Lecture 4: Learning classes of quantum states

Srinivasan Arunachalam (IBM Quantum)

Fundamental drawback of almost all results so far in the last lecture

- For tomography on *n* qubits, the sample complexity is $O(2^{2n})$
- For shadow tomography, PAC learning the sample complexity is poly(n) but the time complexity is large

Is it possible to time or sample-efficiently learn interesting states?

In this lecture.

- Learning Gibbs states of local Hamiltonians
- Learning stabilizer states
- Statistical learning

Learning Hamiltonians. Given Gibbs states of Hamiltonians, learn the Hamiltonian?

Problem definition. Let *H* be a κ -local Hamiltonian acting on *n* qubits written as $H = \sum_{i=1}^{m} \mu_i E_i$ for an orthonormal *k*-local basis $\{E_i\}$. Given *T* copies of a Gibbs state

$$p = rac{e^{-eta H}}{\operatorname{Tr}(e^{-eta H})},$$

output $\mu' = ({\mu'}_1, \dots, {\mu'}_m)$ such that $\|\mu' - \mu\|_2 \le \varepsilon$.

Motivation for this problem. Physics perspective, verification of quantum systems, Machine learning, Experimental motivation

Result [AAKS'20]: No. of copies of ρ to solve HLP is $\widetilde{\Theta}(\text{poly}(e^{\beta+\kappa}, 1/\beta, 1/\varepsilon, n^3))$.

Quantum proof: First idea

Recall: Given copies of $\rho_{\mu} = \frac{1}{Z_{\beta}} e^{-\beta H}$ where $H = \sum_{i} \mu_{i} E_{i}$, output approximation of μ

Sufficient statistics: Just use shadow tomography

Suppose we have approximations e' of

$$e_i = \operatorname{Tr}(E_i \rho_\mu)$$
 for all $i \in [m]$

satisfying $|e'_i - e_i| \le \varepsilon$, can we recover μ ? Using [Aar'18, HKP'20, BO'20]?

2 Classical post-processing produces $\rho' \approx \rho_{\mu}$, but that doesn't even imply ρ' is a Gibbs state $e^{-\beta H'}$, so approximating μ is unclear!

Observation 1: suppose we maximize over $\rho_{\lambda} = e^{-\beta H}$ where $H = \sum_{i} \lambda_{i} E_{i}$ s.t.

$$\operatorname{Tr}(\rho_{\lambda}E_{i}) = \operatorname{Tr}(\rho_{\mu}E_{i})$$
 for every $i \in [m]$,

then $\rho_{\lambda} = \rho_{\mu}$ which implies $\lambda = \mu$. Isn't this "hard"?

Observation 2: Maximum entropy principle \rightarrow Cast as an optimization problem

$$\begin{aligned} \max_{\sigma} & S(\sigma) \\ \text{s.t.} & \operatorname{Tr}[\sigma E_i] = e_i, \quad \forall i \in [m] \\ & \sigma \succcurlyeq 0, \quad \operatorname{Tr}[\sigma] = 1. \end{aligned}$$
 (1)

where $S(\sigma) = -\operatorname{Tr}[\sigma \log \sigma]$ is the quantum entropy of σ . Optimum of (1) equals ρ_{μ}

Quantum proof: First idea (continued)

Recall: Given copies of $\rho_{\mu} = \frac{1}{Z_{\beta}} e^{-\beta H}$ where $H = \sum_{i} \mu_{i} E_{i}$, output approximation of μ

Maximum entropy principle: σ with equal marginals $\{e_i\}$ & maximum entropy is ρ_{μ} Given approximations e'_i of $e_i = \text{Tr}(E_i \rho_{\mu})$ for $i \in [m]$ satisfying $|e'_i - e_i| \leq \varepsilon$ recover μ ?

$$\begin{array}{ll} \max_{\sigma} & S(\sigma) & \max_{\sigma} & S(\sigma) \\ \text{s.t.} & \operatorname{Tr}[\sigma E_i] = e_i, \quad \forall i \in [m] & \xrightarrow{\text{Approximations}} & \operatorname{s.t.} & \operatorname{Tr}[\sigma E_i] = e'_i, \quad \forall i \in [m] \\ \sigma \succcurlyeq 0, \quad \operatorname{Tr}[\sigma] = 1. & \sigma \succcurlyeq 0, \quad \operatorname{Tr}[\sigma] = 1. \end{array}$$

If ρ_{μ} maximizes first and $\rho_{\mu'}$ maximizes second problem, then $\|\rho_{\mu} - \rho_{\mu'}\|_1 \leq O(m\varepsilon)$. Does this suffice for our problem in approximating the μ s? No

