of $e_{i}=\operatorname{Tr}\left(E_{i} \rho_{\mu}\right)$ for $i \in[m]$ satisfying $\left|e_{i}^{\prime}-e_{i}\right| \leq \varepsilon$ recover $\mu$ ?

$$
\begin{array}{cl}
\max _{\sigma} & S(\sigma) \\
\text { s.t. } & \operatorname{Tr}\left[\sigma E_{i}\right]=e_{i}, \quad \forall i \in[m] \quad \xrightarrow{\text { Approximations }} \\
& \sigma \succcurlyeq 0, \quad \operatorname{Tr}[\sigma]=1 .
\end{array}
$$

If $\rho_{\mu}$ maximizes first and $\rho_{\mu^{\prime}}$ maximizes second problem, then $\left\|\rho_{\mu}-\rho_{\mu^{\prime}}\right\|_{1} \leq O(m \varepsilon)$. Does this suffice for our problem in approximating the $\mu \mathrm{s}$ ? No

In order to approximate $\mu$, need to bound

$$
\left\|\log \rho_{\mu}-\log \rho_{\mu^{\prime}}\right\|_{1}
$$

Could be exponentially worse than $\left\|\rho_{\mu}-\rho_{\mu^{\prime}}\right\|_{1}$. Issue is non-Lipschitz nature of $\log (x)$ function


## Strong convexity

Recall: Given copies of $\rho_{\mu}=\frac{1}{z_{\beta}} e^{-\beta H}$ where $H=\sum_{i} \mu_{i} E_{i}$, output approximation of $\mu$
How to handle $\log \left(\rho_{\mu}\right)-\log \left(\rho_{\mu^{\prime}}\right)$ ? Let's take a look at the dual

$$
\begin{array}{ll}
\max _{\sigma} & S(\sigma) \\
\text { s.t. } & \operatorname{Tr}\left[\sigma E_{i}\right]=e_{i}, \quad \forall i \in[m] \quad \xrightarrow{\text { Dual }} \quad \mu=\underset{\lambda_{1}, \ldots, \lambda_{m}}{\arg \min } \log Z_{\beta}(\lambda)+\beta \cdot \sum_{i} \lambda_{i} e_{i}, \\
& \sigma \succcurlyeq 0, \quad \operatorname{Tr}[\sigma]=1 .
\end{array}
$$

$$
\text { where } Z_{\beta}(\lambda)=\operatorname{Tr}\left(e^{-\beta H}\right) \& H=\sum_{i} \lambda_{i} E_{i}
$$

Issue: Don't have $e_{i}=\operatorname{Tr}\left(\rho_{\mu} E_{i}\right)$, but only $e_{i}^{\prime}$ satisfying $\left|e_{i}^{\prime}-e_{i}\right| \leq \varepsilon$, so we are solving

$$
\max _{\sigma} S(\sigma)
$$

$$
\begin{array}{ll}
\sigma . t . & \operatorname{Tr}
\end{array}\left[\sigma E_{i}\right]=e_{i}^{\prime}, \quad \forall i \in[m] \quad \xrightarrow{\text { Dual }} \quad \mu^{\prime}=\underset{\lambda_{1}, \ldots, \lambda_{m}}{\arg \min } \log Z_{\beta}(\lambda)+\beta \cdot \sum_{i} \lambda_{i} e_{i}^{\prime}
$$

$$
\sigma \succcurlyeq 0, \quad \operatorname{Tr}[\sigma]=1
$$

$$
\text { How far is } \mu \text { from } \mu^{\prime} \text { given } \varepsilon \text { additive approximations of }\left\{e_{i}\right\}_{i} \text { ? }
$$

Strong convexity: Puts a bound on how slow the function changes.
Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$. If $\nabla^{2} f \succcurlyeq \alpha \mathbb{I}$, then for every $\nu, \nu^{\prime} \in \mathbb{R}^{m}$

$$
f\left(\nu^{\prime}\right)-f(\nu)-\nabla f(\nu)^{T}\left(\nu^{\prime}-\nu\right) \geq \alpha\left\|\nu^{\prime}-\nu\right\|_{2} \quad\left(\text { Think of } f(\cdot)=\log Z_{\beta}(\cdot)\right)
$$

