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Learning interesting quantum states

Fundamental drawback of almost all results so far in the last lecture

@ For tomography on n qubits, the sample complexity is O(22")

@ For shadow tomography, PAC learning the sample complexity is poly(n) but the
time complexity is large

Is it possible to time or sample-efficiently learn interesting states? ‘

In this lecture.
@ Learning Gibbs states of local Hamiltonians
@ Learning stabilizer states

@ Statistical learning



Hamiltonian Learning Problem

Learning Hamiltonians. Given Gibbs states of Hamiltonians, learn the Hamiltonian?

Problem definition. Let H be a x-local Hamiltonian acting on n qubits written as
H =3"", uiE; for an orthonormal k-local basis {E;}. Given T copies of a Gibbs state

P= Te(epHy’
output p/ = (u'y, ..., ul,) such that ||p/ — pll2 <e.

Motivation for this problem. Physics perspective, verification of quantum systems,
Machine learning, Experimental motivation

Result [AAKS'20]: No. of copies of p to solve HLP is é( poly(e*%,1/8,1/e, n%).



Quantum proof: First idea

Recall: Given copies of p, = ie*BH where H = 3, j1;E;, output approximation of

Sufficient statistics: Just use shadow tomography

@ Suppose we have approximations e/ of
ej = Tr(Ejpy) forall i € [m]
satisfying |e/ — ej| < &, can we recover u? Using [Aar'18, HKP’'20, BO'20]?

@ Classical post-processing produces p’ &~ p,,, but that doesn’t even imply p’ is a
Gibbs state e‘ﬁHl, so approximating u is unclear!

Observation 1: suppose we maximize over py = e 7" where H = DoiAiEi st
Tr(paE;) = Tr(puE;)  for every i € [m],

then py = pu which implies A = p. Isn’t this “hard"?
Observation 2: Maximum entropy principle — Cast as an optimization problem

max S(o)

[eg

s.t. Tr[cE]=e;, Vie][m] (1)

c=0, Trlo]=1.

where S(o) = — Tr[o log o] is the quantum entropy of o. Optimum of (1) equals p,



Quantum proof: First idea (continued)

Recall: Given copies of = L e FAH where H= Y, u;E;, output approximation of o
lef ZB i 14

Maximum entropy principle: o with equal marginals {e;} & maximum entropy is p,

Given approximations e/ of e; = Tr(E;p,.) for i € [m] satisfying |e/ — e;| < € recover u?

max S(o) max  S(o)
7 Approximations 7
st. Tr[oE]=¢;, Vie[m] - st. Tr[cE]=¢€/, Vie[m]
o3>0, Trlo]=1. o3>0, Trlo]=1.

If p,, maximizes first and p,, maximizes second problem, then [[p,, — p,/[[1 < O(me).
Does this suffice for our problem in approximating the us? No

In order to approximate p, need to bound

log p — log pyu 1 T IR

Could be exponentially worse than [[p, — p,/||1.
Issue is non-Lipschitz nature of log(x) function



Strong convexity

Recall: Given copies of p, = ie*BH where H = 3, 11;E;, output approximation of

How to handle log(p,) — log(p,/)? Let's take a look at the dual

max S(o)
o Dua w = argmin log Z ()\)4‘,32 Aiei
st. Tr[cE]=¢;, Vie[m] ? Ay s —
oo Am ;

o3>0, Trlo]=1.

where Zg(\) = Tr(e ™ PH) & H =3, \iE;

Issue: Don't have e; = Tr(p, E;), but only e satisfying |e/ — ei| < ¢, so we are solving

max S(o)

Dual —
st. TrlcE]=c¢/, Vi€ [m] - W ::g r?)'\n log Z5(A)+5- Z)‘ €

o0, Trlo]=1.

‘ How far is p from p/ given e additive approximations of {e;};? ‘

Strong convexity: Puts a bound on how slow the function changes.
Let f : R™ — R. If V?f = al, then for every v,’ € R™

W)= fw) = V)T —v) > all — vl (Think of f(-) = log Zg(+))



Hamiltonian Learning algorithm

Recall: Given copies of p;, = ie*BH where H = 3", ui;E;, output approximation of

Result [AAKS'20]: No. of copies of p to solve HLP is (:j( poly(e®+%,1/8,1/e,n3).

@ Estimating marginals Shadows to get e/ s.t. |e/ — Tr(Ejp,)| < d
@ Sufficient statistics We then solve the optimization problem

= log Z(A Ave!
W=, max log Zs( )+BZ i€;

I

© We show || — 1|2 < e by taking sufficient samples. Crucially showing
log partition function is strong convex.

A few remarks:
@ Algorithm not time efficient for generic Hamiltonians
@ Except obtain measurement statistics of p, our algorithm is classical
© Exponential in 3, k: Might seem bad, but cannot be generically avoided

@ [HKT'22] considered small 3, the sample complexity is (log n)/(/3%€?).



