Strengths and weakness for learning functions from quantum examples

Srinivasan Arunachalam (IBM Quantum)

PAC learning

We let $\mathcal{C} \subseteq \{c : \{0,1\}^n \rightarrow \{0,1\}\}$ be a concept class.

We let $D: \{0,1\}^n \rightarrow [0,1]$ be an unknown distribution.

- Classical PAC learning: obtained (x, c(x)) where $x \sim D$.
- Quantum PAC learning: obtained copies of $\sum_{x} \sqrt{D(x)} |x, c(x)\rangle$

Goal: Output h such that $\Pr_{x \sim D}[h(x) = c(x)] \ge 1 - \varepsilon$

Quantum sample complexity equals classical sample complexity of PAC learning

- But. The distribution which witnessed the quantum lower bound was "unnatural".
 - What if D is nicer? Say the uniform distribution?
 - 2 Do uniform quantum examples provide a speedup?
 - What happens if we query c and not just obtain examples?

Quantum examples help the coupon collector

Standard coupon collector

Problem: Suppose there are *N* coupons. How many coupons to draw (with replacement) before having seen each coupon at least once?

Answer: Simple probability analysis shows $\Theta(N \log N)$

Variation to coupon collector

Problem: Suppose there are *N* coupons. Fix unknown $i^* \in \{1, ..., N\}$. How many coupons to draw (with replacement) from $\{1, ..., N\} \setminus \{i^*\}$ before learning i^* ?

Answer: Same analysis as earlier shows $\Theta(N \log N)$

What if we are given "quantum examples"

Suppose a quantum learner obtains quantum examples $\frac{1}{\sqrt{N-1}} \sum_{i \in (\{1,...,N\} \setminus \{i^*\})} |i\rangle$. How many quantum examples before learning i^* ?

Answer: Can learn i^* using $\Theta(N)$ quantum examples

Proof idea: Analyze the success probability using the pretty good measurement. Write down the Gram matrix observe that it's easily diagonalizable.

If T = O(N), then $P_{opt} \ge P_{pgm} \ge 2/3$

Fourier sampling: a useful trick under uniform D

• Let $c: \{0,1\}^n \to \{-1,1\}$. Then the Fourier coefficients are

$$\widehat{c}(S) = rac{1}{2^n} \sum_{x \in \{0,1\}^n} c(x) (-1)^{S \cdot x} \quad ext{ for all } S \in \{0,1\}^n$$

- Parseval's identity: $\sum_{S} \hat{c}(S)^2 = \mathbb{E}_x[c(x)^2] = 1$ So $\{\hat{c}(S)^2\}_S$ forms a probability distribution
- Given quantum example under uniform D:

$$\frac{1}{\sqrt{2^n}} \sum_{x} |x, c(x)\rangle \xrightarrow{\mathsf{Hadamard}} \sum_{S} \widehat{c}(S) |S\rangle$$

- Measuring allows to sample from the Fourier distribution $\{\hat{c}(S)^2\}_S$
- Classically: sampling from $\{\hat{c}(S)^2\}_S$ is hard given (x, c(x)) examples

Applications of Fourier sampling

- Consider the concept class of parities C₁ = {c_S(x) = S ⋅ x}_{S∈{0,1}ⁿ}
 Classical: Ω(n) classical examples needed
 Quantum: 1 quantum example suffices to learn C₁ (Bernstein-Vazirani'93)
- Consider $C_2 = \{c \text{ is a } \ell \text{-junta}\}, \text{ i.e., } c(x) \text{ depends only on } \ell \text{ bits of } x$

Classical: Efficient learning is notoriously hard for $\ell = O(\log n)$ and uniform D

Quantum: C_2 can be exactly learnt using $\widetilde{O}(2^{\ell})$ quantum examples and in time $\widetilde{O}(n2^{\ell} + 2^{2\ell})$ (Atıcı-Servedio'09)

Generalizing both these concept classes?

Definition: We say c is k-Fourier sparse if $|\{S : \hat{c}(S) \neq 0\}| \le k$.

Note that C_1 is 1-Fourier sparse and C_2 is 2^{ℓ} -Fourier sparse

Consider the concept class $C = \{c : \{0,1\}^n \rightarrow \{-1,1\} : c \text{ is } k\text{-Fourier sparse}\}$

Observe that $C_1 \subseteq C$. C contains linear functions Observe that $C_2 \subseteq C$. C contains (log k)-juntas

Learning $C = \{c \text{ is } k \text{-Fourier sparse}\}$

- Exact learning $\mathcal C$ under the uniform distribution D
- Classically (Haviv-Regev'15): Θ̃(nk) classical examples (x, c(x)) are necessary and sufficient to learn the concept class C
- Quantumly (ACLW'18): Õ(k^{1.5}) quantum examples ¹/_{√2ⁿ} ∑_x |x, c(x)⟩ are sufficient to learn C (independent of the universe size n)

Sketch of upper bound 1

- Structural property: if c is k-Fourier sparse, then $\widehat{c}(S)^2 \ge 1/k^2$
- Use Fourier sampling to sample $S \sim {\widehat{c}(S)^2}_S$
- Collect all the S using $O(k^2)$ samples.
- Estimate each $\hat{c}(S)$ using classical examples. Sample, time complexity is $O(k^2)$

A more sophisticated analysis.

