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A quick recap

PAC learning

We let C ⊆ {c : {0, 1}n → {0, 1}} be a concept class.

We let D : {0, 1}n → [0, 1] be an unknown distribution.

Classical PAC learning: obtained (x , c(x)) where x ∼ D.

Quantum PAC learning: obtained copies of
∑

x

√
D(x) |x , c(x)⟩

Goal: Output h such that Prx∼D [h(x) = c(x)] ≥ 1− ε

Quantum sample complexity equals classical sample complexity of PAC learning

But. The distribution which witnessed the quantum lower bound was “unnatural”.

1 What if D is nicer? Say the uniform distribution?

2 Do uniform quantum examples provide a speedup?

3 What happens if we query c and not just obtain examples?
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Quantum examples help the coupon collector

Standard coupon collector

Problem: Suppose there are N coupons. How many coupons to draw (with
replacement) before having seen each coupon at least once?

Answer: Simple probability analysis shows Θ(N logN)

Variation to coupon collector

Problem: Suppose there are N coupons. Fix unknown i∗ ∈ {1, . . . ,N}. How many
coupons to draw (with replacement) from {1, . . . ,N}\{i∗} before learning i∗?

Answer: Same analysis as earlier shows Θ(N logN)

What if we are given “quantum examples”

Suppose a quantum learner obtains quantum examples 1√
N−1

∑
i∈({1,...,N}\{i∗}) |i ⟩.

How many quantum examples before learning i∗?

Answer: Can learn i∗ using Θ(N) quantum examples

Proof idea: Analyze the success probability using the pretty good measurement. Write
down the Gram matrix observe that it’s easily diagonalizable.

If T = O(N), then Popt ≥ Ppgm ≥ 2/3
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Fourier sampling: a useful trick under uniform D

Let c : {0, 1}n → {−1, 1}. Then the Fourier coefficients are

ĉ(S) =
1

2n

∑
x∈{0,1}n

c(x)(−1)S·x for all S ∈ {0, 1}n

Parseval’s identity:
∑

S ĉ(S)2 = Ex [c(x)2] = 1
So {ĉ(S)2}S forms a probability distribution

Given quantum example under uniform D:

1
√
2n

∑
x

|x , c(x)⟩ Hadamard−→
∑
S

ĉ(S) |S⟩

Measuring allows to sample from the Fourier distribution {ĉ(S)2}S
Classically: sampling from {ĉ(S)2}S is hard given (x , c(x)) examples
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Applications of Fourier sampling

Consider the concept class of parities C1 = {cS (x) = S · x}S∈{0,1}n

Classical: Ω(n) classical examples needed

Quantum: 1 quantum example suffices to learn C1 (Bernstein-Vazirani’93)

Consider C2 = {c is a ℓ-junta}, i.e., c(x) depends only on ℓ bits of x

Classical: Efficient learning is notoriously hard for ℓ = O(log n) and uniform D

Quantum: C2 can be exactly learnt using Õ(2ℓ) quantum examples and in time

Õ(n2ℓ + 22ℓ) (Atıcı-Servedio’09)

Generalizing both these concept classes?

Definition: We say c is k-Fourier sparse if |{S : ĉ(S) ̸= 0}| ≤ k.

Note that C1 is 1-Fourier sparse and C2 is 2ℓ-Fourier sparse

Consider the concept class C = {c : {0, 1}n → {−1, 1} : c is k-Fourier sparse}

Observe that C1 ⊆ C. C contains linear functions
Observe that C2 ⊆ C. C contains (log k)-juntas
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Learning C = {c is k-Fourier sparse}
Exact learning C under the uniform distribution D

Classically (Haviv-Regev’15): Θ̃(nk) classical examples (x , c(x)) are necessary
and sufficient to learn the concept class C
Quantumly (ACLW’18): Õ(k1.5) quantum examples 1√

2n

∑
x |x , c(x)⟩ are

sufficient to learn C (independent of the universe size n)

Sketch of upper bound 1

Structural property: if c is k-Fourier sparse, then ĉ(S)2 ≥ 1/k2

Use Fourier sampling to sample S ∼ {ĉ(S)2}S
Collect all the S using O(k2) samples.

