Overview of results for learning quantum states

Srinivasan Arunachalam (IBM Quantum)

Learning quantum states: overview

So far. We looked at learning Boolean functions $c:\{0,1\}^n \to \{0,1\}$ encoded as a quantum example state

$$\sum_{x} \sqrt{D(x)} |x, c(x)\rangle$$

and looked strengths and weakness of these examples for learning c.

What if we are given ρ , an unknown quantum state?

1 Copies of
$$\rho$$
, learn ρ

Tomography

2 Measurement statistics of ρ , learn ρ "approximately well"

PAC learning and shadow tomography

(3) When ρ is an interesting class of states

Gibbs states of local Hamiltonians, stabilizer states and their variants

Learning quantum states: Tomography

Let ρ be an *n*-qubit quantum state $\rho \in \mathbb{C}^{D \times D}$ with $D = 2^n$.

Tomography. How many copies of ρ are necessary and sufficient to produce classical description of a state σ that approximates ρ well enough?

Motivation. Fundamental question, experimental verification, understanding noise.

Output requirement. σ satisfies $\|\sigma - \rho\|_{tr} \leq \varepsilon$.

A trivial algorithm. Estimate each entry well enough requires $O(D^6)$ copies

Subsequent works. Using compressive sensing $O(D^4)$ copies and matrix recovery $O(D^3)$ copies

A breakthrough in 2015. Showed how to do tomography in complexity $O(D^2/\varepsilon^2)$. [OW'15, HHJWY'15]. Known to be optimal.

Tomography protocols

Two protocols for tomography using $O(d^2/\varepsilon^2)$ copies.

- [OW'15]: Spectrum estimation using Schur sampling and the classical RSK algorithm for state reconstruction
- [HHJWY'15]: Used the PGM, analyzed via Schur-Weyl duality

Remark: [OW'15, HHJWY'15] showed that $O(dr/\varepsilon^2)$ copies suffice when rank(ρ) = r.

Pure state tomography. Given $|\psi\rangle^{\otimes T}$, output ϕ such that $\langle \psi | \phi \rangle \geq 1 - \varepsilon$

Protocol. Apply a natural measurement!

- **1** Ensemble: Uniform over $|\psi\rangle^{\otimes T}$
- **2** POVM: Apply the POVM $\{E_{|\phi\rangle}^{\otimes T} : |\phi\rangle\}$, where

$$\mathsf{E}_{\ket{\phi}} = igg(egin{array}{c} \mathsf{T} + \mathsf{d} - 1 \ \mathsf{d} - 1 \ \end{smallmatrix} igg| \phi
angle^{\otimes \mathsf{T}} ig \langle \phi |^{\otimes \mathsf{T}} \, \mathsf{d} \phi$$

(although continuous, can implemented by taking an appropriate discretization)

- **3** Output: Output the resulting $|\phi\rangle$.
- **3** Sample complexity: If $T = O(d/\varepsilon^2)$, then $\| |\phi\rangle |\psi\rangle \|_{tr} \le \varepsilon$.

Remains to see. Why $\{E_{\psi}^{\otimes T}:\psi\}$ is a POVM and the sample complexity bound!

Tomography protocols

Why a valid POVM? One needs to show that $\int_{|\phi\rangle} E_{|\phi\rangle} = \mathbb{I}$. To this end, observe that

$$\begin{split} \int_{|\phi\rangle} {T+d-1 \choose d-1} |\phi\rangle^{\otimes T} \langle \phi|^{\otimes T} d\phi &= {T+d-1 \choose d-1} \int_{|\phi\rangle} |\phi\rangle^{\otimes T} \langle \phi|^{\otimes T} d\phi \\ &= {T+d-1 \choose d-1} \frac{\Pi_{sym}^{T,d}}{\mathsf{Tr}(\Pi_{sym}^{T,d})} = \Pi_{sym}^{T,d}, \end{split}$$

since our POVM acts only on the symmetric subspace, this equals ${\mathbb I}$

Output of the algorithm. On input $|\psi\rangle^{\otimes T}$, the expected output $|\phi\rangle$ satisfies

$$\begin{split} \mathbb{E}_{\phi \sim \mathsf{POVM}}[\langle \psi | \phi \rangle^2] &= \int_{\phi} \langle \psi | \phi \rangle^2 \cdot \mathsf{Pr}[\mathsf{POVM} \text{ outputs } | \phi \rangle] d\phi \\ &= \int_{\phi} \langle \psi | \phi \rangle^2 \cdot \langle \psi | \phi \rangle^{2T} \cdot \binom{d+T-1}{d-1} d\phi \\ &= \binom{d+T-1}{d-1} \cdot \int_{\phi} \langle \psi | \phi \rangle^{2T+2} d\phi = \binom{d+T-1}{d-1} \cdot \frac{1}{\binom{d+T}{d}} \sim 1 - d/T. \end{split}$$

Hence the expected distance between $|\phi\rangle$ and $|\psi\rangle$ is $\sqrt{d/T}$, which is ε for $T = d/\varepsilon^2$. Alternative learning models?

