Overview of results for learning quantum states

Srinivasan Arunachalam (IBM Quantum)

Learning quantum states: overview

So far. We looked at learning Boolean functions $c:\{0,1\}^{n} \rightarrow\{0,1\}$ encoded as a quantum example state

$$
\sum_{x} \sqrt{D(x)}|x, c(x)\rangle
$$

and looked strengths and weakness of these examples for learning c.
What if we are given ρ, an unknown quantum state?
(1) Copies of ρ, learn ρ

Tomography
(2) Measurement statistics of ρ, learn ρ "approximately well"

PAC learning and shadow tomography
(3) When ρ is an interesting class of states

Gibbs states of local Hamiltonians, stabilizer states and their variants

Learning quantum states: Tomography

Let ρ be an n-qubit quantum state $\rho \in \mathbb{C}^{D \times D}$ with $D=2^{n}$.
Tomography. How many copies of ρ are necessary and sufficient to produce classical description of a state σ that approximates ρ well enough?

Motivation. Fundamental question, experimental verification, understanding noise.
Output requirement. σ satisfies $\|\sigma-\rho\|_{t r} \leq \varepsilon$.
A trivial algorithm. Estimate each entry well enough requires $O\left(D^{6}\right)$ copies
Subsequent works. Using compressive sensing $O\left(D^{4}\right)$ copies and matrix recovery $O\left(D^{3}\right)$ copies

A breakthrough in 2015. Showed how to do tomography in complexity $O\left(D^{2} / \varepsilon^{2}\right)$. [OW'15, HHJWY'15]. Known to be optimal.

Tomography protocols

Two protocols for tomography using $O\left(d^{2} / \varepsilon^{2}\right)$ copies.
(1) [OW'15]: Spectrum estimation using Schur sampling and the classical RSK algorithm for state reconstruction
(2) [HHJWY'15]: Used the PGM, analyzed via Schur-Weyl duality

Remark: [OW'15, HHJWY'15] showed that $O\left(d r / \varepsilon^{2}\right)$ copies suffice when $\operatorname{rank}(\rho)=r$.
Pure state tomography. Given $|\psi\rangle^{\otimes T}$, output ϕ such that $\langle\psi \mid \phi\rangle \geq 1-\varepsilon$
Protocol. Apply a natural measurement!
(1) Ensemble: Uniform over $|\psi\rangle^{\otimes T}$
(2) POVM: Apply the POVM $\left\{E_{|\phi\rangle}^{\otimes T}:|\phi\rangle\right\}$, where

$$
E_{|\phi\rangle}=\binom{T+d-1}{d-1}|\phi\rangle^{\otimes T}\left\langle\left.\phi\right|^{\otimes T} d \phi\right.
$$

(although continuous, can implemented by taking an appropriate discretization)
(3) Output: Output the resulting $|\phi\rangle$.
(9) Sample complexity: If $T=O\left(d / \varepsilon^{2}\right)$, then $\||\phi\rangle-|\psi\rangle \|_{t r} \leq \varepsilon$.

Remains to see. Why $\left\{E_{\psi}^{\otimes T}: \psi\right\}$ is a POVM and the sample complexity bound!

Tomography protocols

Why a valid POVM? One needs to show that $\int_{|\phi\rangle} E_{|\phi\rangle}=\mathbb{I}$. To this end, observe that

$$
\begin{aligned}
\int_{|\phi\rangle}\binom{T+d-1}{d-1}|\phi\rangle^{\otimes T}\left\langle\left.\phi\right|^{\otimes T} d \phi\right. & =\binom{T+d-1}{d-1} \int_{|\phi\rangle}|\phi\rangle^{\otimes T}\left\langle\left.\phi\right|^{\otimes T} d \phi\right. \\
& =\binom{T+d-1}{d-1} \frac{\Pi_{\text {sym }}^{T, d}}{\operatorname{Tr}\left(\Pi_{\text {sym }}^{T, d}\right)}=\Pi_{\text {sym }}^{T, d},
\end{aligned}
$$