Estimate each ĉ(S) using classical examples. Sample, time complexity is O(k2)

A more sophisticated analysis.

Fourier sample and collect Ss until the learner learns V = span{S : ĉ(S) ̸= 0}

Suppose dim(V) = r , then Õ(rk) quantum examples suffice to find V

Use the result of [HR’15] to learn c ′ completely using Õ(rk) classical examples

Since r ≤ Õ(
√
k), we get Õ(k1.5) upper bound
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Learning Disjunctive normal Forms (DNF)

DNFs

Simply an OR of AND of variables. For example, (x1 ∧ x4 ∧ x3) ∨ (x4 ∧ x6 ∧ x7 ∧ x8)

We say a DNF on n variables is an s-term DNF if number of clauses is ≤ s

Learning C = {c is an s-term DNF in n variables} under uniform D

Classically: Efficient learning using examples is a longstanding open question.
Best known upper bound is nO(log n) [Verbeurgt’90]

Quantumly: Bshouty-Jackson’95 gave a polynomial-time quantum algorithm!

Proof sketch of quantum upper bound

Structural property: if c is an s-term DNF, then there exists U s.t. |ĉ(U)| ≥ 1
s

Fourier sampling! Sample T ∼ {ĉ(T )2}T , poly(s) many times to see such a U

Construct a “weak learner” who outputs h s.t. Pr[h(x) = c(x)] = 1
2
+ 1

s

Not good enough! Want a h that agrees with c on most inputs x ’s

Boosting: Run weak learner many times in some manner to obtain a strong
learner who outputs h satisfying Pr[h(x) = c(x)] ≥ 2/3
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Membership oracle model
Let C ⊆ {c : {0, 1}n → {0, 1}} be a concept class and c∗ ∈ C be an unknown.

Classical model

Membership queries. Suppose we can query c∗ as follows:

on input x ∈ {0, 1}n, the learning algorithm obtains c∗(x).

Goal: Learn c∗ or output h : {0, 1}n → {0, 1} such that Prx [c∗(x) = h(x)] ≥ 2/3

Complexity measure: Number of classical queries to c, call it D(c).
Let D(C) = maxc∈C D(c) be query complexity of learning C.

Quantum model

Quantum membership queries. Suppose we can quantumly query c∗ in as follows:

Oc∗ : |x , 0⟩ → |x , c∗(x)⟩ .

In particular, these allow to obtain

1
√
2n

∑
x

|x , 0⟩ →
1

√
2n

∑
x

|x , c∗(x)⟩

Goal: Learn c∗ or output h : {0, 1}n → {0, 1} such that Prx [c∗(x) = h(x)] ≥ 2/3

Complexity measure: Number of quantum queries to c, call it Q(c).
Let Q(C) = maxc∈C Q(c) be query complexity of learning C.
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Membership oracle model

Classical model

Membership queries. Suppose we can query c∗ as follows:

on input x ∈ {0, 1}n, the learning algorithm obtains c∗(x).

Goal: Learn c∗ or output h : {0, 1}n → {0, 1} such that Prx [c∗(x) = h(x)] ≥ 2/3

Complexity measure: D(C) = maxc∈C D(c) be query complexity of learning C.

Quantum model

Quantum membership queries. Suppose we can quantumly query c∗ in as follows:

Oc∗ : |x , 0⟩ → |x , c∗(x)⟩ .

Goal: Learn c∗ or output h : {0, 1}n → {0, 1} such that Prx [c∗(x) = h(x)] ≥ 2/3

Complexity measure: Q(C) = maxc∈C Q(c) be query complexity of learning C.

Question: Could Q(C) be exponentially smaller than D(C)?

No. One can show that Q(C) ≤ D(C) ≤ nQ(C)3 for every C.
In the membership query model, quantum queries can give at most a polynomial
speedup for learning over classical queries.
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Shallow circuits

Gates: AND(x) = 1 iff x = 1n, OR(x) = 0 iff x = 0n, MAJ(x) = 1 iff
∑

i xi > n/2

We say c : {0, 1}n → {0, 1} is computed by a shallow circuit if:

c can be computed by a constant-depth polynomial-sized circuit with:

bounded fan-in AND,OR,NOT
gates (NC0)

unbounded fan-in AND,OR,NOT
gates (AC0)

unbounded fan-in AND,OR,
NOT,MAJ gates (TC0)
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Why consider NC0 and AC0 circuits?

