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Learning quantum states: overview

So far. We looked at learning Boolean functions c : {0, 1}n → {0, 1} encoded as a
quantum example state ∑

x

√
D(x) |x , c(x)⟩

and looked strengths and weakness of these examples for learning c.

What if we are given ρ, an unknown quantum state?

1 Copies of ρ, learn ρ

Tomography

2 Measurement statistics of ρ, learn ρ “approximately well”

PAC learning and shadow tomography

3 When ρ is an interesting class of states

Gibbs states of local Hamiltonians, stabilizer states and their variants
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Learning quantum states: Tomography

Let ρ be an n-qubit quantum state ρ ∈ CD×D with D = 2n.

Tomography. How many copies of ρ are necessary and sufficient to produce classical
description of a state σ that approximates ρ well enough?

Motivation. Fundamental question, experimental verification, understanding noise.

Output requirement. σ satisfies ∥σ − ρ∥tr ≤ ε.

A trivial algorithm. Estimate each entry well enough requires O(D6) copies

Subsequent works. Using compressive sensing O(D4) copies and matrix
recovery O(D3) copies

A breakthrough in 2015. Showed how to do tomography in complexity O(D2/ε2).
[OW’15, HHJWY’15]. Known to be optimal.
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Tomography protocols

Two protocols for tomography using O(d2/ε2) copies.

1 [OW’15]: Spectrum estimation using Schur sampling and the classical RSK
algorithm for state reconstruction

2 [HHJWY’15]: Used the PGM, analyzed via Schur-Weyl duality

Remark: [OW’15, HHJWY’15] showed that O(dr/ε2) copies suffice when rank(ρ) = r .

Pure state tomography. Given |ψ⟩⊗T , output ϕ such that ⟨ψ|ϕ⟩ ≥ 1− ε

Protocol. Apply a natural measurement!

1 Ensemble: Uniform over |ψ⟩⊗T

2 POVM: Apply the POVM {E⊗T
|ϕ⟩ : |ϕ⟩}, where

E|ϕ⟩ =
(T + d − 1

d − 1

)
|ϕ⟩⊗T ⟨ϕ|⊗T dϕ

(although continuous, can implemented by taking an appropriate discretization)

3 Output: Output the resulting |ϕ⟩.
4 Sample complexity: If T = O(d/ε2), then ∥ |ϕ⟩ − |ψ⟩ ∥tr ≤ ε.

Remains to see. Why {E⊗T
ψ : ψ} is a POVM and the sample complexity bound!
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Tomography protocols

Why a valid POVM? One needs to show that
∫
|ϕ⟩ E|ϕ⟩ = I. To this end, observe that∫

|ϕ⟩

(T + d − 1

d − 1

)
|ϕ⟩⊗T ⟨ϕ|⊗T dϕ =

(T + d − 1

d − 1

)∫
|ϕ⟩

|ϕ⟩⊗T ⟨ϕ|⊗T dϕ

=
(T + d − 1

d − 1

) ΠT ,d
sym

Tr(ΠT ,d
sym )

= ΠT ,d
sym ,

since our POVM acts only on the symmetric subspace, this equals I

Output of the algorithm. On input |ψ⟩⊗T , the expected output |ϕ⟩ satisfies

Eϕ∼POVM[⟨ψ|ϕ⟩2] =
∫
ϕ
⟨ψ|ϕ⟩2 · Pr[POVM outputs |ϕ⟩]dϕ

=

∫
ϕ
⟨ψ|ϕ⟩2 · ⟨ψ|ϕ⟩2T ·

(d + T − 1

d − 1

)
dϕ

=
(d + T − 1

d − 1

)
·
∫
ϕ
⟨ψ|ϕ⟩2T+2dϕ =

(d + T − 1

d − 1

)
·

1(d+T
d

) ∼ 1− d/T .

Hence the expected distance between |ϕ⟩ and |ψ⟩ is
√

d/T , which is ε for T = d/ε2.

Alternative learning models?

Given D = 2n, complexity is large for n = 10 (best known experiment)

Learning ρ entirely is an overkill, maybe want to learn only certain aspects?
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PAC learning quantum states

So far. Tomography learned the entire quantum state ρ. Producing a σ s.t. ∥σ − ρ∥Tr
is small, means we’v learned Tr(E · ρ) “approximately” for every E !

Relax this goal? Learn ρ approximately well for “most” 2-outcome measurements?

PAC learning quantum states. Motivation is classical PAC learning.

