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Lecture 4: Learning classes of quantum states
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Learning interesting quantum states

Fundamental drawback of almost all results so far in the last lecture

For tomography on n qubits, the sample complexity is O(22n)

For shadow tomography, PAC learning the sample complexity is poly(n) but the
time complexity is large

Is it possible to time or sample-efficiently learn interesting states?

In this lecture.

Learning Gibbs states of local Hamiltonians

Learning stabilizer states

Statistical learning
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Hamiltonian Learning Problem

Learning Hamiltonians. Given Gibbs states of Hamiltonians, learn the Hamiltonian?

Problem definition. Let H be a κ-local Hamiltonian acting on n qubits written as
H =

∑m
i=1 µiEi for an orthonormal k-local basis {Ei}. Given T copies of a Gibbs state

ρ =
e−βH

Tr(e−βH)
,

output µ′ = (µ′1, . . . , µ
′
m) such that ∥µ′ − µ∥2 ≤ ε.

Motivation for this problem. Physics perspective, verification of quantum systems,
Machine learning, Experimental motivation

Result [AAKS’20]: No. of copies of ρ to solve HLP is Θ̃
(
poly(eβ+κ, 1/β, 1/ε, n3

)
.
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Quantum proof: First idea

Recall: Given copies of ρµ = 1
Zβ

e−βH where H =
∑

i µiEi , output approximation of µ

Sufficient statistics: Just use shadow tomography

1 Suppose we have approximations e′i of

ei = Tr(Eiρµ) for all i ∈ [m]

satisfying |e′i − ei | ≤ ε, can we recover µ? Using [Aar’18, HKP’20, BO’20]?

2 Classical post-processing produces ρ′ ≈ ρµ, but that doesn’t even imply ρ′ is a

Gibbs state e−βH
′
, so approximating µ is unclear!

Observation 1: suppose we maximize over ρλ = e−βH where H =
∑

i λiEi s.t.

Tr(ρλEi ) = Tr(ρµEi ) for every i ∈ [m],

then ρλ = ρµ which implies λ = µ. Isn’t this “hard”?

Observation 2: Maximum entropy principle → Cast as an optimization problem

max
σ

S(σ)

s.t. Tr[σEi ] = ei , ∀i ∈ [m]

σ ≽ 0, Tr[σ] = 1.

(1)

where S(σ) = −Tr[σ log σ] is the quantum entropy of σ. Optimum of (1) equals ρµ
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Quantum proof: First idea (continued)

Recall: Given copies of ρµ = 1
Zβ

e−βH where H =
∑

i µiEi , output approximation of µ

Maximum entropy principle: σ with equal marginals {ei} & maximum entropy is ρµ

Given approximations e′i of ei = Tr(Eiρµ) for i ∈ [m] satisfying |e′i − ei | ≤ ε recover µ?

max
σ

S(σ)

s.t. Tr[σEi ] = ei , ∀i ∈ [m]

σ ≽ 0, Tr[σ] = 1.

Approximations−→

max
σ

S(σ)

s.t. Tr[σEi ] = e′i , ∀i ∈ [m]

σ ≽ 0, Tr[σ] = 1.

If ρµ maximizes first and ρµ′ maximizes second problem, then ∥ρµ − ρµ′∥1 ≤ O(mε).
Does this suffice for our problem in approximating the µs? No

In order to approximate µ, need to bound

∥ log ρµ − log ρµ′∥1

Could be exponentially worse than ∥ρµ− ρµ′∥1.
Issue is non-Lipschitz nature of log(x) function
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Strong convexity

Recall: Given copies of ρµ = 1
Zβ

e−βH where H =
∑

i µiEi , output approximation of µ

How to handle log(ρµ)− log(ρµ′ )? Let’s take a look at the dual

max
σ

S(σ)

s.t. Tr[σEi ] = ei , ∀i ∈ [m]

σ ≽ 0, Tr[σ] = 1.

Dual−→ µ = argmin
λ1,...,λm

logZβ(λ)+β·
∑
i

λiei ,

where Zβ(λ) = Tr(e−βH) & H =
∑

i λiEi

Issue: Don’t have ei = Tr(ρµEi ), but only e′i satisfying |e′i − ei | ≤ ε, so we are solving

max
σ

S(σ)

s.t. Tr[σEi ] = e′i , ∀i ∈ [m]

σ ≽ 0, Tr[σ] = 1.