since our POVM acts only on the symmetric subspace, this equals \mathbb{I}
Output of the algorithm. On input $|\psi\rangle^{\otimes T}$, the expected output $|\phi\rangle$ satisfies

$$
\begin{aligned}
\mathbb{E}_{\phi \sim \operatorname{POVM}}\left[\langle\psi \mid \phi\rangle^{2}\right] & =\int_{\phi}\langle\psi \mid \phi\rangle^{2} \cdot \operatorname{Pr}[\operatorname{POVM} \text { outputs }|\phi\rangle] d \phi \\
& =\int_{\phi}\langle\psi \mid \phi\rangle^{2} \cdot\langle\psi \mid \phi\rangle^{2 T} \cdot\binom{d+T-1}{d-1} d \phi \\
& =\binom{d+T-1}{d-1} \cdot \int_{\phi}\langle\psi \mid \phi\rangle^{2 T+2} d \phi=\binom{d+T-1}{d-1} \cdot \frac{1}{\binom{d+T}{d}} \sim 1-d / T .
\end{aligned}
$$

Hence the expected distance between $|\phi\rangle$ and $|\psi\rangle$ is $\sqrt{d / T}$, which is ε for $T=d / \varepsilon^{2}$.

Alternative learning models?

- Given $D=2^{n}$, complexity is large for $n=10$ (best known experiment)
- Learning ρ entirely is an overkill, maybe want to learn only certain aspects?

PAC learning quantum states

So far. Tomography learned the entire quantum state ρ. Producing a σ s.t. $\|\sigma-\rho\|_{\mathrm{Tr}}$ is small, means we'v learned $\operatorname{Tr}(E \cdot \rho)$ "approximately" for every E !

Relax this goal? Learn ρ approximately well for "most" 2-outcome measurements?
PAC learning quantum states. Motivation is classical PAC learning.
Valiant gave a complexity-theoretic definition of what it means to learn: introduced the Probably Approximately Correct model

(1) let $D: \mathcal{E} \rightarrow[0,1]$ be a distribution over all possible two-outcome measurements
(2) Given E_{1}, \ldots, E_{k} sampled from D along with $\operatorname{Tr}\left(\rho \cdot E_{1}\right), \ldots, \operatorname{Tr}\left(\rho \cdot E_{k}\right)$
(3) Goal is to produce σ that satisfies

$$
\operatorname{Pr}[|\operatorname{Tr}(\rho E)-\operatorname{Tr}(\sigma E)| \leq \varepsilon] \geq 1-\delta
$$

i.e., probably (with prob. $\geq 1-\delta$) over $E \sim D$, can approximately learn $\operatorname{Tr}(\rho E)$.

PAC learning protocol

Recall. ρ is unknown. $D: \mathcal{E} \rightarrow[0,1]$ distribution over measurements. Given Given $\left\{\left(E_{i}, \operatorname{Tr}\left(\rho E_{i}\right)\right)\right\}_{i=1}^{k}$ where $E_{i} \sim D$, produce σ s.t. $\operatorname{Pr}[|\operatorname{Tr}(\rho E)-\operatorname{Tr}(\sigma E)| \leq \varepsilon] \geq 1-\delta$.

Is PAC learning sample complexity smaller than $O\left(D^{2}\right)$ tomography complexity?
Yes! Aaronson'03 showed that $O(\log D)$ many examples suffice to produce a σ !
Proof sketch.