Shallow circuits have proven useful in exhibiting quantum advantage:

BGK’18: A relational problem which can be solved using shallow quantum
circuits but requires logarithmic-depth NC0 circuit

BKST’19: Improved the BGK’18 separation from NC0 to AC0

CSV’18: Used BGK’18 for exponential certified randomness expansion

G’18: Improved BGK’18 to give a separation in the average-case setting

GNR’19: Used the construction of BGK’18 to show separations in the
LOCAL model

Do shallow circuits give a quantum advantage for a learning task?
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Why consider TC0 circuits?

A theoretical way to model neural networks: A simple feed-forward neural network

where σw is the sigmoid function associated with weights w = (w0,w1, . . . ,wn). The
weights could be exponential in n

A sequence of results in the 90s showed that constant-depth polynomial-sized
feed-forward neural networks can be implemented by TC0 circuits

Do quantum resources help learning a class of neural networks faster?
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Learning NC0 efficiently: a simple observation

The circuit class NC0

Recall: Class of functions c : {0, 1}n → {0, 1} such that c can be computed by an
O(1)-depth circuit with AND,OR,NOT gates on at most 2 bits

Observation: If c is computed by a depth-d NC0 circuit (denoted NC0
d ), then c(x)

depends on at most 2d input bits of x

Learning juntas quantumly

Consider C = {c is a ℓ-junta}, i.e., c(x) depends only on ℓ bits of x

Classical: Efficient learning is notoriously hard for ℓ = O(log n) and uniform D

Quantum: C can be exactly learned using Õ(2ℓ) quantum examples

and in time Õ(n2ℓ + 22ℓ) (Atıcı-Servedio’09)

Observation. NC0
d consists of 2d -juntas. Can be learned in time O(n22

d
+ 22

d+1
).

If d = O(1), then NC0 can be learned in quantum polynomial-time using only uniform
quantum examples. Also bounded fan-in circuits can be learned quantum-efficiently
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Motivation question for this talk: Learn constant-depth circuits?
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Clasically what is known?

Learning AC0 under the uniform distribution

Upper bounds: Linial, Mansour, Nisan’89 showed how to learn AC0 circuits in
quasi-polynomial time i.e., nO(log n) time

Crucial idea: Learn the Fourier spectrum of AC0 circuits

Lower bound: Kharitonov’93 (conditionally) showed that the quasi-polynomial
time bound of LMN’89 is optimal

AC0 hardness assumed that factoring is hard for sub-exponential time algorithms

Learning TC0

Not much is known about learning even depth-2 TC0 circuits under the
uniform distribution

Kharitonov’93 ruled out polynomial-time learners for TC0 assuming factoring is
polynomial-time hard

Klivans-Sherstov’09 showed PAC learning depth-2 TC0 circuits is hard based on
hardness of breaking LWE-cryptosystem
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Quantum hardness of learning

“Can AC0 and TC0 be quantum PAC learned?”

Strong negative answer: under the uniform distribution setting given queries

(1.) If we can learn AC0,TC0, then we can break Learning with Errors cryptosytem
(which is the basis of post-quantum cryptographic systems):

(2.) If we can learn TC0
2, then we would obtain a breakthrough in complexity theory.
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Tools of interest

Pseudo-random functions (PRF)

A family F = {Fs : {0, 1}n → {0, 1}ℓ : s ∈ {0, 1}k} where s is a key

We use the notation AF meaning A can make queries to F at unit cost.

Important property: A PRF is said to be secure if:

There exists no polynomial-time algorithm A such that∣∣∣ Pr
s∈{0,1}k

[AFs (·) = 1]− Pr
U
[AU(·) = 1]

∣∣∣ ≥ 1

poly(n)
,

where U is a uniformly random oracle U : {0, 1}n → {0, 1}ℓ(n)

A cannot distinguish between truly random oracle U and “fake” random oracle Fs ∈ F

We say the PRF F is quantum-secure if A was a quantum polynomial-time algorithm

Learning with Errors (LWE)

One of the leading candidates for post-quantum cryptographic schemes:
Learning with Errors [Regev’05]