- Given $D = 2^n$, complexity is large for n = 10 (best known experiment)
- Learning ρ entirely is an overkill, maybe want to learn only certain aspects?

PAC learning quantum states

So far. Tomography learned the entire quantum state ρ . Producing a σ s.t. $\|\sigma - \rho\|_{\text{Tr}}$ is small, means we'v learned $\text{Tr}(E \cdot \rho)$ "approximately" for every E!

Relax this goal? Learn ρ approximately well for "most" 2-outcome measurements?

PAC learning quantum states. Motivation is classical PAC learning.

Valiant gave a complexity-theoretic definition of what it means to learn: introduced the Probably Approximately Correct model

let D: E → [0,1] be a distribution over all possible two-outcome measurements
Given E₁,..., E_k sampled from D along with Tr(p · E₁),..., Tr(p · E_k)

Goal is to produce σ that satisfies

$$\Pr\left[|\operatorname{Tr}(\rho E) - \operatorname{Tr}(\sigma E)| \leq \varepsilon\right] \geq 1 - \delta,$$

i.e., probably (with prob. $\geq 1 - \delta$) over $E \sim D$, can approximately learn Tr(ρE).

PAC learning protocol

Recall. ρ is unknown. $D : \mathcal{E} \to [0, 1]$ distribution over measurements. Given Given $\{(E_i, \operatorname{Tr}(\rho E_i))\}_{i=1}^k$ where $E_i \sim D$, produce σ s.t. $\Pr\left[|\operatorname{Tr}(\rho E) - \operatorname{Tr}(\sigma E)| \le \varepsilon\right] \ge 1 - \delta$.

Is PAC learning sample complexity smaller than $O(D^2)$ tomography complexity?

Yes! Aaronson'03 showed that $O(\log D)$ many examples suffice to produce a σ ! Proof sketch.

- Take *O*(log *D*) many examples, just find a *σ* that is consistent with these trace measurement outcomes!
- Why does this work? VC-theory for real-valued functions!
- Consider the function $f_{\rho} : \mathcal{E} \to [0, 1]$ defined as $f_{\rho}(\mathcal{E}) = \text{Tr}(\rho \cdot \mathcal{E})$. Let $\mathcal{C} = \{f_{\rho} : \mathcal{E} \to [0, 1]\}_{\rho}$ be the concept class of interest
- Well known that learning C can be done using fat-shattering dimension fat(C)-many samples of the form $(E, f_{\rho}(E))$ where $E \sim D$
- Using random-access codes one can show $fat(C) = O(\log D)$

PAC learning protocol

Recall. ρ is unknown. $D : \mathcal{E} \to [0, 1]$ distribution over measurements. Given Given $\{(E_i, \operatorname{Tr}(\rho E_i))\}_{i=1}^k$ where $E_i \sim D$, produce σ s.t. $\Pr\left[|\operatorname{Tr}(\rho E) - \operatorname{Tr}(\sigma E)| \le \varepsilon\right] \ge 1 - \delta$.

Is PAC learning sample complexity smaller than $O(D^2)$ tomography complexity?

Yes! Aaronson'03 showed that $sfat(C) = O(\log D)$ examples suffice to produce σ !

Remarks.

- Sample complexity of PAC learning quantum states is exponentially better than tomography!
- Time complexity is still large!
- Morally,

VC dimension characterizes learning Boolean functions.

Fat-shattering dimension characterizes learning quantum states

Shadow tomography

So far. Estimated ρ on a distribution of measurements. But if we fix a set of measurements, can we learn faster?

$$\mathcal{E} = \{E_1, \ldots, E_k\}$$

Problem. Given $\{E_1, \ldots, E_k\}$, how many copies of ρ suffice to estimate $Tr(\rho E_1), \ldots, Tr(\rho E_k)$?

Trivial algorithm.

Tomography: Uses D^2 copies of ρ .

Empirical: Use $1/\varepsilon^2$ copies of ρ and estimate $\text{Tr}(\rho E_i)$, totally k/ε^2 copies of ρ .