- Take $O(\log D)$ many examples, just find a σ that is consistent with these trace measurement outcomes!
- Why does this work? VC-theory for real-valued functions!
- Consider the function $f_{\rho}: \mathcal{E} \rightarrow[0,1]$ defined as $f_{\rho}(E)=\operatorname{Tr}(\rho \cdot E)$. Let $\mathcal{C}=\left\{f_{\rho}: \mathcal{E} \rightarrow[0,1]\right\}_{\rho}$ be the concept class of interest
- Well known that learning \mathcal{C} can be done using fat-shattering dimension fat($\mathcal{C})$-many samples of the form $\left(E, f_{\rho}(E)\right)$ where $E \sim D$
- Using random-access codes one can show $f a t(\mathcal{C})=O(\log D)$

PAC learning protocol

Recall. ρ is unknown. $D: \mathcal{E} \rightarrow[0,1]$ distribution over measurements. Given Given $\left\{\left(E_{i}, \operatorname{Tr}\left(\rho E_{i}\right)\right)\right\}_{i=1}^{k}$ where $E_{i} \sim D$, produce σ s.t. $\operatorname{Pr}[|\operatorname{Tr}(\rho E)-\operatorname{Tr}(\sigma E)| \leq \varepsilon] \geq 1-\delta$.

Is PAC learning sample complexity smaller than $O\left(D^{2}\right)$ tomography complexity?
Yes! Aaronson'03 showed that $\operatorname{sfat}(\mathcal{C})=O(\log D)$ examples suffice to produce σ !
Remarks.

- Sample complexity of PAC learning quantum states is exponentially better than tomography!
- Time complexity is still large!
- Morally,

VC dimension characterizes learning Boolean functions.
Fat-shattering dimension characterizes learning quantum states

Shadow tomography

So far. Estimated ρ on a distribution of measurements. But if we fix a set of measurements, can we learn faster?

$$
\mathcal{E}=\left\{E_{1}, \ldots, E_{k}\right\}
$$

Problem. Given $\left\{E_{1}, \ldots, E_{k}\right\}$, how many copies of ρ suffice to estimate $\operatorname{Tr}\left(\rho E_{1}\right), \ldots, \operatorname{Tr}\left(\rho E_{k}\right)$?

Trivial algorithm.

Tomography: Uses D^{2} copies of ρ.
Empirical: Use $1 / \varepsilon^{2}$ copies of ρ and estimate $\operatorname{Tr}\left(\rho E_{i}\right)$, totally k / ε^{2} copies of ρ.
Better algorithm. Using ideas from online learning and PAC learning, Aaronson'17 proposed an algorithm that can estimate $\operatorname{Tr}\left(\rho E_{1}\right), \ldots, \operatorname{Tr}\left(\rho E_{k}\right)$ using $O(\log k, \log D)$ copies of ρ (exponentially better than trivial)

Shadow tomography protocol

Problem. Given $\left\{E_{1}, \ldots, E_{k}\right\}$, how many copies of ρ suffice to estimate $\operatorname{Tr}\left(\rho E_{1}\right), \ldots, \operatorname{Tr}\left(\rho E_{k}\right)$ up to error ε ?

Protocol idea

Part 1: Communication complexity
Suppose Alice has ρ, Bob has $\left\{E_{1}, \ldots, E_{k}\right\}$. Bob needs to output $\left\{\operatorname{Tr}\left(\rho \cdot E_{i}\right)\right\}_{i}$. Only Alice can communicate to Bob. Trivial protocol cost is $O\left(D^{2}\right)$
(1) Bob guesses Alice's state sequentially $\sigma_{0}=\mathbb{I} / D, \ldots, \sigma_{T}$ such that eventually $\operatorname{Tr}\left(\rho \cdot E_{i}\right) \approx \operatorname{Tr}\left(\sigma_{T} \cdot E_{i}\right)$
(2) Alice sends bits in order to improve Bobs guess in each iteration : If $\left|\operatorname{Tr}\left(\rho \cdot E_{i}\right)-\operatorname{Tr}\left(\sigma_{i} \cdot E_{i}\right)\right|>\varepsilon$ Alice sends $\left(i, \operatorname{Tr}\left(E_{i} \rho\right)\right)$.
(3) Bob updates his guess $\sigma_{i} \rightarrow \sigma_{i+1}$ as follows: consider the 2-outcome observable F that applies $\left\{E_{i}, \mathbb{I}-E_{i}\right\}$ acting on $(\log n)$ copies of σ_{i} and "accepts" if at least a constant fraction accepted, if so, trace out the last $(\log n)-1$ copies and the resulting state is σ_{i+1}.
(9) Clearly $\left|\operatorname{Tr}\left(\rho \cdot E_{i}\right)-\operatorname{Tr}\left(\sigma_{T} \cdot E_{i}\right)\right| \leq \varepsilon$ for all i
(5) Main observation in [Aar'03] was it suffices to send poly $(\log D, \log k)$ many bits in the communication protocol