In order to approximate μ , need to bound

 $\|\log \rho_{\mu} - \log \rho_{\mu'}\|_1$

Could be exponentially worse than $\|\rho_{\mu} - \rho_{\mu'}\|_1$. Issue is non-Lipschitz nature of log(x) function

Strong convexity

Recall: Given copies of $\rho_{\mu} = \frac{1}{Z_{\beta}} e^{-\beta H}$ where $H = \sum_{i} \mu_{i} E_{i}$, output approximation of μ

How to handle $\log(\rho_{\mu}) - \log(\rho_{\mu'})$? Let's take a look at the dual

$$\max_{\sigma} S(\sigma)$$

s.t. $\operatorname{Tr}[\sigma E_i] = e_i, \quad \forall i \in [m] \xrightarrow{Dual} \mu = \underset{\lambda_1, \dots, \lambda_m}{\operatorname{arg min}} \log Z_{\beta}(\lambda) + \beta \cdot \sum_i \lambda_i e_i,$
 $\sigma \succeq 0, \quad \operatorname{Tr}[\sigma] = 1.$

where $Z_{\beta}(\lambda) = \text{Tr}(e^{-\beta H}) \& H = \sum_{i} \lambda_{i} E_{i}$

Issue: Don't have $e_i = \text{Tr}(\rho_{\mu}E_i)$, but only e'_i satisfying $|e'_i - e_i| \leq \varepsilon$, so we are solving

$$\begin{array}{l} \max_{\sigma} \quad S(\sigma) \\ \text{s.t.} \quad \operatorname{Tr}[\sigma E_i] = e'_i, \quad \forall i \in [m] \quad \xrightarrow{\text{Dual}} \quad \mu' = \operatorname*{arg\,min}_{\lambda_1, \dots, \lambda_m} \log Z_\beta(\lambda) + \beta \cdot \sum_i \lambda_i e'_i \\ \sigma \succeq 0, \quad \operatorname{Tr}[\sigma] = 1. \end{array}$$

How far is μ from μ' given ε additive approximations of $\{e_i\}_i$?

Strong convexity: Puts a bound on how slow the function changes. Let $f : \mathbb{R}^m \to \mathbb{R}$. If $\nabla^2 f \succeq \alpha \mathbb{I}$, then for every $\nu, \nu' \in \mathbb{R}^m$

$$f(\nu') - f(\nu) - \nabla f(\nu)^T (\nu' - \nu) \ge \alpha \|\nu' - \nu\|_2 \qquad (\text{Think of } f(\cdot) = \log Z_\beta(\cdot))$$

Hamiltonian Learning algorithm

Recall: Given copies of $\rho_{\mu} = \frac{1}{Z_{\beta}} e^{-\beta H}$ where $H = \sum_{i} \mu_{i} E_{i}$, output approximation of μ

Result [AAKS'20]: No. of copies of ρ to solve HLP is $\widetilde{\Theta}(\text{poly}(e^{\beta+\kappa}, 1/\beta, 1/\varepsilon, n^3))$.

• Estimating marginals Shadows to get e'_i s.t. $|e'_i - \text{Tr}(E_i \rho_\mu)| \leq \delta$

Sufficient statistics We then solve the optimization problem

$$\mu' = \max_{\lambda_1, \dots, \lambda_n} \log Z_\beta(\lambda) + \beta \sum_i \lambda_i e'_i$$

We show ||µ − µ'||₂ ≤ ε by taking sufficient samples. Crucially showing log partition function is strong convex.

A few remarks:

- Algorithm not time efficient for generic Hamiltonians
- 2 Except obtain measurement statistics of ρ , our algorithm is classical
- **(3)** Exponential in β , κ : Might seem bad, but cannot be generically avoided
- **(**] [HKT'22] considered small β , the sample complexity is $(\log n)/(\beta^2 \varepsilon^2)$.

Pauli matrices:
$$\mathbb{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

n-qubit Pauli matrices $\{I, X, Y, Z\}^n$ form an orthonormal basis for \mathbb{C}^n . In particular, for every $x = (a, b) \in \mathbb{F}_2^{2n}$, define a Weyl operator

$$W_{x}=i^{a\cdot b}(X^{a_{1}}Z^{b_{1}}\otimes X^{a_{2}}Z^{b_{2}}\otimes \cdots\otimes X^{a_{n}}Z^{b_{n}}).$$

 $\{W_x\}$ are orthonormal, form a basis for quantum states, i.e., for every $|\psi\rangle$, we have

$$|\psi\rangle\langle\psi|=rac{1}{2^n}\sum_{x\in\mathbb{F}_2^n}lpha_x\cdot W_x,$$

where

$$\alpha_x = \operatorname{Tr}(W_x |\psi\rangle \langle \psi|), \qquad \frac{1}{2^n} \sum_x \alpha_x^2 = 1.$$

Below we will use $p_{\psi}(x) = \alpha_x^2/2^n$, so that $\sum_x p_{\psi}(x) = 1$.

