1 Lecture 3 exercise

Problem 1. Consider the class of quantum states $\frac{1}{\sqrt{2^{n}}} \sum_{x}(-1)^{f(x)}|x\rangle$ where $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a degree- d function over \mathbb{F}_{2}. Show that using $O\left(n^{d} \cdot 2^{2 d}\right)$ copies of an unknown $\frac{1}{\sqrt{2^{n}}} \sum_{x}(-1)^{g(x)}|x\rangle$ where g is degree- d function, one can learn g ?

Hint: Use the Schwartz-Zippel lemma that says that for degree-d functions $f, g, \operatorname{Pr}_{x}[f(x) \neq g(x)] \geq 2^{-d}$ and then use shadow tomography.

Problem 2. In this exercise we first recall the VC-dimension for $\mathscr{C} \subseteq\left\{c:\{0,1\}^{n} \rightarrow\{0,1\}\right\}$. For a concept class $\mathscr{C} \subseteq\left\{c:\{0,1\}^{n} \rightarrow\{0,1\}\right\}$, write down the matrix $M \in \mathbb{F}_{2}^{|\mathcal{C}| \times 2^{n}}$ as $M(c, x)=c(x)$. The VC dimension is the largest d such that, there exists columns $s_{1}, \ldots, s_{d} \subseteq\{0,1\}^{n}$ s.t. for every $B \subseteq[d]$, there exists $c \in \mathscr{C}$ such that: If $i \in B, c\left(s_{i}\right)=1, \quad$ If $i \notin B, c\left(s_{i}\right)=0$
Compute the VC dimension of the concept classes $\mathscr{C} \subseteq\left\{c:\{0,1\}^{2} \rightarrow\{0,1\}\right\}$

Concepts	Truth table			
c_{1}	0	1	0	1
c_{2}	0	1	1	0
c_{3}	1	0	0	1
c_{4}	1	0	1	0
c_{5}	1	1	0	1
c_{6}	0	1	1	1
c_{7}	0	0	1	1
c_{8}	0	1	0	0
c_{9}	1	1	1	1

Concepts	Truth table			
c_{1}	0	1	1	0
c_{2}	1	0	0	1
c_{3}	0	0	0	0
c_{4}	1	1	0	1
c_{5}	1	0	1	0
c_{6}	0	1	1	1
c_{7}	0	0	1	1
c_{8}	0	1	0	1
c_{9}	0	1	0	0

Hint: For \mathscr{C}_{1}, consider the columns $s_{1}=1, s_{2}=3$ and for \mathscr{C}_{2} consider the columns $s_{1}=2, s_{2}=3, s_{3}=4$
Problem 3. We define the fat-shattering dimension for $\mathscr{C} \subseteq\left\{c:\{0,1\}^{n} \rightarrow[0,1]\right\}$. Write down the $\operatorname{matrix} M \in[0,1]^{|\mathscr{C}| \times 2^{n}}$ as $M(c, x)=c(x)$. The γ-fat shattering dimension of \mathscr{C} is the largest d such that, there exists constants $\alpha_{1}, \ldots, \alpha_{d}$ and columns $s_{1}, \ldots, s_{d} \subseteq\{0,1\}^{n}$ satisfying the following:for every $B \subseteq[d]$, there exists $c \in \mathscr{C}$ such that: If $i \in B, c\left(s_{i}\right) \geq \alpha_{i}+\gamma \quad$ If $i \notin B, c\left(s_{i}\right) \leq \alpha_{i}-\gamma$.

Let's consider a simple example $\mathscr{C}=\left\{c:\{0,1\}^{2} \rightarrow[0,1]\right\}$ Consider the rows $s_{1}=1, s_{2}=3$. Let

Concepts	Truth table			
c_{1}	0.9	0.7	0.02	1
c_{2}	0.88	0.48	0.92	0
c_{3}	0.1	0.33	0.98	0.22
c_{4}	0.1	0.55	0.85	0.49
c_{5}	0.09	0.58	0.1	0.34

$\alpha_{1}=0.6, \alpha_{2}=0.2$ and $\gamma=0.1$. Now based on this, lets label entries in