Weyl matrices
Pauli matrices: I = (é (1)), X = ((1) é)v Y = (? _0i>v Z= (é ,Ol)

n-qubit Pauli matrices {I, X, Y, Z}" form an orthonormal basis for C".

In particular, for every x = (a, b) € ]F%”, define a Weyl operator
Wy = i*b(xnzh @ X272 @ ... @ X 75,
{ W} are orthonormal, form a basis for quantum states, i.e., for every |1)), we have
Z ax - Wy,
XGIF”

where

=T, 5 S el =1,

Below we will use p,(x) = a2/2", so that 3, pw(x) =1

Note that this is similar to Fourier decomposition of a Boolean function
f:{0,1}" — {0,1} as f(x) = >_s f(S)Xs( ) where > ( )2 =



Bell sampling

Recall. Pauli matrices {I, X, Y, Z}" form an orthonormal basis for C".
In particular, for every x = (a, b) € IF%”, define a Weyl operator

W, = ia-b(Xa1zb1 ® Xazzbz R ® Xa"Zb"),
Define py(x) = (¢|Wi|1)2/2", and we have 3, py(x) = 1.

Bell basis. Observe that {|W,) = (W, @) |®") : b € {0,1}?} where
|®*) = (]00) + |11))/v/2 is an orthonormal basis for C2.

Bell sampling.

@ Input: Bell sampling takes 4 copies of an n-qubit |).

@ Procedure: Using the first two copies of ), measure qubit i/, n + i in the Bell
basis to obtain (bj, b}). Call the resulting string x = ((b1, b}), ..., (bn, b},)).
Using the second two copies of [¢)) to obtain y = ((c1, ¢]), - -, (¢, C}))-

@ Output: x + y € F3".

Theorem. The output z € F%" above is sampled according to the distribution

qy(z) = Z py(a)py(z + a).

2n
acls



Bell sampling for learning stabilizer states

Stabilizer states. Consider a Clifford circuit C (i.e., consisting of H,S, CNOT gates)
then output of C|0") is a stabilizer state!

Alternatively, a stabilizer state |¢) is a pure states such that there is a subgroup
S C { Wi} of size 2" such that P |i) = |¢) for all P € 8. In particular,

W)@l =Y o,

oCS

where S C { Wi}« has dimension n.

Observe
- 27"z stabilizes |¢)
—o-n. W, )2 =
py(2) (YIWz|y) {0 otherwise
Hence
qu(2)= Y pu(adpy(z+a)=2"" 3 py(z+a)=2""[z € Stab|¥))] = py(2).
aGJFg" a€Stab(v))

Bell sampling uses 4 copies of [¢) and produces a z ~ gy (z) (or z ~ py(z)) . In
particular, 4 copies produces a W, that stabilizes the unknown |[v).

Learn the basis. Repeat the above for O(n) times, to obtain n many linearly
independent zs that stabilize |¢). Call it {Wj,..., W,}. Time complexity is O(n®)



Some recent improvements

Learning beyond stabilizer states
© Single layer of T gates

o [LC’21] considered learning states that are output of circuits that consist
of Clifford 4 one layer of at most O(log n) many T gates.

o Write a stabilizer decomposition of | T) state and write the resulting state
as a sum of 2% many stabilizer states.

@ A technical modification of Bell sampling learns in time poly(n, 2¥)

@ A sequence of works [GIKL ('22,22,'23), LOH'23, HG'23] showed how to learn
Clifford + k many T gates in time poly(n, 2¥)
o Stabilizer dimension (¢) = dim({z : (¢)|W;|¢) # 0}).
o GIKL'23 showed how to learn states |¢) with stabilizer dimension > n — k
in times poly(n, 2)
o Main idea is Bell sampling

o If |¢) produced by Clifford+ k many non-Clifford gates, then Stabilizer
dimension(¢)) > n — k.



Bell sampling, viewed as taking derivatives

Learning stabilizer states. Bell sampling [Mon’17] A way of taking “derivatives”

Every stabilizer state written as |¢)) = ZXeA(—l)XtBX - i5¥|x) for a subspace A C F§

A learning algorithm performs the following: (for simplicity let A = {0,1}", S = 0")

Goal is to learn B € F5*"

9) ® [ = D (—1) BB |x, y)

. Take two copies of [1)

X,y
AT S (1 BB [, x + )
5y
— Z(il)xth#»(XJrz)tB(xﬂ»z) |X, Z) — Z(il)xt(B+Bt)z+zth |X, Z)

X,z

Measure the second register and suppose we obtain Z, resulting state is

(-0 B2 (D (-1 EEz ) ) 12) & (B + BY) - 2)12)

Two copies of |) allow to take one derivative of x*Bx (in the direction of Z).
Take O(n) 1) completely




Learning phase states

A natural extension? Let
1
) = —= 3 ()W)
2" x€{0,1}"
where degree of f equals d. How many copies of |1)¢) suffice to learn f?

Why care about phase states?