Shadow tomography protocol: II

Problem. Given $\left\{E_{1}, \ldots, E_{k}\right\}$, no. of copies of ρ to ε-estimate $\operatorname{Tr}\left(\rho E_{1}\right), \ldots, \operatorname{Tr}\left(\rho E_{k}\right)$?
Protocol idea. 1. Communication complexity
(1) Suppose Alice has ρ, Bob has $\left\{E_{1}, \ldots, E_{k}\right\}$. Approximate $\operatorname{Tr}\left(\rho \cdot E_{i}\right)$
(2) Alice sends bits in order to improve Bobs guess in each iteration: If $\left|\operatorname{Tr}\left(\rho \cdot E_{i}\right)-\operatorname{Tr}\left(\sigma_{i} \cdot E_{i}\right)\right|>\delta$ Alice sends $\left(i, \operatorname{Tr}\left(E_{i} \rho\right)\right)$.
(3) Main observation in [Aar'03] was it suffices to send poly $(\log D, \log k)$ many bits in the communication protocol

Protocol idea 2. Simulating this CC protocol for learning
(1) In shadow tomography, there is no Alice, but just $\rho^{\otimes T}$
(2) Quantum OR lemma: Given $O(\log k)$ copies of ρ decides if there

$$
\text { exists } j \in[k] \text { s.t. } \operatorname{Tr}\left(E_{j} \rho\right) \geq \Omega(1) \text {, or for all } j \in[k], \operatorname{Tr}\left(E_{j} \rho\right) \ll 1 / k
$$

(3) What is j ? Aar'18 used a binary-search approach to find this j
(9) [Aar'18] The overall sample complexity is $O\left(\log ^{4} k \cdot \log D \cdot \varepsilon^{-5}\right)$
(5) Few works improving the dependence on these parameters.

State of the art: $O\left(\log ^{2} k \cdot \log D \cdot \varepsilon^{-4}\right)$ [BO'20]

Quantum hypothesis selection

Badescu \& O'Donnell'20 gave a shadow tomography protocol using sample complexity using $T=O\left(\log ^{2} k \cdot \log D \cdot \varepsilon^{-4}\right)$ copies of ρ.

Interesting corollary. Let $\mathcal{C}=\left\{\rho_{1}, \ldots, \rho_{k}\right\}$ and σ be an unknown state.
Given copies of σ, find the nearest $\rho_{i} \in \mathcal{C}$, i.e., find an $\ell \in[k]$ such that

$$
\left\|\sigma-\rho_{\ell}\right\|_{t r} \leq \mathrm{OPT}+\varepsilon
$$

where OPT $=\min _{i \in[k]}\left\|\rho_{i}-\sigma\right\|$.
Remark: If one could improve the $\log _{\tilde{2}}^{2} k \rightarrow \log k$ in the complexity above, one can show tomography can be done using $\tilde{O}\left(d^{2}\right)$ copies!
(1) For every $i \neq j$, by Holevo-Helstrom there exists $A_{i j}$ such that

$$
\left\|\rho_{i}-\rho_{j}\right\|_{t r}=\operatorname{Tr}\left(A_{i j}\left(\rho_{i}-\rho_{j}\right)\right)
$$