## Hamiltonian Learning algorithm

Recall: Given copies of $\rho_{\mu}=\frac{1}{z_{\beta}} e^{-\beta H}$ where $H=\sum_{i} \mu_{i} E_{i}$, output approximation of $\mu$
Result [AAKS'20]: No. of copies of $\rho$ to solve HLP is $\widetilde{\Theta}\left(\operatorname{poly}\left(e^{\beta+\kappa}, 1 / \beta, 1 / \varepsilon, n^{3}\right)\right.$.
(1) Estimating marginals Shadows to get $e_{i}^{\prime}$ s.t. $\left|e_{i}^{\prime}-\operatorname{Tr}\left(E_{i} \rho_{\mu}\right)\right| \leq \delta$
(2) Sufficient statistics We then solve the optimization problem

$$
\mu^{\prime}=\max _{\lambda_{1}, \ldots, \lambda_{n}} \log Z_{\beta}(\lambda)+\beta \sum_{i} \lambda_{i} e_{i}^{\prime}
$$

(3) We show $\left\|\mu-\mu^{\prime}\right\|_{2} \leq \varepsilon$ by taking sufficient samples. Crucially showing log partition function is strong convex.

A few remarks:
(1) Algorithm not time efficient for generic Hamiltonians
(2) Except obtain measurement statistics of $\rho$, our algorithm is classical
(3) Exponential in $\beta, \kappa$ : Might seem bad, but cannot be generically avoided
(4) [HKT'22] considered small $\beta$, the sample complexity is $(\log n) /\left(\beta^{2} \varepsilon^{2}\right)$.

## Weyl matrices

Pauli matrices: $\mathbb{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), Y=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
n-qubit Pauli matrices $\{\mathbb{I}, X, Y, Z\}^{n}$ form an orthonormal basis for $\mathbb{C}^{n}$.
In particular, for every $x=(a, b) \in \mathbb{F}_{2}^{2 n}$, define a Weyl operator

$$
W_{x}=i^{a \cdot b}\left(X^{a_{1}} Z^{b_{1}} \otimes X^{a_{2}} Z^{b_{2}} \otimes \cdots \otimes X^{a_{n}} Z^{b_{n}}\right)
$$

$\left\{W_{x}\right\}$ are orthonormal, form a basis for quantum states, i.e., for every $|\psi\rangle$, we have

$$
|\psi\rangle\langle\psi|=\frac{1}{2^{n}} \sum_{x \in \mathbb{F}_{2}^{n}} \alpha_{x} \cdot W_{x},
$$

where

$$
\alpha_{x}=\operatorname{Tr}\left(W_{x}|\psi\rangle\langle\psi|\right), \quad \frac{1}{2^{n}} \sum_{x} \alpha_{x}^{2}=1 .
$$

Below we will use $p_{\psi}(x)=\alpha_{x}^{2} / 2^{n}$, so that $\sum_{x} p_{\psi}(x)=1$.
Note that this is similar to Fourier decomposition of a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ as $f(x)=\sum_{S} \widehat{f}(S) \chi_{S}(x)$ where $\sum_{S} \widehat{f}(S)^{2}=1$.

## Bell sampling

Recall. Pauli matrices $\{\mathbb{I}, X, Y, Z\}^{n}$ form an orthonormal basis for $\mathbb{C}^{n}$. In particular, for every $x=(a, b) \in \mathbb{F}_{2}^{2 n}$, define a Weyl operator

$$
W_{x}=i^{a \cdot b}\left(X^{a_{1}} Z^{b_{1}} \otimes X^{a_{2}} Z^{b_{2}} \otimes \cdots \otimes X^{a_{n}} Z^{b_{n}}\right)
$$

Define $p_{\psi}(x)=\langle\psi| W_{x}|\psi\rangle^{2} / 2^{n}$, and we have $\sum_{x} p_{\psi}(x)=1$.
Bell basis. Observe that $\left\{\left|W_{b}\right\rangle=\left(W_{b} \otimes \mathbb{I}\right)\left|\Phi^{+}\right\rangle: b \in\{0,1\}^{2}\right\}$ where $\left|\Phi^{+}\right\rangle=(|00\rangle+|11\rangle) / \sqrt{2}$ is an orthonormal basis for $\mathbb{C}^{2}$.

