1 Lecture 3 exercise

Problem 1. Consider the class of quantum states $\frac{1}{\sqrt{2^n}} \sum_x (-1)^{f(x)} |x\rangle$ where $f: \{0,1\}^n \to \{0,1\}$ is a degree-*d* function over \mathbb{F}_2 . Show that using $O(n^d \cdot 2^{2d})$ copies of an unknown $\frac{1}{\sqrt{2^n}} \sum_x (-1)^{g(x)} |x\rangle$ where *g* is degree-*d* function, one can learn *g*?

Hint: Use the Schwartz-Zippel lemma that says that for degree-*d* functions f, g, $\Pr_x[f(x) \neq g(x)] \geq 2^{-d}$ and then use shadow tomography.

Problem 2. In this exercise we first recall the VC-dimension for $\mathscr{C} \subseteq \{c : \{0, 1\}^n \to \{0, 1\}\}$. For a concept class $\mathscr{C} \subseteq \{c : \{0, 1\}^n \to \{0, 1\}\}$, write down the matrix $M \in \mathbb{F}_2^{|\mathscr{C}| \times 2^n}$ as M(c, x) = c(x).

The VC dimension is the largest d such that, there exists columns $s_1, \ldots, s_d \subseteq \{0, 1\}^n$ s.t. for every $B \subseteq [d]$, there exists $c \in \mathscr{C}$ such that: If $i \in B$, $c(s_i) = 1$, If $i \notin B$, $c(s_i) = 0$

Compute the VC dimension of the concept classes $\mathscr{C} \subseteq \{c : \{0,1\}^2 \to \{0,1\}\}$

					_					
Concepts	Truth table			ole		Concepts	Ti	Truth table		ole
c_1	0	1	0	1		c_1	0	1	1	0
c_2	0	1	1	0		c_2	1	0	0	1
c_3	1	0	0	1		c_3	0	0	0	0
c_4	1	0	1	0		c_4	1	1	0	1
c_5	1	1	0	1		c_5	1	0	1	0
c_6	0	1	1	1		c_6	0	1	1	1
c_7	0	0	1	1		<i>C</i> 7	0	0	1	1
c_8	0	1	0	0		c_8	0	1	0	1
c_9	1	1	1	1		c_9	0	1	0	0

Hint: For \mathscr{C}_1 , consider the columns $s_1 = 1, s_2 = 3$ and for \mathscr{C}_2 consider the columns $s_1 = 2, s_2 = 3, s_3 = 4$

Problem 3. We define the fat-shattering dimension for $\mathscr{C} \subseteq \{c : \{0,1\}^n \to [0,1]\}$. Write down the matrix $M \in [0,1]^{|\mathscr{C}| \times 2^n}$ as M(c,x) = c(x). The γ -fat shattering dimension of \mathscr{C} is the largest d such that, there exists constants $\alpha_1, \ldots, \alpha_d$ and columns $s_1, \ldots, s_d \subseteq \{0,1\}^n$ satisfying the following: for every $B \subseteq [d]$, there exists $c \in \mathscr{C}$ such that: If $i \in B$, $c(s_i) \geq \alpha_i + \gamma$ If $i \notin B$, $c(s_i) \leq \alpha_i - \gamma$.

Let's consider a simple example $\mathscr{C} = \{c : \{0,1\}^2 \to [0,1]\}$ Consider the rows $s_1 = 1, s_2 = 3$. Let

Concepts	Truth table					
c_1	0.9	0.7	0.02	1		
c_2	0.88	0.48	0.92	0		
c_3	0.1	0.33	0.98	0.22		
c_4	0.1	0.55	0.85	0.49		
c_5	0.09	0.58	0.1	0.34		

 $\alpha_1 = 0.6, \alpha_2 = 0.2$ and $\gamma = 0.1$. Now based on this, lets label entries in

- $M(s_1, x) \ge \alpha_1 + \gamma$ as 1 and $M(s_1, x) \le \alpha_1 \gamma$ as 0
- $M(s_2, x) \ge \alpha_2 + \gamma$ as 1 and $M(s_2, x) \le \alpha_2 \gamma$ as 0

to get Now observe that the entries $\{00, 01, 10, 11\}$ appear in the columns (1, 3). So the 0.1-fat

Concepts	Truth table			ole
c_1	1	0.7	0	1
c_2	1	0.48	1	0
c_3	0	0.33	1	0.22
c_4	0	0.55	1	0.49
c_5	0	0.58	0	0.34

shattering dimension is ≥ 2 .