Note that this is similar to Fourier decomposition of a Boolean function $f : \{0, 1\}^n \to \{0, 1\}$ as $f(x) = \sum_S \hat{f}(S)\chi_S(x)$ where $\sum_S \hat{f}(S)^2 = 1$.

Bell sampling

Recall. Pauli matrices $\{\mathbb{I}, X, Y, Z\}^n$ form an orthonormal basis for \mathbb{C}^n . In particular, for every $x = (a, b) \in \mathbb{F}_2^{2n}$, define a Weyl operator

$$W_{x} = i^{a \cdot b} (X^{a_1} Z^{b_1} \otimes X^{a_2} Z^{b_2} \otimes \cdots \otimes X^{a_n} Z^{b_n}).$$

Define $p_{\psi}(x) = \langle \psi | W_x | \psi \rangle^2 / 2^n$, and we have $\sum_x p_{\psi}(x) = 1$.

Bell basis. Observe that $\{|W_b\rangle = (W_b \otimes \mathbb{I}) |\Phi^+\rangle : b \in \{0, 1\}^2\}$ where $|\Phi^+\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$ is an orthonormal basis for \mathbb{C}^2 .

Bell sampling.

- Input: Bell sampling takes 4 copies of an *n*-qubit $|\psi\rangle$.
- Procedure: Using the first two copies of |ψ⟩, measure qubit i, n + i in the Bell basis to obtain (b_i, b'_i). Call the resulting string x = ((b₁, b'₁),..., (b_n, b'_n)). Using the second two copies of |ψ⟩ to obtain y = ((c₁, c'₁),..., (c_n, c'_n)).
- Output: $x + y \in \mathbb{F}_2^{2n}$.

Theorem. The output $z \in \mathbb{F}_2^{2n}$ above is sampled according to the distribution

$$q_\psi(z) = \sum_{a\in\mathbb{F}_2^{2n}} p_\psi(a)p_\psi(z+a).$$

Bell sampling for learning stabilizer states

Stabilizer states. Consider a Clifford circuit *C* (i.e., consisting of *H*, *S*, *CNOT* gates) then output of $C |0^n\rangle$ is a stabilizer state!

Alternatively, a stabilizer state $|\psi\rangle$ is a pure states such that there is a subgroup $S \subseteq \{W_x\}$ of size 2^n such that $P |\psi\rangle = |\psi\rangle$ for all $P \in S$. In particular,

$$|\psi\rangle\langle\psi| = \sum_{\sigma\subseteq\mathcal{S}}\sigma,$$

where $S \subseteq \{W_x\}_x$ has dimension *n*.

Observe

$$p_{\psi}(z) = 2^{-n} \cdot \langle \psi | W_z | \psi \rangle^2 = egin{cases} 2^{-n} & z ext{ stabilizes } |\psi
angle \\ 0 & ext{ otherwise} \end{cases}$$

Hence

$$q_{\psi}(z) = \sum_{a \in \mathbb{F}_2^{2n}} p_{\psi}(a) p_{\psi}(z+a) = 2^{-n} \sum_{a \in \operatorname{Stab}(\psi)} p_{\psi}(z+a) = 2^{-n} [z \in \operatorname{Stab}|\psi\rangle] = p_{\psi}(z).$$

Bell sampling uses 4 copies of $|\psi\rangle$ and produces a $z \sim q_{\psi}(z)$ (or $z \sim p_{\psi}(z)$). In particular, 4 copies produces a W_z that stabilizes the unknown $|\psi\rangle$.