@ Pseudorandomness: If f is a pseudorandom function, then |1)f) is
indistinguishable from a Haar random state.

@ QP circuits: Applying {Z,CZ, CCZ} to H"|0") produces a degree-3 phase state

@ Quantum complexity: Recently several results using phase states

In [ABDY’22], we considered the learning question and showed optimal bounds.

Separable | Entangled
degree-d Binary phase state o(n9) o(ndT)




Learning phase states with entangled measurements

A first approach. Taking derivatives? let f be degree-3
¥) 2 (s, ) (1) IO 1)),

X

Recall that when f was degree-2, then f(x) + f(x + s) was degree-1, so we can learn
it by applying Hadamards, but now f(x) + f(x + s) is degree-2, unclear how to learn!
An entangled learning algorithm.

(1.) Pretty good measurement for the ensemble £ = {|¢¢)®* : f € P(n,d)}

(2.) The failure probability of the PGM for & is given by

E e = 30 [1-2Prla() £ 0]
f#g geP*(n,d)
= Y [n-2w(e)

gEP*(n,d)

d—1
=3 3 [ 2lel/2 wile) € 2741271

{=1 geP*(n,d)

(3.) Use weight properties of Reed-Muller codes to show above is < exp(—k + nd-1),
which is < 1/100 for k = O(n9~1)

(4.) Optimal since there are n? bits of information and each |)¢) has n bits



Quantum statistical query learning

Problem. Let C be a class of functions ¢ : {0,1}" — {0,1}.

In quantum learning theory, given access to T copies of
1

We) = —— x,c(x)),

[c) T 2\ ()

can we learn c?

Entangled measurements: Joint-measurement on | )® "
Separable measurements The learner can only apply single-copy measurements
QSQ model

© Maybe even entangled and separable measurements far from NISQ.
@ In [AGY'20], introduced the quantum statistical query model (QSQ)

© QSQ learner can make Qstat queries: specifies ||[M|| < 1 and 7 € [0, 1]
Qstat : (M, 7) = apy € [(Wc|M|pe) — 7, (he|Mbe) + 7]

How many Qstat queries are necessary/sufficient to learn c?
@ Say someone in the “cloud” possesses |1c) and a learner is purely classical

© Quantum examples are useful for learning parities, juntas, DNF formulas, coupon
collector: all of these algorithms need only QSQ measurements!



How powerful are measurement statistics? Part |

Let C be a class of functions ¢ : {0,1}" — {0,1} and |¢)c) = \/% Do 1% e(x)).

Given access to Qstat queries, can we learn c?

Almost all quantum learning algorithms can be converted into the QSQ model.
What separates QSQ from entangled/separable measurements?
Classically.
@ Uniform PAC learning i.e., given just uniform (x, c(x))
@ Classical SQ queries, i.e., M = diag({¢(x)}x) for some arbitrary
¢:{0,1}" —[0,1]
What separates classical SQ and classical PAC? Parities!
Quantumly One can show that degree-2 functions separates QSQ and QPAC!



How powerful are measurement statistics? Part |

Let C be a class of functions ¢ : {0,1}" — {0,1} and |¢¢) = % > 1x, e(x)).
Given access to Qstat queries, can we learn c¢?
Almost all quantum learning algorithms can be converted into the QSQ model.
In [AHS'23], for the concept class C = {c(x) = x'Ax : A € FJ*"}, then

@ Entangled complexity: ©(n)

@ Separable complexity: ©(n?)

@ QSQ complexity: ©(2")

@ Learning with noise: given copies of > |x) /1 —7n|c(x)) + /7 ’m>,

learnable in poly(n,1/(1 — 2n)) time.

Some consequences:

@ Separates QSQ from Quantum learning with classification noise (a natural
classical analogue is an open question)

@ Exponential separation between Weak and strong error mitigation



How powerful are measurement statistics? Part Il

Let C be a class of quantum states (no longer Boolean functions)
QSQ algorithm of learning C makes Qstat queries: for an unknown p € C
Qstat : (M, 7) = apy € [Tr(Mp) — 7, Tr(Mp) + 7]

[CCHL'21] showed that for few computational tasks (such as shadow tomography):
O(n) entangled measurements suffice but 2" separable measurements are necessary.

@ Introduce a statistical dimension which gives lower bounds for QSQ

@ Show that the CCHL states require > 4" copies to learn

@ Show that Abelian coset states requires > 2" copies to learn

@ For several algorithms like learning Gibbs state, trivial states, the algorithm can
be implemented in QSQ



Directions and outlook

Through these lectures.

@ Considered learning Boolean functions using quantum examples.
Sometimes useful sometimes not

@ Considered learning quantum states exactly, approximately and their properties

© Considered interesting classes of states and saw efficient algorithms

Open questions.
@ Learning more interesting classes of states
@ More “realistic” learning theory models motivated by near-term
© Connections between learning and other topics

@ Several surveys on this topic, containing many interesting open questions

THANK YOU