(2) Now perform shadow tomography on $\sigma^{\otimes T}$ using the operators $\left\{E_{i j}\right\}_{i, j}$ to obtain $\left|\alpha_{i j}-\operatorname{Tr}\left(A_{i j} \sigma\right)\right| \leq \varepsilon / 2$
(3) Go over all $\rho \in \mathcal{C}$ to find ℓ that minimizes $\max _{i j} \operatorname{Tr}\left(\rho_{\ell} A_{i j}-\alpha_{i j}\right)$
(4) One can show that $\left\|\rho_{i}-\sigma\right\|_{t r} \leq 3$ OPT $+\varepsilon$.

Classical shadows

Subsequent work of [HKP'20] introduced classical shadows that
(i) given copies of ρ, creates a classical shadow of ρ efficiently
(ii) classical shadows used to compute expectation values of arbitrary observables

Procedure to obtain shadows.
(1) Given ρ, apply a random U_{i} on ρ and measure to obtain $b^{i} \in\{0,1\}^{n}$
(2) Classical shadows are $\left\{\left|s_{1}\right\rangle, \ldots,\left|s_{T}\right\rangle\right\}$ where $\left|s_{i}\right\rangle=U_{i}^{*}\left|b^{i}\right\rangle$
(3) View the process of "average mapping" $\rho \rightarrow U\left|b^{i}\right\rangle\left\langle b^{i}\right| U^{*}$ as a channel $\mathbb{E}\left[\left|s_{i}\right\rangle\left\langle s_{i}\right|\right]=\mathcal{M}(\rho)$

Intuitively, one should now view $\mathbb{E}\left[\mathcal{M}^{-1}\left|s_{i}\right\rangle\left\langle s_{i}\right|\right]=\rho$, or $\mathcal{M}^{-1}\left|s_{i}\right\rangle\left\langle s_{i}\right| \approx \rho$.
Predicting expectation values. For observables E, compute

$$
\mathbb{E}_{i}\left[\operatorname{Tr}\left(E \mathcal{M}^{-1}\left|s_{i}\right\rangle\left\langle s_{i}\right|\right)\right]:=\alpha_{E} \approx \operatorname{Tr}(E \rho) .
$$

Using median-of-means estimator to output $\alpha_{E} \in \mathbb{R}$
Correctness. [HKP'20] showed that if $T=O\left(\|E\|_{\text {shadow }} / \varepsilon^{2}\right)$, then $\left|\alpha_{E}-\operatorname{Tr}(E \rho)\right| \leq \varepsilon$.
This bound is known to be tight
Also, given $\left\{E_{1}, \ldots, E_{k}\right\}$, the same classical shadows can be used to estimate $\left|\alpha_{i}-\operatorname{Tr}\left(E_{i} \rho\right)\right| \leq \varepsilon$ using $O\left((\log k) \cdot\|E\|_{\text {shadow }} / \varepsilon^{2}\right)$ copies of ρ.

Norm. We have $\|E\|_{\text {shadow }} \leq \sqrt{\operatorname{Tr}\left(E^{2}\right)}$. So $\|E\|_{\text {shadow }} \leq 1$ for rank-1 observables!

Some further results

So far. We saw tomography, PAC learning shadow tomography and classical shadows.
Results we didn't cover
(1) Extending shadow tomography to k-outcome observables
(2) Lower bounds on shadow tomography and standard tomography if allowed only separable measurements
(3) Online learning quantum states
(4) Learning arbitrary quantum channels or unitary channels
(6) Learning matrix product states, quantum states produced by low-depth circuits
(0) Learning time-dependent states
(7) :