Important property: Best known quantum algorithm run in exponential time. A
sub-exponential time quantum algorithm would already be a breakthrough

Our hardness is based on hardness for poly-time/ subexp-time algorithms for LWE
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Pseudo-random functions and learning

Let F = {Fs : {0, 1}n → {0, 1}ℓ}s be a quantum-secure PRF, i.e.,
no efficient quantum distinguisher A such that∣∣∣ Pr

s∈{0,1}k
[AFs (·) = 1]− Pr

U
[AU(·) = 1]

∣∣∣ ≥ 1

poly(n)

In particular, no efficient quantum algorithm can distinguish if it was given oracle
access to F ∈ F or uniformly random U

Let CF = {F ′
s : {0, 1}n → {0, 1} : F ′

s (x) = FBIT(Fs(x))}Fs∈F be a concept class.

Assume B is an efficient quantum learner for CF . Consider an algorithm A:

A is given oracle O s.t.: O ∈ CF or O is uniformly random oracle U : {0, 1}n → {0, 1}
A prepares copies of 1√

2n

∑
x |x⟩ |O(x)⟩ efficiently and passes it to B. Similarly

queries made by B can be simulated by A
B outputs a hypothesis h : {0, 1}n → {0, 1}.
A says O ∈ CF iff h(x) = O(x) for uniformly random x ∈ {0, 1}n

Technical lemma: If the learning algorithm B has bias β, then the bias of A is ≥ β/2

Contradiction. Let β = 1
poly(n)

=⇒ A serves as a quantum distinguisher since B was

efficient. Contradicts that G was quantum-secure, hence B couldn’t have been efficient
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Hardness of TC0, AC0

Starting point: PRF F constructed by [BPR’12] which is secure assuming the LWE
problem is hard

Show that for every s, the function
Fs can be computed by TC0 circuit

∧

Maj. . . . . .∧∨ . . . . . . Maj ∨

∧. . . . . .∧∨ ∧ Maj ∧

Fs(x)

x1 ¬x1 x2 ¬x2 . . . . . .. . . xk ¬xk

...
...

...
...

In particular, every concept c ∈ CF can be computed by a TC0 circuit

Main theorem 1. If there exists an efficient quantum learner for CF ⊆ TC0, then
there exists a polynomial-time quantum algorithm for the LWE problem

Similar idea doesn’t work for AC0: PRFs constructed from LWE cannot naturally be
computed in TC0. Overcome by reducing key-size and relaxing the security of LWE

Main theorem 2. If there exists a quasi-polynomial quantum learner for C′
F ⊆ AC0,

then there exists a sub-exponential time quantum algorithm for the LWE problem



20/ 24

Hardness of learning depth-2 TC0 circuits

Drawback. 1. Using the PRF approach we had above, we are not able to say anything
about lower bounds for circuit families with very small depth.

2. None of these PRFs are known to be implementable in depth ≤ 6

Main result. If a class C of polynomial-size concepts can be learned under the uniform
distribution with membership queries and with error ε ≤ 1/2− γ and in quantum time
o(γ2 · 2n), then BQE /∈ C (i.e., bounded quantum exponential time /∈ C).

Two trivial algorithms

1 Query everything: Query/time complexity is 2n, error ε = 0

2 Fourier sample: Time complexity is poly(n), error is 1/2− Ω(2−n/2)

Concrete application

Consider C = TC0
2 (the class of depth-2 threshold circuits). If there exists a non-trivial

learning algorithm for TC0
2, then new circuit lower bounds. In particular BQE /∈ TC0

2.

Conceptually

(i) Explains why devising new quantum learning algorithms is hard

(ii) Gives a new motivation for providing new quantum speedups
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Learning parities agnostically?

Let C = {cS : {0, 1}n → {0, 1} : cS (x) = ⟨S , x⟩}S .
1. In uniform PAC learning we are given

|ψS ⟩ =
1

√
2n

∑
x

|x , cS (x)⟩ ,

learn S. Using O(1) copy of |ψS ⟩.

2. In random-classification noise PAC learning we are given

|ψS ⟩ =
1

√
2n

∑
x

√
1− η |x , cS (x)⟩+

√
η |x , 1⊕ cS (x)⟩ ,

learn S. Using poly(1/(1− 2η)2) copies |ψS ⟩.