## Bell sampling.

- Input: Bell sampling takes 4 copies of an $n$-qubit $|\psi\rangle$.
- Procedure: Using the first two copies of $|\psi\rangle$, measure qubit $i, n+i$ in the Bell basis to obtain $\left(b_{i}, b_{i}^{\prime}\right)$. Call the resulting string $x=\left(\left(b_{1}, b_{1}^{\prime}\right), \ldots,\left(b_{n}, b_{n}^{\prime}\right)\right)$.
Using the second two copies of $|\psi\rangle$ to obtain $y=\left(\left(c_{1}, c_{1}^{\prime}\right), \ldots,\left(c_{n}, c_{n}^{\prime}\right)\right)$.
- Output: $x+y \in \mathbb{F}_{2}^{2 n}$.

Theorem. The output $z \in \mathbb{F}_{2}^{2 n}$ above is sampled according to the distribution

$$
q_{\psi}(z)=\sum_{a \in \mathbb{F}_{2}^{2 n}} p_{\psi}(a) p_{\psi}(z+a) .
$$

## Bell sampling for learning stabilizer states

Stabilizer states. Consider a Clifford circuit C (i.e., consisting of $H, S, C N O T$ gates) then output of $C\left|0^{n}\right\rangle$ is a stabilizer state!

Alternatively, a stabilizer state $|\psi\rangle$ is a pure states such that there is a subgroup $\mathcal{S} \subseteq\left\{W_{x}\right\}$ of size $2^{n}$ such that $P|\psi\rangle=|\psi\rangle$ for all $P \in \mathcal{S}$. In particular,

$$
|\psi\rangle\langle\psi|=\sum_{\sigma \subseteq \mathcal{S}} \sigma
$$

where $\mathcal{S} \subseteq\left\{W_{x}\right\}_{\times}$has dimension $n$.
Observe

$$
p_{\psi}(z)=2^{-n} \cdot\langle\psi| W_{z}|\psi\rangle^{2}= \begin{cases}2^{-n} & z \text { stabilizes }|\psi\rangle \\ 0 & \text { otherwise }\end{cases}
$$

Hence
$q_{\psi}(z)=\sum_{a \in \mathbb{F}_{2}^{2 n}} p_{\psi}(a) p_{\psi}(z+a)=2^{-n} \sum_{a \in \operatorname{Stab}(\psi)} p_{\psi}(z+a)=2^{-n}[z \in \operatorname{Stab}|\psi\rangle]=p_{\psi}(z)$.
Bell sampling uses 4 copies of $|\psi\rangle$ and produces a $z \sim q_{\psi}(z)$ (or $z \sim p_{\psi}(z)$ ). In particular, 4 copies produces a $W_{z}$ that stabilizes the unknown $|\psi\rangle$.

Learn the basis. Repeat the above for $O(n)$ times, to obtain $n$ many linearly independent zs that stabilize $|\psi\rangle$. Call it $\left\{W_{1}, \ldots, W_{n}\right\}$. Time complexity is $O\left(n^{3}\right)$

Learning beyond stabilizer states
(1) Single layer of $T$ gates

- [LC'21] considered learning states that are output of circuits that consist of Clifford + one layer of at most $O(\log n)$ many $T$ gates.
- Write a stabilizer decomposition of $|T\rangle$ state and write the resulting state as a sum of $2^{k}$ many stabilizer states.
- A technical modification of Bell sampling learns in time $\operatorname{poly}\left(n, 2^{k}\right)$
(2) A sequence of works [GIKL ('22,'22,'23), LOH'23, HG'23] showed how to learn Clifford $+k$ many $T$ gates in time $\operatorname{poly}\left(n, 2^{k}\right)$
- Stabilizer dimension $(\psi)=\operatorname{dim}\left(\left\{z:\langle\psi| W_{z}|\psi\rangle \neq 0\right\}\right)$.
- GIKL'23 showed how to learn states $|\psi\rangle$ with stabilizer dimension $\geq n-k$ in times poly $\left(n, 2^{k}\right)$
- Main idea is Bell sampling
- If $|\psi\rangle$ produced by Clifford $+k$ many non-Clifford gates, then Stabilizer dimension $(\psi) \geq n-k$.