- $M\left(s_{1}, x\right) \geq \alpha_{1}+\gamma$ as 1 and $M\left(s_{1}, x\right) \leq \alpha_{1}-\gamma$ as 0
- $M\left(s_{2}, x\right) \geq \alpha_{2}+\gamma$ as 1 and $M\left(s_{2}, x\right) \leq \alpha_{2}-\gamma$ as 0
to get Now observe that the entries $\{00,01,10,11\}$ appear in the columns $(1,3)$. So the 0.1-fat

Concepts	Truth table			
c_{1}	1	0.7	0	1
c_{2}	1	0.48	1	0
c_{3}	0	0.33	1	0.22
c_{4}	0	0.55	1	0.49
c_{5}	0	0.58	0	0.34

shattering dimension is ≥ 2.
Compute the γ-fat shattering dimension of the concept classes $\mathscr{C} \subseteq\left\{c:\{0,1\}^{2} \rightarrow[0,1]\right\}$

Concepts	Truth table			
c_{1}	0.02	0.85	0.11	0.57
c_{2}	0.87	0.9	0.84	0
c_{3}	0.92	0.39	0.18	0.43
c_{4}	0.91	0.44	0.81	0.63
c_{5}	0.84	0.92	0.07	0.88
c_{6}	0.1	0.77	0.99	0.5
c_{7}	0.14	0.42	0.95	0.33
c_{8}	0.2	0.52	0.21	0.47

Concepts	Truth table			
c_{1}	0.66	0.88	0.86	0.1
c_{2}	0.57	0.03	0.05	0.92
c_{3}	0.92	0.11	0.09	0
c_{4}	0.02	0.98	0.11	0.87
c_{5}	0.88	0.18	0.96	0.08
c_{6}	0.5	0.93	0.94	0.98
c_{7}	0.64	0.01	0.89	0.85
c_{8}	0.01	0.91	0.13	0.88

Hint: For \mathscr{C}_{1}, consider the columns $s_{1}=1, s_{2}=3$ and for \mathscr{C}_{2} consider the columns $s_{1}=2, s_{2}=3, s_{3}=4$
Problem 4. Prove that $(i) \gamma$-fat shattering dim. reduces to VC dim. for a suitable choice of $\alpha_{1}, \ldots, \alpha_{d}, \gamma,(i i)$ VC dimension and γ-fat shattering dim. of \mathscr{C} is at most $\log |\mathscr{C}|$

Hint: Observe that the difference between fat-shattering dimension and VC dimension is $\left\{\alpha_{i}-\gamma, \alpha_{i}+\gamma\right\}=\{0,1\}$.
Problem 5. In this exercise you will be showing that the γ-fat-shattering dimension of the class of all n-qubit quantum states is at most $O\left(n / \gamma^{2}\right)$. In order to prove this we will use the following well-known theorem about quantum random access codes.

Theorem 1. Let $k>n$. For all $y \in\{0,1\}^{k}$, let ρ_{y} be an n-qubit mixed state that "encodes" y. Suppose there exist two-outcome measurements E_{1}, \ldots, E_{k} such that for all $y \in\{0,1\}^{k}$ and $i \in[k]$, we have that (i) if $y_{i}=0$ then $\operatorname{Tr}\left(E_{i} \rho_{y}\right) \leq 1 / 3$, (ii) if $y_{i}=1$ then $\operatorname{Tr}\left(E_{i} \rho_{y}\right) \geq 2 / 3$. Then $n \geq k / 5$.

You will need to show the following:

1. Let $k, n,\left\{\rho_{y}\right\}$ be as in the theorem above. Suppose there exists two-outcome measurements E_{1}, \ldots, E_{k} and $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ such that for all $y \in\{0,1\}^{k}$ and $i \in[k]$, we have that (i) if $y_{i}=0$ then $\operatorname{Tr}\left(E_{i} \rho_{y}\right) \leq \alpha_{i}-\gamma,(i i)$ if $y_{i}=1$ then $\operatorname{Tr}\left(E_{i} \rho_{y}\right) \geq \alpha_{i}+\gamma$. Then $n \geq k \cdot \gamma^{2}$.
2. Use the theorem above to conclude that the γ-fat shattering dimension is at most n / γ^{2}

Hint: In order to prove (1.) how does one amplify the $\left(\alpha_{i}+\gamma, \alpha_{i}-\gamma\right)$ to ($1 / 2,2 / 3$)? Use amplification by taking $1 / \gamma^{2}$ copies of ρ and then using Chernoff bound, in order to invoke Theorem 1. Once we have (1.) observe that by definition we have obtained a shattered set.