Dual−→ µ′ = argmin
λ1,...,λm

logZβ(λ)+β·
∑
i

λie
′
i

How far is µ from µ′ given ε additive approximations of {ei}i?

Strong convexity: Puts a bound on how slow the function changes.
Let f : Rm → R. If ∇2f ≽ αI, then for every ν, ν′ ∈ Rm

f (ν′)− f (ν)−∇f (ν)T (ν′ − ν) ≥ α∥ν′ − ν∥2 (Think of f (·) = logZβ(·))
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Hamiltonian Learning algorithm

Recall: Given copies of ρµ = 1
Zβ

e−βH where H =
∑

i µiEi , output approximation of µ

Result [AAKS’20]: No. of copies of ρ to solve HLP is Θ̃
(
poly(eβ+κ, 1/β, 1/ε, n3

)
.

1 Estimating marginals Shadows to get e′i s.t. |e′i − Tr(Eiρµ)| ≤ δ

2 Sufficient statistics We then solve the optimization problem

µ′ = max
λ1,...,λn

logZβ(λ) + β
∑
i

λie
′
i

3 We show ∥µ− µ′∥2 ≤ ε by taking sufficient samples. Crucially showing
log partition function is strong convex.

A few remarks:

1 Algorithm not time efficient for generic Hamiltonians

2 Except obtain measurement statistics of ρ, our algorithm is classical

3 Exponential in β, κ: Might seem bad, but cannot be generically avoided

4 [HKT’22] considered small β, the sample complexity is (log n)/(β2ε2).
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Weyl matrices

Pauli matrices: I =
(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

n-qubit Pauli matrices {I,X ,Y ,Z}n form an orthonormal basis for Cn.

In particular, for every x = (a, b) ∈ F2n
2 , define a Weyl operator

Wx = ia·b(X a1Zb1 ⊗ X a2Zb2 ⊗ · · · ⊗ X anZbn ).

{Wx} are orthonormal, form a basis for quantum states, i.e., for every |ψ⟩, we have

|ψ⟩⟨ψ| =
1

2n

∑
x∈Fn2

αx ·Wx ,

where

αx = Tr(Wx |ψ⟩⟨ψ|),
1

2n

∑
x

α2
x = 1.

Below we will use pψ(x) = α2
x/2

n, so that
∑

x pψ(x) = 1.

Note that this is similar to Fourier decomposition of a Boolean function
f : {0, 1}n → {0, 1} as f (x) =

∑
S f̂ (S)χS (x) where

∑
S f̂ (S)2 = 1.
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Bell sampling

Recall. Pauli matrices {I,X ,Y ,Z}n form an orthonormal basis for Cn.

In particular, for every x = (a, b) ∈ F2n
2 , define a Weyl operator

Wx = ia·b(X a1Zb1 ⊗ X a2Zb2 ⊗ · · · ⊗ X anZbn ).

Define pψ(x) = ⟨ψ|Wx |ψ⟩2/2n, and we have
∑

x pψ(x) = 1.

Bell basis. Observe that {|Wb⟩ = (Wb ⊗ I)
∣∣Φ+

〉
: b ∈ {0, 1}2} where∣∣Φ+

〉
= (|00⟩+ |11⟩)/

√
2 is an orthonormal basis for C2.

Bell sampling.

Input: Bell sampling takes 4 copies of an n-qubit |ψ⟩.
Procedure: Using the first two copies of |ψ⟩, measure qubit i , n + i in the Bell
basis to obtain (bi , b

′
i ). Call the resulting string x = ((b1, b′1), . . . , (bn, b

′
n)).

Using the second two copies of |ψ⟩ to obtain y = ((c1, c ′1), . . . , (cn, c
′
n)).

Output: x + y ∈ F2n
2 .

Theorem. The output z ∈ F2n
2 above is sampled according to the distribution

qψ(z) =
∑
a∈F2n2

pψ(a)pψ(z + a).
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Bell sampling for learning stabilizer states

Stabilizer states. Consider a Clifford circuit C (i.e., consisting of H,S ,CNOT gates)
then output of C |0n⟩ is a stabilizer state!

Alternatively, a stabilizer state |ψ⟩ is a pure states such that there is a subgroup
S ⊆ {Wx} of size 2n such that P |ψ⟩ = |ψ⟩ for all P ∈ S. In particular,

|ψ⟩⟨ψ| =
∑
σ⊆S

σ,

where S ⊆ {Wx}x has dimension n.