Learn the basis. Repeat the above for O(n) times, to obtain *n* many linearly independent *zs* that stabilize $|\psi\rangle$. Call it $\{W_1, \ldots, W_n\}$. Time complexity is $O(n^3)$

Some recent improvements

Learning beyond stabilizer states

- Single layer of T gates
 - [LC'21] considered learning states that are output of circuits that consist of Clifford + one layer of at most $O(\log n)$ many T gates.
 - Write a stabilizer decomposition of |T> state and write the resulting state as a sum of 2^k many stabilizer states.
 - A technical modification of Bell sampling learns in time $poly(n, 2^k)$
- A sequence of works [GIKL ('22,'22,'23), LOH'23, HG'23] showed how to learn Clifford + k many T gates in time poly(n, 2^k)
 - Stabilizer dimension $(\psi) = \dim(\{z : \langle \psi | W_z | \psi \rangle \neq 0\}).$
 - GIKL'23 showed how to learn states $|\psi\rangle$ with stabilizer dimension $\geq n-k$ in times $\mathrm{poly}(n,2^k)$
 - Main idea is Bell sampling
 - If $|\psi\rangle$ produced by Clifford+ k many non-Clifford gates, then Stabilizer dimension $(\psi) \ge n k$.

Bell sampling, viewed as taking derivatives

Learning stabilizer states. Bell sampling [Mon'17] A way of taking "derivatives"

Every stabilizer state written as $|\psi\rangle = \sum_{x \in A} (-1)^{x^t Bx} \cdot i^{S \cdot x} |x\rangle$ for a subspace $A \subseteq \mathbb{F}_2^n$ A learning algorithm performs the following: (for simplicity let $A = \{0, 1\}^n, S = 0^n$)

Goal is to learn
$$B \in \mathbb{F}_2^{n \times n}$$
. Take two copies of $|\psi\rangle$
 $|\psi\rangle \otimes |\psi\rangle = \sum_{x,y} (-1)^{x^t B x + y^t B y} |x, y\rangle$
 $\stackrel{CNOT}{\to} \sum_{x,y} (-1)^{x^t B x + y^t B y} |x, x + y\rangle$
 $= \sum_{x,z} (-1)^{x^t B x + (x+z)^t B(x+z)} |x, z\rangle = \sum_{x,z} (-1)^{x^t (B+B^t) z + z^t B z} |x, z\rangle$

Measure the second register and suppose we obtain \tilde{z} , resulting state is

$$(-1)^{\tilde{z}^{t}B\tilde{z}}\Big(\sum_{x}(-1)^{x^{t}(B+B^{t})\tilde{z}}|x\rangle\Big)|\tilde{z}\rangle \xrightarrow{BV} \left|(B+B^{t})\cdot\tilde{z}\right\rangle|\tilde{z}\rangle$$

Two copies of $|\psi\rangle$ allow to take one derivative of $x^t Bx$ (in the direction of \tilde{z}). Take $\tilde{O}(n)$ more copies to take *n* derivatives and learn *B*, hence $|\psi\rangle$ completely A natural extension? Let

$$|\psi_f\rangle = rac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle$$

where degree of f equals d. How many copies of $|\psi_f\rangle$ suffice to learn f?

Why care about phase states?

- Pseudorandomness: If f is a pseudorandom function, then $|\psi_f\rangle$ is indistinguishable from a Haar random state.
- IQP circuits: Applying $\{Z, CZ, CCZ\}$ to $H^n |0^n\rangle$ produces a degree-3 phase state
- Quantum complexity: Recently several results using phase states

In [ABDY'22], we considered the learning question and showed optimal bounds.

	Separable	Entangled
degree- <i>d</i> Binary phase state	$\Theta(n^d)$	$\Theta(n^{d-1})$

Learning phase states with entangled measurements

A first approach. Taking derivatives? let f be degree-3

$$|\psi_f\rangle^{\otimes 2} \mapsto (s, \sum_{x} (-1)^{f(x)+f(x+s)} |x\rangle).$$

Recall that when f was degree-2, then f(x) + f(x + s) was degree-1, so we can learn it by applying Hadamards, but now f(x) + f(x + s) is degree-2, unclear how to learn!

An entangled learning algorithm.

- (1.) Pretty good measurement for the ensemble $\mathcal{E} = \{ |\psi_f\rangle^{\otimes k} : f \in P(n, d) \}$
- (2.) The failure probability of the PGM for \mathcal{E} is given by

$$\begin{aligned} \frac{1}{|\mathcal{E}|} \sum_{f \neq g} \langle \psi_f | \psi_g \rangle^k &= \sum_{g \in P^*(n,d)} [1 - 2\Pr_x[g(x) \neq 0]]^k \\ &= \sum_{g \in P^*(n,d)} [1 - 2\mathsf{wt}(g)]^k \\ &= \sum_{\ell=1}^{d-1} \sum_{g \in P^*(n,d)} [1 - 2|g|/2^n]^k [\mathsf{wt}(g) \in [2^{n-\ell-1}, 2^{n-\ell}]] \end{aligned}$$

(3.) Use weight properties of Reed-Muller codes to show above is $\leq \exp(-k + n^{d-1})$, which is $\leq 1/100$ for $k = O(n^{d-1})$

(4.) Optimal since there are n^d bits of information and each $|\psi_f\rangle$ has n bits

Quantum statistical query learning

Problem. Let C be a class of functions $c : \{0,1\}^n \to \{0,1\}$.