## Bell sampling, viewed as taking derivatives

Learning stabilizer states. Bell sampling [Mon'17] A way of taking "derivatives"
Every stabilizer state written as $|\psi\rangle=\sum_{x \in A}(-1)^{x^{t} B x} \cdot i^{S \cdot x}|x\rangle$ for a subspace $A \subseteq \mathbb{F}_{2}^{n}$
A learning algorithm performs the following: (for simplicity let $A=\{0,1\}^{n}, S=0^{n}$ )

Goal is to learn $B \in \mathbb{F}_{2}^{n \times n}$. Take two copies of $|\psi\rangle$

$$
\begin{aligned}
|\psi\rangle \otimes|\psi\rangle & =\sum_{x, y}(-1)^{x^{t} B x+y^{t} B y}|x, y\rangle \\
& \stackrel{C N O T}{\rightarrow} \sum_{x, y}(-1)^{x^{t} B x+y^{t} B y}|x, x+y\rangle \\
& =\sum_{x, z}(-1)^{x^{t} B x+(x+z)^{t} B(x+z)}|x, z\rangle=\sum_{x, z}(-1)^{x^{t}\left(B+B^{t}\right) z+z^{t} B z}|x, z\rangle
\end{aligned}
$$

Measure the second register and suppose we obtain $\tilde{z}$, resulting state is

$$
(-1)^{\tilde{z}^{t} B \tilde{z}}\left(\sum_{x}(-1)^{x^{t}\left(B+B^{t}\right) \tilde{z}}|x\rangle\right)|\tilde{z}\rangle \xrightarrow{B V}\left|\left(B+B^{t}\right) \cdot \tilde{z}\right\rangle|\tilde{z}\rangle
$$

Two copies of $|\psi\rangle$ allow to take one derivative of $x^{t} B x$ (in the direction of $\tilde{z}$ ). Take $\tilde{O}(n)$ more copies to take $n$ derivatives and learn $B$, hence $|\psi\rangle$ completely

## Learning phase states

A natural extension? Let

$$
\left|\psi_{f}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}|x\rangle
$$

where degree of $f$ equals $d$. How many copies of $\left|\psi_{f}\right\rangle$ suffice to learn $f$ ?
Why care about phase states?

- Pseudorandomness: If $f$ is a pseudorandom function, then $\left|\psi_{f}\right\rangle$ is indistinguishable from a Haar random state.
- IQP circuits: Applying $\{Z, C Z, C C Z\}$ to $\mathrm{H}^{n}\left|0^{n}\right\rangle$ produces a degree-3 phase state
- Quantum complexity: Recently several results using phase states

In [ABDY'22], we considered the learning question and showed optimal bounds.

|  | Separable | Entangled |
| :---: | :---: | :---: |
| degree-d Binary phase state | $\Theta\left(n^{d}\right)$ | $\Theta\left(n^{d-1}\right)$ |

## Learning phase states with entangled measurements

A first approach. Taking derivatives? let $f$ be degree-3

$$
\left|\psi_{f}\right\rangle^{\otimes 2} \mapsto\left(s, \sum_{x}(-1)^{f(x)+f(x+s)}|x\rangle\right) .
$$

Recall that when $f$ was degree-2, then $f(x)+f(x+s)$ was degree-1, so we can learn it by applying Hadamards, but now $f(x)+f(x+s)$ is degree- 2 , unclear how to learn! An entangled learning algorithm.
(1.) Pretty good measurement for the ensemble $\mathcal{E}=\left\{\left|\psi_{f}\right\rangle^{\otimes k}: f \in P(n, d)\right\}$
(2.) The failure probability of the PGM for $\mathcal{E}$ is given by

$$
\begin{aligned}
\frac{1}{|\mathcal{E}|} \sum_{f \neq g}\left\langle\psi_{f} \mid \psi_{g}\right\rangle^{k} & =\sum_{g \in P^{*}(n, d)}\left[1-2 \operatorname{Pr}_{x}[g(x) \neq 0]\right]^{k} \\
& =\sum_{g \in P^{*}(n, d)}[1-2 w t(g)]^{k} \\
& =\sum_{\ell=1}^{d-1} \sum_{g \in P^{*}(n, d)}\left[1-2|g| / 2^{n}\right]^{k}\left[w t(g) \in\left[2^{n-\ell-1}, 2^{n-\ell}\right]\right]
\end{aligned}
$$

(3.) Use weight properties of Reed-Muller codes to show above is $\leq \exp \left(-k+n^{d-1}\right)$, which is $\leq 1 / 100$ for $k=O\left(n^{d-1}\right)$
(4.) Optimal since there are $n^{d}$ bits of information and each $\left|\psi_{f}\right\rangle$ has $n$ bits