Better algorithm. Using ideas from online learning and PAC learning, Aaronson'17 proposed an algorithm that can estimate $Tr(\rho E_1), \ldots, Tr(\rho E_k)$ using $O(\log k, \log D)$ copies of ρ (exponentially better than trivial)

Shadow tomography protocol

Problem. Given $\{E_1, \ldots, E_k\}$, how many copies of ρ suffice to estimate $Tr(\rho E_1), \ldots, Tr(\rho E_k)$ up to error ε ?

Protocol idea

Part 1: Communication complexity

Suppose Alice has ρ , Bob has $\{E_1, \ldots, E_k\}$. Bob needs to output $\{\text{Tr}(\rho \cdot E_i)\}_i$. Only Alice can communicate to Bob. Trivial protocol cost is $O(D^2)$

- **Obs Bob guesses Alice's state** sequentially $\sigma_0 = \mathbb{I}/D, \dots, \sigma_T$ such that eventually $\text{Tr}(\rho \cdot E_i) \approx \text{Tr}(\sigma_T \cdot E_i)$
- **2** Alice sends bits in order to improve Bobs guess in each iteration : If $|\text{Tr}(\rho \cdot E_i) - \text{Tr}(\sigma_i \cdot E_i)| > \varepsilon$ Alice sends $(i, \text{Tr}(E_i\rho))$.

Sob updates his guess σ_i → σ_{i+1} as follows: consider the 2-outcome observable F that applies {E_i, I − E_i} acting on (log n) copies of σ_i and "accepts" if at least a constant fraction accepted, if so, trace out the last (log n) − 1 copies and the resulting state is σ_{i+1}.

• Clearly $|\operatorname{Tr}(\rho \cdot E_i) - \operatorname{Tr}(\sigma_T \cdot E_i)| \leq \varepsilon$ for all *i*

Main observation in [Aar'03] was it suffices to send poly(log D, log k) many bits in the communication protocol

Shadow tomography protocol: II

Problem. Given $\{E_1, \ldots, E_k\}$, no. of copies of ρ to ε -estimate $Tr(\rho E_1), \ldots, Tr(\rho E_k)$?

Protocol idea. 1. Communication complexity

- **(**) Suppose Alice has ρ , Bob has $\{E_1, \ldots, E_k\}$. Approximate $Tr(\rho \cdot E_i)$
- **2** Alice sends bits in order to improve Bobs guess in each iteration: If $|Tr(\rho \cdot E_i) Tr(\sigma_i \cdot E_i)| > \delta$ Alice sends $(i, Tr(E_i\rho))$.
- Main observation in [Aar'03] was it suffices to send poly(log D, log k) many bits in the communication protocol

Protocol idea 2. Simulating this CC protocol for learning

Quantum hypothesis selection

Badescu & O'Donnell'20 gave a shadow tomography protocol using sample complexity using $T = O(\log^2 k \cdot \log D \cdot \varepsilon^{-4})$ copies of ρ .

Interesting corollary. Let $\mathcal{C} = \{\rho_1, \dots, \rho_k\}$ and σ be an unknown state.

Given copies of σ , find the nearest $\rho_i \in C$, i.e., find an $\ell \in [k]$ such that

$$\|\sigma - \rho_{\ell}\|_{tr} \leq \mathsf{OPT} + \varepsilon,$$

where $OPT = \min_{i \in [k]} \|\rho_i - \sigma\|$.

Remark: If one could improve the $\log^2 k \to \log k$ in the complexity above, one can show tomography can be done using $\tilde{O}(d^2)$ copies!

1 For every $i \neq j$, by Holevo-Helstrom there exists A_{ij} such that

$$\|\rho_i - \rho_j\|_{tr} = \mathsf{Tr}(A_{ij}(\rho_i - \rho_j))$$

2 Now perform shadow tomography on $\sigma^{\otimes T}$ using the operators $\{E_{ij}\}_{i,j}$ to obtain $|\alpha_{ij} - \text{Tr}(A_{ij}\sigma)| \leq \varepsilon/2$

3 Go over all $\rho \in C$ to find ℓ that minimizes $\max_{ij} \operatorname{Tr}(\rho_{\ell} A_{ij} - \alpha_{ij})$

• One can show that $\|\rho_i - \sigma\|_{tr} \leq 3\mathsf{OPT} + \varepsilon$.

Classical shadows

Subsequent work of [HKP'20] introduced classical shadows that

(i) given copies of ρ , creates a *classical* shadow of ρ efficiently

(ii) classical shadows used to compute expectation values of arbitrary observables

Procedure to obtain shadows.