Valiant gave a complexity-theoretic definition of what it means to learn: introduced
the Probably Approximately Correct model

1 let D : E → [0, 1] be a distribution over all possible two-outcome measurements

2 Given E1, . . . ,Ek sampled from D along with Tr(ρ · E1), . . . ,Tr(ρ · Ek )

3 Goal is to produce σ that satisfies

Pr
[
|Tr(ρE)− Tr(σE)| ≤ ε

]
≥ 1− δ,

i.e., probably (with prob. ≥ 1− δ) over E ∼ D, can approximately learn Tr(ρE).
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PAC learning protocol

Recall. ρ is unknown. D : E → [0, 1] distribution over measurements. Given Given

{(Ei ,Tr(ρEi ))}ki=1 where Ei ∼ D, produce σ s.t. Pr
[
|Tr(ρE)− Tr(σE)| ≤ ε

]
≥ 1− δ.

Is PAC learning sample complexity smaller than O(D2) tomography complexity?

Yes! Aaronson’03 showed that O(logD) many examples suffice to produce a σ!

Proof sketch.

Take O(logD) many examples, just find a σ that is consistent with
these trace measurement outcomes!

Why does this work? VC-theory for real-valued functions!

Consider the function fρ : E → [0, 1] defined as fρ(E) = Tr(ρ · E). Let
C = {fρ : E → [0, 1]}ρ be the concept class of interest

Well known that learning C can be done using fat-shattering dimension
fat(C)-many samples of the form (E , fρ(E)) where E ∼ D

Using random-access codes one can show fat(C) = O(logD)
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PAC learning protocol

Recall. ρ is unknown. D : E → [0, 1] distribution over measurements. Given Given

{(Ei ,Tr(ρEi ))}ki=1 where Ei ∼ D, produce σ s.t. Pr
[
|Tr(ρE)− Tr(σE)| ≤ ε

]
≥ 1− δ.

Is PAC learning sample complexity smaller than O(D2) tomography complexity?

Yes! Aaronson’03 showed that sfat(C) = O(logD) examples suffice to produce σ!

Remarks.

Sample complexity of PAC learning quantum states is exponentially better
than tomography!

Time complexity is still large!

Morally,

VC dimension characterizes learning Boolean functions.

Fat-shattering dimension characterizes learning quantum states
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Shadow tomography

So far. Estimated ρ on a distribution of measurements. But if we fix a set of
measurements, can we learn faster?

Problem. Given {E1, . . . ,Ek}, how many copies of ρ suffice to estimate
Tr(ρE1), . . . ,Tr(ρEk )?

Trivial algorithm.

Tomography: Uses D2 copies of ρ.

Empirical: Use 1/ε2 copies of ρ and estimate Tr(ρEi ), totally k/ε2 copies of ρ.

Better algorithm. Using ideas from online learning and PAC learning, Aaronson’17
proposed an algorithm that can estimate Tr(ρE1), . . . ,Tr(ρEk ) using O(log k, logD)
copies of ρ (exponentially better than trivial)
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Shadow tomography protocol

Problem. Given {E1, . . . ,Ek}, how many copies of ρ suffice to estimate
Tr(ρE1), . . . ,Tr(ρEk ) up to error ε?

Protocol idea

Part 1: Communication complexity

Suppose Alice has ρ, Bob has {E1, . . . ,Ek}. Bob needs to output {Tr(ρ · Ei )}i . Only
Alice can communicate to Bob. Trivial protocol cost is O(D2)

1 Bob guesses Alice’s state sequentially σ0 = I/D, . . . , σT such that
eventually Tr(ρ · Ei ) ≈ Tr(σT · Ei )

2 Alice sends bits in order to improve Bobs guess in each iteration :
If |Tr(ρ · Ei )− Tr(σi · Ei )| > ε Alice sends (i ,Tr(Eiρ)).

3 Bob updates his guess σi → σi+1 as follows: consider the 2-outcome
observable F that applies {Ei , I− Ei} acting on (log n) copies of σi and
“accepts” if at least a constant fraction accepted, if so, trace out the
last (log n)− 1 copies and the resulting state is σi+1.

4 Clearly |Tr(ρ · Ei )− Tr(σT · Ei )| ≤ ε for all i

5 Main observation in [Aar’03] was it suffices to send poly(logD, log k)
many bits in the communication protocol
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Shadow tomography protocol: II
Problem. Given {E1, . . . ,Ek}, no. of copies of ρ to ε-estimate Tr(ρE1), . . . ,Tr(ρEk )?