3. The “hardest” agnostic model. A quantum learning algorithm obtains

|ψg ⟩ =
1

√
2n

∑
x

|x⟩ ⊗
(√1 + g(x)

2
|1⟩+

√
1− g(x)

2
|0⟩

)
for an arbitrary g : {0, 1}n → [−1, 1]. Find S such that

|ĝ(S)| ∈ [max
T

|ĝ(T )| − ε,max
T

|ĝ(T )|+ ε].

Can we learn parities in the agnostic model?
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Learning parities agnostically?

Let C = {cS : {0, 1}n → {0, 1} : cS (x) = ⟨S , x⟩}S . In the agnostic model. a quantum
learning algorithm obtains

|ψg ⟩ =
1

√
2n

∑
x

|x⟩ ⊗
(√1 + g(x)

2
|1⟩+

√
1− g(x)

2
|0⟩

)
for an arbitrary g : {0, 1}n → [−1, 1]. Find S such that

|ĝ(S)| ∈ [max
T

|ĝ(T )| − ε,max
T

|ĝ(T )|+ ε].

A classical algorithm

1 Measure |ψg ⟩ to obtain (x , b) where b = 1 with probability (1 + g(x))/2 and
b = 0 with probability (1− g(x))/2.

2 [FGKP’06] showed classical agnostic learning reduces to random classification
noise model for parities

3 LPN is solvable using O(n) samples and time 2n/ log n.

Can we learn parities agnostically quantum time efficiently?

Why care? Give a quantum polynomial time for AC0
3 under the uniform distribution

(the classical analogue is an open question)
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Learning parities agnostically?

Let C = {cS : {0, 1}n → {0, 1} : cS (x) = ⟨S , x⟩}S . In the agnostic model for an
arbitrary g : {0, 1}n → [−1, 1], a quantum learning algorithm obtains

|ψg ⟩ =
1

√
2n

∑
x

|x⟩ ⊗
(√1 + g(x)

2
|1⟩+

√
1− g(x)

2
|0⟩

)
Find S in |ĝ(S)| ∈ [maxT |ĝ(T )| − ε,maxT |ĝ(T )|+ ε].

Harder task: given |ψg ⟩⊗t sample from a distribution Dg : {0, 1}n → [0, 1] satisfying∑
S

∣∣∣Dg (S)−
ĝ(S)2∑
S ĝ(S)2

∣∣∣ ≤ ε.

Unclear if possible even sample efficiently! One approach for showing hardness.

Consider the hard instance

E1 = {g : {0, 1}n → {1, 2/
√
N − 1} : |g−1(1)| = N/2−

√
N},

E2 = {g : {0, 1}n → {1, 2/
√
N − 1} : |g−1(1)| = N/2 +

√
N}.
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Learning parities agnostically?

Given copies of |ψg ⟩ = 1√
2n

∑
x |x⟩ ⊗

(√
1+g(x)

2
|1⟩+

√
1−g(x)

2
|0⟩

)
can we sample

from a distribution Dg : {0, 1}n → [0, 1] satisfying∑
S

∣∣∣Dg (S)−
ĝ(S)2∑
S ĝ(S)2

∣∣∣ ≤ ε.

Hard instance. Consider a set of g : {0, 1}n → {1, 2√
N

− 1}.
E1 is set of gs s.t. |g−1(1)| = N/2−

√
N

E2 is set of gs s.t. |g−1(1)| = N/2 +
√
N.

Using a technique of Aaronson-Ambainis reduces to the following task. Let

C =
{
|ψz ⟩ =

1
√
2n

∑
x

|x⟩ ⊗
(√

zx |0⟩+
√
1− zx |1⟩

)
:

z ∈ {1, 1/
√
N}N , |z| =

∑
i

zi ∈
{
N/2,N/2 +

√
N
}}
.

Let A be an algorithm that is given T copies of |ψz ⟩ ∈ C and satisfies the following:

if |z−1(1)| = N/2−
√
N, accepts with probability < 0.2/N and

if |z−1(1)| = N/2 +
√
N, accepts with probability ∈ [3.8/N, 4.2/N].

Then T = Ω(Nc ) for some c < 1.