Observe

pψ(z) = 2−n · ⟨ψ|Wz |ψ⟩2 =

{
2−n z stabilizes |ψ⟩
0 otherwise

Hence

qψ(z) =
∑
a∈F2n2

pψ(a)pψ(z+a) = 2−n
∑

a∈Stab(ψ)

pψ(z+a) = 2−n[z ∈ Stab |ψ⟩] = pψ(z).

Bell sampling uses 4 copies of |ψ⟩ and produces a z ∼ qψ(z) (or z ∼ pψ(z)) . In
particular, 4 copies produces a Wz that stabilizes the unknown |ψ⟩.

Learn the basis. Repeat the above for O(n) times, to obtain n many linearly
independent zs that stabilize |ψ⟩. Call it {W1, . . . ,Wn}. Time complexity is O(n3)
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Some recent improvements

Learning beyond stabilizer states

1 Single layer of T gates

[LC’21] considered learning states that are output of circuits that consist
of Clifford + one layer of at most O(log n) many T gates.

Write a stabilizer decomposition of |T ⟩ state and write the resulting state
as a sum of 2k many stabilizer states.

A technical modification of Bell sampling learns in time poly(n, 2k )

2 A sequence of works [GIKL (’22,’22,’23), LOH’23, HG’23] showed how to learn

Clifford + k many T gates in time poly(n, 2k )

Stabilizer dimension (ψ) = dim({z : ⟨ψ|Wz |ψ⟩ ̸= 0}).
GIKL’23 showed how to learn states |ψ⟩ with stabilizer dimension ≥ n − k
in times poly(n, 2k )

Main idea is Bell sampling

If |ψ⟩ produced by Clifford+ k many non-Clifford gates, then Stabilizer
dimension(ψ) ≥ n − k.
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Bell sampling, viewed as taking derivatives

Learning stabilizer states. Bell sampling [Mon’17] A way of taking “derivatives”

Every stabilizer state written as |ψ⟩ =
∑

x∈A(−1)x
tBx · iS·x |x⟩ for a subspace A ⊆ Fn

2

A learning algorithm performs the following: (for simplicity let A = {0, 1}n, S = 0n)

Goal is to learn B ∈ Fn×n
2 . Take two copies of |ψ⟩

|ψ⟩ ⊗ |ψ⟩ =
∑
x,y

(−1)x
tBx+y tBy |x , y ⟩

CNOT→
∑
x,y

(−1)x
tBx+y tBy |x , x + y ⟩

=
∑
x,z

(−1)x
tBx+(x+z)tB(x+z) |x , z⟩ =

∑
x,z

(−1)x
t (B+Bt )z+ztBz |x , z⟩

Measure the second register and suppose we obtain z̃, resulting state is

(−1)z̃
tBz̃

(∑
x

(−1)x
t (B+Bt )z̃ |x⟩

)
|z̃⟩ BV→

∣∣(B + Bt) · z̃
〉
|z̃⟩

Two copies of |ψ⟩ allow to take one derivative of x tBx (in the direction of z̃).
Take Õ(n) more copies to take n derivatives and learn B, hence |ψ⟩ completely
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Learning phase states

A natural extension? Let

|ψf ⟩ =
1

√
2n

∑
x∈{0,1}n

(−1)f (x) |x⟩

where degree of f equals d . How many copies of |ψf ⟩ suffice to learn f ?

Why care about phase states?

Pseudorandomness: If f is a pseudorandom function, then |ψf ⟩ is
indistinguishable from a Haar random state.

IQP circuits: Applying {Z ,CZ ,CCZ} to Hn |0n⟩ produces a degree-3 phase state

Quantum complexity: Recently several results using phase states

In [ABDY’22], we considered the learning question and showed optimal bounds.

Separable Entangled

degree-d Binary phase state Θ(nd ) Θ(nd−1)
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Learning phase states with entangled measurements

A first approach. Taking derivatives? let f be degree-3

|ψf ⟩⊗2 7→ (s,
∑
x

(−1)f (x)+f (x+s) |x⟩).

Recall that when f was degree-2, then f (x) + f (x + s) was degree-1, so we can learn
it by applying Hadamards, but now f (x) + f (x + s) is degree-2, unclear how to learn!

An entangled learning algorithm.