Protocol idea. 1. Communication complexity

1 Suppose Alice has ρ, Bob has {E1, . . . ,Ek}. Approximate Tr(ρ · Ei )

2 Alice sends bits in order to improve Bobs guess in each iteration: If
|Tr(ρ · Ei )− Tr(σi · Ei )| > δ Alice sends (i ,Tr(Eiρ)).

3 Main observation in [Aar’03] was it suffices to send poly(logD, log k)
many bits in the communication protocol

Protocol idea 2. Simulating this CC protocol for learning

1 In shadow tomography, there is no Alice, but just ρ⊗T

2 Quantum OR lemma: Given O(log k) copies of ρ decides if there

exists j ∈ [k] s.t. Tr(Ejρ) ≥ Ω(1), or for all j ∈ [k], Tr(Ejρ) ≪ 1/k

3 What is j? Aar’18 used a binary-search approach to find this j

4 [Aar’18] The overall sample complexity is O(log4 k · logD · ε−5)

5 Few works improving the dependence on these parameters.
State of the art: O(log2 k · logD · ε−4) [BO’20]



12/ 19

Quantum hypothesis selection

Badescu & O’Donnell’20 gave a shadow tomography protocol using sample complexity
using T = O(log2 k · logD · ε−4) copies of ρ.

Interesting corollary. Let C = {ρ1, . . . , ρk} and σ be an unknown state.

Given copies of σ, find the nearest ρi ∈ C, i.e., find an ℓ ∈ [k] such that

∥σ − ρℓ∥tr ≤ OPT + ε,

where OPT = mini∈[k] ∥ρi − σ∥.
Remark: If one could improve the log2 k → log k in the complexity above, one can
show tomography can be done using Õ(d2) copies!

1 For every i ̸= j , by Holevo-Helstrom there exists Aij such that

∥ρi − ρj∥tr = Tr(Aij (ρi − ρj ))

2 Now perform shadow tomography on σ⊗T using the operators {Eij}i,j
to obtain |αij − Tr(Aijσ)| ≤ ε/2

3 Go over all ρ ∈ C to find ℓ that minimizes maxij Tr(ρℓAij − αij )

4 One can show that ∥ρi − σ∥tr ≤ 3OPT + ε.
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Classical shadows

Subsequent work of [HKP’20] introduced classical shadows that

(i) given copies of ρ, creates a classical shadow of ρ efficiently

(ii) classical shadows used to compute expectation values of arbitrary observables

Procedure to obtain shadows.

1 Given ρ, apply a random Ui on ρ and measure to obtain bi ∈ {0, 1}n

2 Classical shadows are {|s1⟩ , . . . , |sT ⟩} where |si ⟩ = U∗
i

∣∣bi 〉
3 View the process of “average mapping” ρ→ U|bi ⟩⟨bi |U∗ as a

channel E[|si ⟩⟨si |] = M(ρ)

Intuitively, one should now view E[M−1|si ⟩⟨si |] = ρ, or M−1|si ⟩⟨si | ≈ ρ.

Predicting expectation values. For observables E , compute

Ei [Tr(EM−1|si ⟩⟨si |)] := αE ≈ Tr(Eρ).

Using median-of-means estimator to output αE ∈ R

Correctness. [HKP’20] showed that if T = O(∥E∥shadow/ε2), then |αE −Tr(Eρ)| ≤ ε.

This bound is known to be tight

Also, given {E1, . . . ,Ek}, the same classical shadows can be used to estimate
|αi − Tr(Eiρ)| ≤ ε using O((log k) · ∥E∥shadow/ε2) copies of ρ.

Norm. We have ∥E∥shadow ≤
√

Tr(E2). So ∥E∥shadow ≤ 1 for rank-1 observables!
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Some further results

So far. We saw tomography, PAC learning shadow tomography and classical shadows.

Results we didn’t cover

1 Extending shadow tomography to k-outcome observables

2 Lower bounds on shadow tomography and standard tomography if allowed only
separable measurements

3 Online learning quantum states

4 Learning arbitrary quantum channels or unitary channels

5 Learning matrix product states, quantum states produced by low-depth circuits

6 Learning time-dependent states

7

...



15/ 19

Hamiltonian Learning Problem

Learning Hamiltonians. Given Gibbs states of Hamiltonians, learn the Hamiltonian?

Problem definition. Let H be a κ-local Hamiltonian acting on n qudits written as
H =

∑m
i=1 µiEi for an orthonormal k-local basis {Ei}. Given T copies of a Gibbs state

ρ =
e−βH

Tr(e−βH)
,

output µ′ = (µ′1, . . . , µ
′
m) such that ∥µ′ − µ∥2 ≤ ε.