- **1** Given ρ , apply a random U_i on ρ and measure to obtain $b^i \in \{0,1\}^n$
- 2 Classical shadows are $\{|s_1\rangle, \dots, |s_T\rangle\}$ where $|s_i\rangle = U_i^* |b^i\rangle$
- **③** View the process of "average mapping" $\rho \rightarrow U|b^i\rangle\langle b^i|U^*$ as a channel $\mathbb{E}[|s_i\rangle\langle s_i|] = \mathcal{M}(\rho)$

Intuitively, one should now view $\mathbb{E}[\mathcal{M}^{-1}|s_i\rangle\langle s_i|] = \rho$, or $\mathcal{M}^{-1}|s_i\rangle\langle s_i| \approx \rho$.

Predicting expectation values. For observables E, compute

$$\mathbb{E}_{i}[\mathrm{Tr}(E\mathcal{M}^{-1}|s_{i}\rangle\langle s_{i}|)] := \alpha_{E} \approx \mathrm{Tr}(E\rho).$$

Using median-of-means estimator to output $\alpha_E \in \mathbb{R}$

Correctness. [HKP'20] showed that if $T = O(||E||_{shadow}/\varepsilon^2)$, then $|\alpha_E - \text{Tr}(E\rho)| \le \varepsilon$. This bound is known to be tight

Also, given $\{E_1, \ldots, E_k\}$, the same classical shadows can be used to estimate $|\alpha_i - \operatorname{Tr}(E_i\rho)| \leq \varepsilon$ using $O((\log k) \cdot ||E||_{shadow}/\varepsilon^2)$ copies of ρ .

Norm. We have $||E||_{shadow} \leq \sqrt{\operatorname{Tr}(E^2)}$. So $||E||_{shadow} \leq 1$ for rank-1 observables!

So far. We saw tomography, PAC learning shadow tomography and classical shadows.

Results we didn't cover

- Extending shadow tomography to k-outcome observables
- 2 Lower bounds on shadow tomography and standard tomography if allowed only separable measurements
- Online learning quantum states
- Learning arbitrary quantum channels or unitary channels
- 5 Learning matrix product states, quantum states produced by low-depth circuits
- 6 Learning time-dependent states
- 0

Learning Hamiltonians. Given Gibbs states of Hamiltonians, learn the Hamiltonian?

Problem definition. Let *H* be a κ -local Hamiltonian acting on *n* qudits written as $H = \sum_{i=1}^{m} \mu_i E_i$ for an orthonormal *k*-local basis $\{E_i\}$. Given *T* copies of a Gibbs state

$$p = rac{e^{-eta H}}{\operatorname{Tr}(e^{-eta H})},$$

output $\mu' = ({\mu'}_1, \dots, {\mu'}_m)$ such that $\|\mu' - \mu\|_2 \le \varepsilon$.

Motivation for this problem. Physics perspective, verification of quantum systems, Machine learning, Experimental motivation

Result [AAKS'20]: No. of copies of ρ to solve HLP is $\widetilde{\Theta}(\text{poly}(e^{\beta+\kappa}, 1/\beta, 1/\varepsilon, n^3))$.

Quantum proof: First idea

Recall: Given copies of $\rho_{\mu} = \frac{1}{Z_{\beta}} e^{-\beta H}$ where $H = \sum_{i} \mu_{i} E_{i}$, output approximation of μ

Sufficient statistics:

Suppose we have approximations e' of

$$e_i = \mathsf{Tr}(E_i
ho_\mu) \quad ext{ for all } i \in [m]$$

satisfying $|e'_i - e_i| \le \varepsilon$, can we recover μ ? Using [Aar'18, HKP'20, CW'20]?

(2) These works produce $\rho' \approx \rho_{\mu}$, but that doesn't even imply ρ' is a Gibbs state $e^{-\beta H'}$, so approximating μ is unclear!

Observation 1: suppose we maximize over $\rho_{\lambda} = e^{-\beta H}$ where $H = \sum_{i} \lambda_{i} E_{i}$ s.t.

$$\operatorname{Tr}(\rho_{\lambda}E_{i}) = \operatorname{Tr}(\rho_{\mu}E_{i})$$
 for every $i \in [m]$,

then $\rho_{\lambda} = \rho_{\mu}$ which implies $\lambda = \mu$. Isn't this "hard"?