In quantum learning theory, given access to T copies of

$$\ket{\psi_c} = rac{1}{\sqrt{2^n}} \sum_x \ket{x, c(x)}$$

can we learn c?

Entangled measurements: Joint-measurement on $|\psi_c\rangle^{\otimes T}$

Separable measurements The learner can only apply single-copy measurements

QSQ model

- Maybe even entangled and separable measurements far from NISQ.
- In [AGY'20], introduced the quantum statistical query model (QSQ)
- **(3)** QSQ learner can make Qstat queries: specifies $\|M\| \leq 1$ and $au \in [0,1]$

$$\mathsf{Qstat}: (M, \tau) \to \alpha_M \in \left[\langle \psi_c | M | \psi_c \rangle - \tau, \langle \psi_c | M | \psi_c \rangle + \tau \right]$$

How many Qstat queries are necessary/sufficient to learn c?

- **(**) Say someone in the "cloud" possesses $|\psi_c\rangle$ and a learner is purely classical
- Quantum examples are useful for learning parities, juntas, DNF formulas, coupon collector: all of these algorithms need only QSQ measurements!

Let C be a class of functions $c: \{0,1\}^n \to \{0,1\}$ and $|\psi_c\rangle = \frac{1}{\sqrt{2^n}} \sum_x |x, c(x)\rangle$.

Given access to Qstat queries, can we learn c?

Almost all quantum learning algorithms can be converted into the QSQ model.

What separates QSQ from entangled/separable measurements?

Classically.

Uniform PAC learning i.e., given just uniform (x, c(x))

2 Classical SQ queries, i.e., $M = \text{diag}(\{\phi(x)\}_x)$ for some arbitrary $\phi : \{0, 1\}^{n+1} \rightarrow [0, 1]$

What separates classical SQ and classical PAC? Parities!

Quantumly One can show that degree-2 functions separates QSQ and QPAC!

How powerful are measurement statistics? Part I

Let C be a class of functions $c: \{0,1\}^n \to \{0,1\}$ and $|\psi_c\rangle = \frac{1}{\sqrt{2^n}} \sum_x |x,c(x)\rangle$.

Given access to Qstat queries, can we learn c?

Almost all quantum learning algorithms can be converted into the QSQ model.

In [AHS'23], for the concept class $C = \{c(x) = x^t A x : A \in \mathbb{F}_2^{n \times n}\}$, then

- Entangled complexity: Θ(n)
- Separable complexity: Θ(n²)
- QSQ complexity: $\Theta(2^n)$

• Learning with noise: given copies of $\sum_{x} |x\rangle \sqrt{1-\eta} |c(x)\rangle + \sqrt{\eta} |\overline{c(x)}\rangle$, learnable in poly $(n, 1/(1-2\eta))$ time.

Some consequences:

- Separates QSQ from Quantum learning with classification noise (a natural classical analogue is an open question)
- Exponential separation between Weak and strong error mitigation

Let C be a class of quantum states (no longer Boolean functions)

QSQ algorithm of learning C makes Qstat queries: for an unknown $\rho \in C$

$$\mathsf{Qstat}: (M,\tau) \to \alpha_{M} \in \big[\mathsf{Tr}(M\rho) - \tau, \mathsf{Tr}(M\rho) + \tau\big]$$

[CCHL'21] showed that for few computational tasks (such as shadow tomography): O(n) entangled measurements suffice but 2^n separable measurements are necessary.

- Introduce a statistical dimension which gives lower bounds for QSQ
- Show that the CCHL states require $\geq 4^n$ copies to learn
- Show that Abelian coset states requires $\geq 2^n$ copies to learn
- For several algorithms like learning Gibbs state, trivial states, the algorithm can be implemented in QSQ

Directions and outlook

Through these lectures.

- Considered learning Boolean functions using quantum examples. Sometimes useful sometimes not
- 2 Considered learning quantum states exactly, approximately and their properties
- Onsidered interesting classes of states and saw efficient algorithms

Open questions.

- Learning more interesting classes of states
- 2 More "realistic" learning theory models motivated by near-term
- Onnections between learning and other topics
- Several surveys on this topic, containing many interesting open questions

THANK YOU