Hamiltonian Learning Problem

Learning Hamiltonians. Given Gibbs states of Hamiltonians, learn the Hamiltonian?
Problem definition. Let H be a κ-local Hamiltonian acting on n qudits written as $H=\sum_{i=1}^{m} \mu_{i} E_{i}$ for an orthonormal k-local basis $\left\{E_{i}\right\}$. Given T copies of a Gibbs state

$$
\rho=\frac{e^{-\beta H}}{\operatorname{Tr}\left(e^{-\beta H}\right)},
$$

output $\mu^{\prime}=\left(\mu^{\prime}{ }_{1}, \ldots, \mu_{m}^{\prime}\right)$ such that $\left\|\mu^{\prime}-\mu\right\|_{2} \leq \varepsilon$.
Motivation for this problem. Physics perspective, verification of quantum systems, Machine learning, Experimental motivation
Result [AAKS'20]: No. of copies of ρ to solve HLP is $\widetilde{\Theta}\left(\operatorname{poly}\left(e^{\beta+\kappa}, 1 / \beta, 1 / \varepsilon, n^{3}\right)\right.$.

Quantum proof: First idea

Recall: Given copies of $\rho_{\mu}=\frac{1}{z_{\beta}} e^{-\beta H}$ where $H=\sum_{i} \mu_{i} E_{i}$, output approximation of μ

Sufficient statistics:

(1) Suppose we have approximations e_{i}^{\prime} of

$$
e_{i}=\operatorname{Tr}\left(E_{i} \rho_{\mu}\right) \quad \text { for all } i \in[m]
$$

satisfying $\left|e_{i}^{\prime}-e_{i}\right| \leq \varepsilon$, can we recover μ ? Using [Aar'18, HKP'20, CW'20]?
(2) These works produce $\rho^{\prime} \approx \rho_{\mu}$, but that doesn't even imply ρ^{\prime} is a Gibbs state $e^{-\beta H^{\prime}}$, so approximating μ is unclear!

Observation 1: suppose we maximize over $\rho_{\lambda}=e^{-\beta H}$ where $H=\sum_{i} \lambda_{i} E_{i}$ s.t.

$$
\operatorname{Tr}\left(\rho_{\lambda} E_{i}\right)=\operatorname{Tr}\left(\rho_{\mu} E_{i}\right) \quad \text { for every } i \in[m],
$$

then $\rho_{\lambda}=\rho_{\mu}$ which implies $\lambda=\mu$. Isn't this "hard"?
Observation 2: Maximum entropy principle \rightarrow Cast as an optimization problem

$$
\begin{array}{ll}
\max _{\sigma} & S(\sigma) \\
\text { s.t. } & \operatorname{Tr}\left[\sigma E_{i}\right]=e_{i}, \quad \forall i \in[m] \tag{1}\\
& \sigma \succcurlyeq 0, \quad \operatorname{Tr}[\sigma]=1 .
\end{array}
$$

where $S(\sigma)=-\operatorname{Tr}[\sigma \log \sigma]$ is the quantum entropy of σ. Optimum of (1) equals ρ_{μ}

Quantum proof: First idea (continued)

Recall: Given copies of $\rho_{\mu}=\frac{1}{Z_{\beta}} e^{-\beta H}$ where $H=\sum_{i} \mu_{i} E_{i}$, output approximation of μ
Maximum entropy principle: σ with equal marginals $\left\{e_{i}\right\}$ \& maximum entropy is ρ_{μ} Given approximations e_{i}^{\prime} of $e_{i}=\operatorname{Tr}\left(E_{i} \rho_{\mu}\right)$ for $i \in[m]$ satisfying $\left|e_{i}^{\prime}-e_{i}\right| \leq \varepsilon$ recover μ ?