Compute the γ -fat shattering dimension of the concept classes $\mathscr{C} \subseteq \{c : \{0,1\}^2 \to [0,1]\}$

Concepts	Truth table						
c_1	0.02	0.85	0.11	0.57			
c_2	0.87	0.9	0.84	0			
c_3	0.92	0.39	0.18	0.43			
c_4	0.91	0.44	0.81	0.63			
c_5	0.84	0.92	0.07	0.88			
c_6	0.1	0.77	0.99	0.5			
C7	0.14	0.42	0.95	0.33			
<i>c</i> ₈	0.2	0.52	0.21	0.47			

Concepts	Truth table						
c_1	0.66	0.88	0.86	0.1			
c_2	0.57	0.03	0.05	0.92			
c_3	0.92	0.11	0.09	0			
c_4	0.02	0.98	0.11	0.87			
c_5	0.88	0.18	0.96	0.08			
c_6	0.5	0.93	0.94	0.98			
c_7	0.64	0.01	0.89	0.85			
c_8	0.01	0.91	0.13	0.88			

Hint: For \mathscr{C}_1 , consider the columns $s_1 = 1, s_2 = 3$ and for \mathscr{C}_2 consider the columns $s_1 = 2, s_2 = 3, s_3 = 4$

Problem 4. Prove that (i) γ -fat shattering dim. reduces to VC dim. for a suitable choice of $\alpha_1, \ldots, \alpha_d, \gamma$, (ii) VC dimension and γ -fat shattering dim. of \mathscr{C} is at most log $|\mathscr{C}|$

Hint: Observe that the difference between fat-shattering dimension and VC dimension is $\{\alpha_i - \gamma, \alpha_i + \gamma\} = \{0, 1\}$.

Problem 5. In this exercise you will be showing that the γ -fat-shattering dimension of the class of all *n*-qubit quantum states is at most $O(n/\gamma^2)$. In order to prove this we will use the following well-known theorem about quantum random access codes.

Theorem 1. Let k > n. For all $y \in \{0,1\}^k$, let ρ_y be an n-qubit mixed state that "encodes" y. Suppose there exist two-outcome measurements E_1, \ldots, E_k such that for all $y \in \{0,1\}^k$ and $i \in [k]$, we have that (i) if $y_i = 0$ then $\operatorname{Tr}(E_i \rho_y) \leq 1/3$, (ii) if $y_i = 1$ then $\operatorname{Tr}(E_i \rho_y) \geq 2/3$. Then $n \geq k/5$.

You will need to show the following:

- 1. Let $k, n, \{\rho_y\}$ be as in the theorem above. Suppose there exists two-outcome measurements E_1, \ldots, E_k and $\{\alpha_1, \ldots, \alpha_k\}$ such that for all $y \in \{0, 1\}^k$ and $i \in [k]$, we have that (i) if $y_i = 0$ then $\operatorname{Tr}(E_i \rho_y) \leq \alpha_i \gamma$, (ii) if $y_i = 1$ then $\operatorname{Tr}(E_i \rho_y) \geq \alpha_i + \gamma$. Then $n \geq k \cdot \gamma^2$.
- 2. Use the theorem above to conclude that the γ -fat shattering dimension is at most n/γ^2

Hint: In order to prove (1.) how does one amplify the $(\alpha_i + \gamma, \alpha_i - \gamma)$ to (1/2, 2/3)? Use amplification by taking $1/\gamma^2$ copies of ρ and then using Chernoff bound, in order to invoke Theorem 1. Once we have (1.) observe that by definition we have obtained a shattered set.