## Quantum statistical query learning

Problem. Let $\mathcal{C}$ be a class of functions $c:\{0,1\}^{n} \rightarrow\{0,1\}$.
In quantum learning theory, given access to $T$ copies of

$$
\left|\psi_{c}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x}|x, c(x)\rangle
$$

can we learn $c$ ?
Entangled measurements: Joint-measurement on $\left|\psi_{c}\right\rangle^{\otimes T}$
Separable measurements The learner can only apply single-copy measurements QSQ model
(1) Maybe even entangled and separable measurements far from NISQ.
(2) In [AGY'20], introduced the quantum statistical query model (QSQ)
(3) QSQ learner can make Qstat queries: specifies $\|M\| \leq 1$ and $\tau \in[0,1]$

$$
\text { Qstat : }(M, \tau) \rightarrow \alpha_{M} \in\left[\left\langle\psi_{c}\right| M\left|\psi_{c}\right\rangle-\tau,\left\langle\psi_{c}\right| M\left|\psi_{c}\right\rangle+\tau\right]
$$

How many Qstat queries are necessary/sufficient to learn $c$ ?
(9) Say someone in the "cloud" possesses $\left|\psi_{c}\right\rangle$ and a learner is purely classical
(5) Quantum examples are useful for learning parities, juntas, DNF formulas, coupon collector: all of these algorithms need only QSQ measurements!

## How powerful are measurement statistics? Part I

Let $\mathcal{C}$ be a class of functions $c:\{0,1\}^{n} \rightarrow\{0,1\}$ and $\left|\psi_{c}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x}|x, c(x)\rangle$.
Given access to Qstat queries, can we learn c?
Almost all quantum learning algorithms can be converted into the QSQ model.
What separates QSQ from entangled/separable measurements?

## Classically.

(1) Uniform PAC learning i.e., given just uniform $(x, c(x))$
(2) Classical SQ queries, i.e., $M=\operatorname{diag}\left(\{\phi(x)\}_{x}\right)$ for some arbitrary $\phi:\{0,1\}^{n+1} \rightarrow[0,1]$
What separates classical SQ and classical PAC? Parities!
Quantumly One can show that degree-2 functions separates QSQ and QPAC!

## How powerful are measurement statistics? Part I

Let $\mathcal{C}$ be a class of functions $c:\{0,1\}^{n} \rightarrow\{0,1\}$ and $\left|\psi_{c}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x}|x, c(x)\rangle$.
Given access to Qstat queries, can we learn c?
Almost all quantum learning algorithms can be converted into the QSQ model.
In [AHS'23], for the concept class $\mathcal{C}=\left\{c(x)=x^{t} A x: A \in \mathbb{F}_{2}^{n \times n}\right\}$, then

- Entangled complexity: $\Theta(n)$
- Separable complexity: $\Theta\left(n^{2}\right)$
- QSQ complexity: $\Theta\left(2^{n}\right)$
- Learning with noise: given copies of $\sum_{x}|x\rangle \sqrt{1-\eta}|c(x)\rangle+\sqrt{\eta}|\overline{c(x)}\rangle$, learnable in $\operatorname{poly}(n, 1 /(1-2 \eta))$ time.

Some consequences:

- Separates QSQ from Quantum learning with classification noise (a natural classical analogue is an open question)
- Exponential separation between Weak and strong error mitigation


## How powerful are measurement statistics? Part II

Let $\mathcal{C}$ be a class of quantum states (no longer Boolean functions)
QSQ algorithm of learning $\mathcal{C}$ makes Qstat queries: for an unknown $\rho \in \mathcal{C}$

$$
\text { Qstat : }(M, \tau) \rightarrow \alpha_{M} \in[\operatorname{Tr}(M \rho)-\tau, \operatorname{Tr}(M \rho)+\tau]
$$

[CCHL'21] showed that for few computational tasks (such as shadow tomography): $O(n)$ entangled measurements suffice but $2^{n}$ separable measurements are necessary.

- Introduce a statistical dimension which gives lower bounds for QSQ
- Show that the CCHL states require $\geq 4^{n}$ copies to learn
- Show that Abelian coset states requires $\geq 2^{n}$ copies to learn
- For several algorithms like learning Gibbs state, trivial states, the algorithm can be implemented in QSQ


## Directions and outlook

Through these lectures.
(1) Considered learning Boolean functions using quantum examples. Sometimes useful sometimes not
(2) Considered learning quantum states exactly, approximately and their properties
(3) Considered interesting classes of states and saw efficient algorithms

## Open questions.

(1) Learning more interesting classes of states
(2) More "realistic" learning theory models motivated by near-term
(3) Connections between learning and other topics
(4) Several surveys on this topic, containing many interesting open questions

## THANK YOU