Motivation for this problem. Physics perspective, verification of quantum systems,
Machine learning, Experimental motivation

Result [AAKS’20]: No. of copies of ρ to solve HLP is Θ̃
(
poly(eβ+κ, 1/β, 1/ε, n3

)
.
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Quantum proof: First idea

Recall: Given copies of ρµ = 1
Zβ

e−βH where H =
∑

i µiEi , output approximation of µ

Sufficient statistics:

1 Suppose we have approximations e′i of

ei = Tr(Eiρµ) for all i ∈ [m]

satisfying |e′i − ei | ≤ ε, can we recover µ? Using [Aar’18, HKP’20, CW’20]?

2 These works produce ρ′ ≈ ρµ, but that doesn’t even imply ρ′ is a Gibbs state

e−βH
′
, so approximating µ is unclear!

Observation 1: suppose we maximize over ρλ = e−βH where H =
∑

i λiEi s.t.

Tr(ρλEi ) = Tr(ρµEi ) for every i ∈ [m],

then ρλ = ρµ which implies λ = µ. Isn’t this “hard”?

Observation 2: Maximum entropy principle → Cast as an optimization problem

max
σ

S(σ)

s.t. Tr[σEi ] = ei , ∀i ∈ [m]

σ ≽ 0, Tr[σ] = 1.

(1)

where S(σ) = −Tr[σ log σ] is the quantum entropy of σ. Optimum of (1) equals ρµ
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Quantum proof: First idea (continued)

Recall: Given copies of ρµ = 1
Zβ

e−βH where H =
∑

i µiEi , output approximation of µ

Maximum entropy principle: σ with equal marginals {ei} & maximum entropy is ρµ

Given approximations e′i of ei = Tr(Eiρµ) for i ∈ [m] satisfying |e′i − ei | ≤ ε recover µ?

max
σ

S(σ)

s.t. Tr[σEi ] = ei , ∀i ∈ [m]

σ ≽ 0, Tr[σ] = 1.

Approximations−→

max
σ

S(σ)

s.t. Tr[σEi ] = e′i , ∀i ∈ [m]

σ ≽ 0, Tr[σ] = 1.

If ρµ maximizes first and ρµ′ maximizes second problem, then by Pinsker’s inequality

∥ρµ − ρµ′∥1 ≤ O(mε)

Does this suffice for our problem in approximating the µs? No

In order to approximate µ, need to bound

∥ log ρµ − log ρµ′∥1

Could be exponentially worse than ∥ρµ− ρµ′∥1.
Issue is non-Lipschitz nature of log(x) function
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Hamiltonian Learning algorithm

Recall: Given copies of ρµ = 1
Zβ

e−βH where H =
∑

i µiEi , output approximation of µ

Result [AAKS’20]: No. of copies of ρ to solve HLP is Θ̃
(
poly(eβ+κ, 1/β, 1/ε, n3

)
.

Algorithm.

1 Estimating marginals Shadows to get e′i s.t. |e′i − Tr(Eiρµ)| ≤ δ

2 Sufficient statistics We then solve the optimization problem

µ = max
λ1,...,λm

logZβ(λ) + β
∑
i

λiei

with errors
µ′ = max

λ1,...,λm

logZβ(λ) + β
∑
i

λie
′
i

3 We show ∥µ− µ′∥2 ≤ ε by taking sufficient samples. Crucially showing
log partition function is strong convex.
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Hamiltonian Learning algorithm

Recall: Given copies of ρµ = 1
Zβ

e−βH where H =
∑

i µiEi , output approximation of µ

Result [AAKS’20]: No. of copies of ρ to solve HLP is Θ̃
(
poly(eβ+κ, 1/β, 1/ε, n3

)
.

1 Estimating marginals Shadows to get e′i s.t. |e′i − Tr(Eiρµ)| ≤ δ

2 Sufficient statistics We then solve the optimization problem

µ′ = max
λ1,...,λn

logZβ(λ) + β
∑
i

λie
′
i

3 We show ∥µ− µ′∥2 ≤ ε by taking sufficient samples. Crucially showing
log partition function is strong convex.

A few remarks:

1 Algorithm not time efficient for generic Hamiltonians

2 Except obtain measurement statistics of ρ, our algorithm is classical

3 Exponential in β, κ: Might seem bad, but cannot be generically avoided

4 [HKT’22] considered small β, the sample complexity is (log n)/(β2ε2).