$$
\begin{array}{cl}
\max _{\sigma} & S(\sigma) \\
\text { s.t. } & \operatorname{Tr}\left[\sigma E_{i}\right]=e_{i}, \quad \forall i \in[m] \\
& \sigma \succcurlyeq 0, \quad \operatorname{Tr}[\sigma]=1 .
\end{array}
$$

$$
\max _{\sigma} S(\sigma)
$$

$$
\text { s.t. } \quad \operatorname{Tr}\left[\sigma E_{i}\right]=e_{i}^{\prime}, \quad \forall i \in[m]
$$

$$
\sigma \succcurlyeq 0, \quad \operatorname{Tr}[\sigma]=1
$$

If ρ_{μ} maximizes first and $\rho_{\mu^{\prime}}$ maximizes second problem, then by Pinsker's inequality

$$
\left\|\rho_{\mu}-\rho_{\mu^{\prime}}\right\|_{1} \leq O(m \varepsilon)
$$

Does this suffice for our problem in approximating the $\mu \mathbf{s}$? No
In order to approximate μ, need to bound

$$
\left\|\log \rho_{\mu}-\log \rho_{\mu^{\prime}}\right\|_{1}
$$

Could be exponentially worse than $\left\|\rho_{\mu}-\rho_{\mu^{\prime}}\right\|_{1}$. Issue is non-Lipschitz nature of $\log (x)$ function

Hamiltonian Learning algorithm

Recall: Given copies of $\rho_{\mu}=\frac{1}{Z_{\beta}} e^{-\beta H}$ where $H=\sum_{i} \mu_{i} E_{i}$, output approximation of μ
Result [AAKS'20]: No. of copies of ρ to solve HLP is $\widetilde{\Theta}\left(\operatorname{poly}\left(e^{\beta+\kappa}, 1 / \beta, 1 / \varepsilon, n^{3}\right)\right.$.

Algorithm.

(1) Estimating marginals Shadows to get e_{i}^{\prime} s.t. $\left|e_{i}^{\prime}-\operatorname{Tr}\left(E_{i} \rho_{\mu}\right)\right| \leq \delta$
(2) Sufficient statistics We then solve the optimization problem

$$
\mu=\max _{\lambda_{1}, \ldots, \lambda_{m}} \log Z_{\beta}(\lambda)+\beta \sum_{i} \lambda_{i} e_{i}
$$

with errors

$$
\mu^{\prime}=\max _{\lambda_{1}, \ldots, \lambda_{m}} \log Z_{\beta}(\lambda)+\beta \sum_{i} \lambda_{i} e_{i}^{\prime}
$$

(3) We show $\left\|\mu-\mu^{\prime}\right\|_{2} \leq \varepsilon$ by taking sufficient samples. Crucially showing log partition function is strong convex.

Hamiltonian Learning algorithm

Recall: Given copies of $\rho_{\mu}=\frac{1}{z_{\beta}} e^{-\beta H}$ where $H=\sum_{i} \mu_{i} E_{i}$, output approximation of μ
Result [AAKS'20]: No. of copies of ρ to solve HLP is $\widetilde{\Theta}\left(\operatorname{poly}\left(e^{\beta+\kappa}, 1 / \beta, 1 / \varepsilon, n^{3}\right)\right.$.
(1) Estimating marginals Shadows to get e_{i}^{\prime} s.t. $\left|e_{i}^{\prime}-\operatorname{Tr}\left(E_{i} \rho_{\mu}\right)\right| \leq \delta$
(2) Sufficient statistics We then solve the optimization problem

$$
\mu^{\prime}=\max _{\lambda_{1}, \ldots, \lambda_{n}} \log Z_{\beta}(\lambda)+\beta \sum_{i} \lambda_{i} e_{i}^{\prime}
$$

(3) We show $\left\|\mu-\mu^{\prime}\right\|_{2} \leq \varepsilon$ by taking sufficient samples. Crucially showing log partition function is strong convex.

A few remarks:
(1) Algorithm not time efficient for generic Hamiltonians
(2) Except obtain measurement statistics of ρ, our algorithm is classical
(3) Exponential in β, κ : Might seem bad, but cannot be generically avoided
(4) [HKT'22] considered small β, the sample complexity is $(\log n) /\left(\beta^{2} \varepsilon^{2}\right)$.