(1.) Pretty good measurement for the ensemble E = {|ψf ⟩⊗k : f ∈ P(n, d)}
(2.) The failure probability of the PGM for E is given by

1

|E|
∑
f ̸=g

⟨ψf |ψg ⟩k =
∑

g∈P∗(n,d)

[1− 2Pr
x
[g(x) ̸= 0]]k

=
∑

g∈P∗(n,d)

[1− 2wt(g)]k

=

d−1∑
ℓ=1

∑
g∈P∗(n,d)

[1− 2|g |/2n]k [wt(g) ∈ [2n−ℓ−1, 2n−ℓ]]

(3.) Use weight properties of Reed-Muller codes to show above is ≤ exp(−k + nd−1),
which is ≤ 1/100 for k = O(nd−1)

(4.) Optimal since there are nd bits of information and each |ψf ⟩ has n bits



15/ 19

Quantum statistical query learning

Problem. Let C be a class of functions c : {0, 1}n → {0, 1}.

In quantum learning theory, given access to T copies of

|ψc ⟩ =
1

√
2n

∑
x

|x , c(x)⟩ ,

can we learn c?

Entangled measurements: Joint-measurement on |ψc ⟩⊗T

Separable measurements The learner can only apply single-copy measurements

QSQ model

1 Maybe even entangled and separable measurements far from NISQ.

2 In [AGY’20], introduced the quantum statistical query model (QSQ)

3 QSQ learner can make Qstat queries: specifies ∥M∥ ≤ 1 and τ ∈ [0, 1]

Qstat : (M, τ) → αM ∈
[
⟨ψc |M|ψc ⟩ − τ, ⟨ψc |M|ψc ⟩+ τ

]
How many Qstat queries are necessary/sufficient to learn c?

4 Say someone in the “cloud” possesses |ψc ⟩ and a learner is purely classical

5 Quantum examples are useful for learning parities, juntas, DNF formulas, coupon
collector: all of these algorithms need only QSQ measurements!
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How powerful are measurement statistics? Part I

Let C be a class of functions c : {0, 1}n → {0, 1} and |ψc ⟩ = 1√
2n

∑
x |x , c(x)⟩.

Given access to Qstat queries, can we learn c?

Almost all quantum learning algorithms can be converted into the QSQ model.

What separates QSQ from entangled/separable measurements?

Classically.

1 Uniform PAC learning i.e., given just uniform (x , c(x))

2 Classical SQ queries, i.e., M = diag({ϕ(x)}x ) for some arbitrary
ϕ : {0, 1}n+1 → [0, 1]

What separates classical SQ and classical PAC? Parities!

Quantumly One can show that degree-2 functions separates QSQ and QPAC!
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How powerful are measurement statistics? Part I

Let C be a class of functions c : {0, 1}n → {0, 1} and |ψc ⟩ = 1√
2n

∑
x |x , c(x)⟩.

Given access to Qstat queries, can we learn c?

Almost all quantum learning algorithms can be converted into the QSQ model.

In [AHS’23], for the concept class C = {c(x) = x tAx : A ∈ Fn×n
2 }, then

Entangled complexity: Θ(n)

Separable complexity: Θ(n2)

QSQ complexity: Θ(2n)

Learning with noise: given copies of
∑

x |x⟩
√
1− η |c(x)⟩+√

η
∣∣∣c(x)〉,

learnable in poly(n, 1/(1− 2η)) time.

Some consequences:

Separates QSQ from Quantum learning with classification noise (a natural
classical analogue is an open question)

Exponential separation between Weak and strong error mitigation
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How powerful are measurement statistics? Part II

Let C be a class of quantum states (no longer Boolean functions)

QSQ algorithm of learning C makes Qstat queries: for an unknown ρ ∈ C

Qstat : (M, τ) → αM ∈
[
Tr(Mρ)− τ,Tr(Mρ) + τ

]
[CCHL’21] showed that for few computational tasks (such as shadow tomography):
O(n) entangled measurements suffice but 2n separable measurements are necessary.

Introduce a statistical dimension which gives lower bounds for QSQ

Show that the CCHL states require ≥ 4n copies to learn

Show that Abelian coset states requires ≥ 2n copies to learn

For several algorithms like learning Gibbs state, trivial states, the algorithm can
be implemented in QSQ



19/ 19

Directions and outlook

Through these lectures.

1 Considered learning Boolean functions using quantum examples.
Sometimes useful sometimes not

2 Considered learning quantum states exactly, approximately and their properties

3 Considered interesting classes of states and saw efficient algorithms

Open questions.

1 Learning more interesting classes of states

2 More “realistic” learning theory models motivated by near-term

3 Connections between learning and other topics

4 Several surveys on this topic, containing many interesting open questions

THANK YOU


