1 Lecture 4 exercise

Problem 1. Consider the Pauli matrices:
$\mathbb{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), Y=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. For every Hermitian operator H, define the Pauli Fourier decomposition of ρ as

$$
H=\sum_{P \in\{\mathbb{I}, X, Y, Z\}^{\otimes n}} \alpha_{P} P,
$$

where $\alpha_{H}=\operatorname{Tr}(H P)$.

1. Prove n-qubit Pauli matrices $\{\mathbb{I}, X, Y, Z\}^{\otimes n}$ form an orthonormal basis for $\mathbb{C}^{n \times n}$. In particular show that $\operatorname{Tr}\left(P \cdot P^{\prime}\right)=2^{n}$ if $P=P^{\prime}$ and 0 otherwise, where $P, P^{\prime} \in\{\mathbb{I}, X, Y, Z\}^{\otimes n}$.
2. Prove that the decomposition above is unique
3. We will denote $\mathbb{I}=W_{00}, X=W_{01}, Z=W_{10}, Y=W_{11}$ like we mentioned in the lecture. Show that $\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|=\frac{1}{4} \sum_{y \in \mathbb{F}_{2}^{2}} W_{y}(-1)^{y_{1} \cdot y_{2}}$.
Hint: All of them requiring writing the equalities and checking they are true.
Problem 2. Prove that the output distribution of the Bell sampling (on input $|\psi\rangle^{\otimes 4}$) is given by

$$
\begin{equation*}
q_{\psi}(z)=\sum_{a \in \mathbb{F}_{2}^{2 n}} p_{\psi}(a) p_{\psi}(z+a), \tag{1}
\end{equation*}
$$

where $p_{\psi}(a)=\langle\psi| W_{a}|\psi\rangle^{2} / 2^{n}$. For $x=\left(x^{1}, x^{2}\right), y=\left(y^{1}, y^{2}\right) \in \mathbb{F}_{2}^{2 n}$, define $[x, y]=\left\langle x^{1}, y^{2}\right\rangle \oplus\left\langle x^{2}, y^{1}\right\rangle$.

1. For $b \in \mathbb{F}_{2}^{2}$, show that $\left|W_{b}\right\rangle\left\langle W_{b}\right|=\frac{1}{4} \sum_{y \in \mathbb{F}_{2}^{2}} W_{y}^{\otimes 2}(-1)^{y_{1} y_{2}+[b, y]}$, where $\left|W_{b}\right\rangle=\left(W_{b} \otimes \mathbb{I}\right)\left|\Phi^{+}\right\rangle$.
2. Show that $\sum_{b \in \mathbb{F}_{2}^{2}}\left|W_{b}\right\rangle\left\langle\left. W_{b}\right|^{\otimes 2}=\frac{1}{4} \sum_{b \in \mathbb{F}_{2}^{2}} W_{b}^{\otimes 4}\right.$
3. Let us assume the following two equations

$$
\begin{align*}
\Pi_{z} & =\sum_{x \in \mathbb{F}_{2}^{2 n}}\left|W_{x}\right\rangle\left\langle W_{x}\right| \otimes\left|W_{x+z}\right\rangle\left\langle W_{x+z}\right|=\frac{1}{4^{n}} \sum_{x \in \mathbb{F}_{2}^{2 n}} W_{x}^{\otimes 4}(-1)^{[z, x]} \tag{2}\\
q_{\psi}(z) & =\operatorname{Tr}\left[\Pi_{z}|\psi\rangle\left\langle\left.\psi\right|^{\otimes 4}\right] .\right. \tag{3}
\end{align*}
$$

Now prove Eq. (1) using Eq. (2,3).
Hint: For (i) write down the LHS and RHS and observe they are the same (use Problem 1 (iii) here. For (ii) write down the tensor product of (1.) and expand it out. For (iii) using the definition of $p_{\psi}(a)$ will prove Eq. (1).

Problem 3. In this problem you will learning parities in the QSQ model. Recall that the class of parities is given by $\mathscr{C}=\left\{c_{S}(x)=S \cdot x=\sum_{i} S_{i} x_{i}(\bmod 2)\right\}_{S \in\{0,1\}^{n}}$. Also recall that for a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, the Fourier coefficients are given by

$$
\widehat{f}(S)=\frac{1}{2^{n}} \sum_{x} f(x)(-1)^{S \cdot x}
$$

1. Given a quantum example $\left|\psi_{f}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x}|x, f(x)\rangle$, show that there is an M and τ that satisfies the following: on input $i \in[n]$, the Qstat query returns a τ-approximation of $\sum_{S: S_{i}=1} \widehat{f}(S)^{2}$.
2. Show that there is a polynomial-time implementable M_{i} and constant τ_{i} such that by making n many Qstat queries with $\left(M_{i}, \tau_{i}\right)$ one can learn parities

Hint: (i) Apply the Hadamard transform on $\left|\psi_{f}\right\rangle$, construct an M that allows to sum Fourier coefficients over $S: S_{i}=1,(i i i)$ Observe that parities have a single Fourier coefficient, so by choosing $\tau_{i}=1 / 10$ and M_{i} as in (ii) we can learn the unknown parity S.

Problem 4. In this exercise you will be show that $O\left(n^{2}\right)$ copies of quadratic phase states $\left|\psi_{f}\right\rangle=$ $\frac{1}{\sqrt{2^{n}}} \sum_{x}(-1)^{f(x)}|x\rangle$ where f is degree-2 suffices to learn f using single-qubit measurements.
Hint: (i) Measure all but $\left(n-1\right.$) qubits in $\left|\psi_{f}\right\rangle$, what information about f can we infer from this? (ii) Repeating (i) $O(n)$ many times to learn a directional derivative (iii) Learn the n directions to learn f.