Observation 2: Maximum entropy principle \rightarrow Cast as an optimization problem

$$\begin{aligned} \max_{\sigma} & S(\sigma) \\ \text{s.t.} & \operatorname{Tr}[\sigma E_i] = e_i, \quad \forall i \in [m] \\ & \sigma \succcurlyeq 0, \quad \operatorname{Tr}[\sigma] = 1. \end{aligned}$$
 (1)

where $S(\sigma) = -\operatorname{Tr}[\sigma \log \sigma]$ is the quantum entropy of σ . Optimum of (1) equals ρ_{μ}

Quantum proof: First idea (continued)

Recall: Given copies of $\rho_{\mu} = \frac{1}{Z_{\beta}} e^{-\beta H}$ where $H = \sum_{i} \mu_{i} E_{i}$, output approximation of μ

Maximum entropy principle: σ with equal marginals $\{e_i\}$ & maximum entropy is ρ_{μ} Given approximations e'_i of $e_i = \text{Tr}(E_i \rho_{\mu})$ for $i \in [m]$ satisfying $|e'_i - e_i| \leq \varepsilon$ recover μ ?

$$\begin{array}{ll} \max_{\sigma} & S(\sigma) & \max_{\sigma} & S(\sigma) \\ \text{s.t.} & \operatorname{Tr}[\sigma E_i] = e_i, \quad \forall i \in [m] & \xrightarrow{\text{Approximations}} & \operatorname{s.t.} & \operatorname{Tr}[\sigma E_i] = e'_i, \quad \forall i \in [m] \\ \sigma \succcurlyeq 0, \quad \operatorname{Tr}[\sigma] = 1. & \sigma \succcurlyeq 0, \quad \operatorname{Tr}[\sigma] = 1. \end{array}$$

If ho_{μ} maximizes first and $ho_{\mu'}$ maximizes second problem, then by Pinsker's inequality

 $\|\rho_{\mu}-\rho_{\mu'}\|_{1}\leq O(m\varepsilon)$

Does this suffice for our problem in approximating the μ s? No

In order to approximate μ , need to bound

 $\|\log \rho_{\mu} - \log \rho_{\mu'}\|_1$

Could be exponentially worse than $\|\rho_{\mu} - \rho_{\mu'}\|_1$. Issue is non-Lipschitz nature of log(x) function

Hamiltonian Learning algorithm

Recall: Given copies of $\rho_{\mu} = \frac{1}{Z_{\beta}} e^{-\beta H}$ where $H = \sum_{i} \mu_{i} E_{i}$, output approximation of μ

Result [AAKS'20]: No. of copies of ρ to solve HLP is $\widetilde{\Theta}(\operatorname{poly}(e^{\beta+\kappa}, 1/\beta, 1/\varepsilon, n^3))$. Algorithm.

- **Observe and Set Provided Example 1 Exa**
- Sufficient statistics We then solve the optimization problem

$$\mu = \max_{\lambda_1, \dots, \lambda_m} \log Z_\beta(\lambda) + \beta \sum_i \lambda_i e_i$$

with errors

$$\mu' = \max_{\lambda_1, \dots, \lambda_m} \log Z_\beta(\lambda) + \beta \sum_i \lambda_i e'_i$$

We show ||μ − μ'||₂ ≤ ε by taking sufficient samples. Crucially showing log partition function is strong convex.

Hamiltonian Learning algorithm

Recall: Given copies of $\rho_{\mu} = \frac{1}{Z_{\beta}} e^{-\beta H}$ where $H = \sum_{i} \mu_{i} E_{i}$, output approximation of μ

Result [AAKS'20]: No. of copies of ρ to solve HLP is $\widetilde{\Theta}(\text{poly}(e^{\beta+\kappa}, 1/\beta, 1/\varepsilon, n^3))$.

() Estimating marginals Shadows to get e'_i s.t. $|e'_i - \text{Tr}(E_i \rho_\mu)| \leq \delta$

Sufficient statistics We then solve the optimization problem

$$\mu' = \max_{\lambda_1, \dots, \lambda_n} \log Z_\beta(\lambda) + \beta \sum_i \lambda_i e'_i$$

We show ||µ − µ'||₂ ≤ ε by taking sufficient samples. Crucially showing log partition function is strong convex.

A few remarks:

- Algorithm not time efficient for generic Hamiltonians
- 2 Except obtain measurement statistics of ρ , our algorithm is classical
- **(3)** Exponential in β , κ : Might seem bad, but cannot be generically avoided
- **(**IKT'22] considered small β , the sample complexity is $(\log n)/(\beta^2 \varepsilon^2)$.