- Fourier sample and collect Ss until the learner learns $\mathcal{V} = \operatorname{span}\{S : \widehat{c}(S) \neq 0\}$
- Suppose dim(\mathcal{V}) = r, then $\tilde{O}(rk)$ quantum examples suffice to find \mathcal{V}
- Use the result of [HR'15] to learn c' completely using $\widetilde{O}(rk)$ classical examples
- Since $r \leq \widetilde{O}(\sqrt{k})$, we get $\widetilde{O}(k^{1.5})$ upper bound

Learning Disjunctive normal Forms (DNF)

DNFs

Simply an OR of AND of variables. For example, $(x_1 \land x_4 \land \overline{x_3}) \lor (\overline{x_4} \land x_6 \land x_7 \land \overline{x_8})$ We say a DNF on *n* variables is an *s*-term DNF if number of clauses is $\leq s$

Learning $C = \{c \text{ is an } s \text{-term DNF in } n \text{ variables} \}$ under uniform D

- Classically: Efficient learning using examples is a longstanding open question. Best known upper bound is n^{O(log n)} [Verbeurgt'90]
- Quantumly: Bshouty-Jackson'95 gave a polynomial-time quantum algorithm!

Proof sketch of quantum upper bound

- Structural property: if c is an s-term DNF, then there exists U s.t. $|\hat{c}(U)| \geq \frac{1}{s}$
- Fourier sampling! Sample $T \sim \{\hat{c}(T)^2\}_T$, poly(s) many times to see such a U
- Construct a "weak learner" who outputs h s.t. $\Pr[h(x) = c(x)] = \frac{1}{2} + \frac{1}{5}$
- Not good enough! Want a *h* that agrees with *c* on most inputs *x*'s
- Boosting: Run weak learner many times in some manner to obtain a strong learner who outputs h satisfying Pr[h(x) = c(x)] ≥ 2/3

Membership oracle model

Let $\mathcal{C} \subseteq \{c: \{0,1\}^n \to \{0,1\}\}$ be a concept class and $c^* \in \mathcal{C}$ be an unknown.

Classical model

Membership queries. Suppose we can query c^* as follows:

on input $x \in \{0,1\}^n$, the learning algorithm obtains $c^*(x)$.

Goal: Learn c^* or output $h: \{0,1\}^n \to \{0,1\}$ such that $\Pr_x[c^*(x) = h(x)] \ge 2/3$

Complexity measure: Number of classical queries to *c*, call it D(c). Let $D(C) = \max_{c \in C} D(c)$ be query complexity of learning *C*.

Quantum model

Quantum membership queries. Suppose we can quantumly query c^* in as follows:

$$O_{c^*}: |x,0
angle
ightarrow |x,c^*(x)
angle.$$

In particular, these allow to obtain

$$rac{1}{\sqrt{2^n}}\sum_x \ket{x,0} o rac{1}{\sqrt{2^n}}\sum_x \ket{x,c^*(x)}$$

Goal: Learn c^* or output $h: \{0,1\}^n \to \{0,1\}$ such that $\Pr_x[c^*(x) = h(x)] \ge 2/3$

Complexity measure: Number of quantum queries to c, call it Q(c). Let $Q(C) = \max_{c \in C} Q(c)$ be query complexity of learning C.

Classical model

Membership queries. Suppose we can query c^* as follows:

on input $x \in \{0,1\}^n$, the learning algorithm obtains $c^*(x)$.

Goal: Learn c^* or output $h: \{0,1\}^n \to \{0,1\}$ such that $\Pr_x[c^*(x) = h(x)] \ge 2/3$

Complexity measure: $D(\mathcal{C}) = \max_{c \in \mathcal{C}} D(c)$ be query complexity of learning \mathcal{C} .

Quantum model

Quantum membership queries. Suppose we can quantumly query c^* in as follows:

$$O_{c^*}: |x,0\rangle \rightarrow |x,c^*(x)\rangle.$$

Goal: Learn c^* or output $h: \{0,1\}^n \to \{0,1\}$ such that $\Pr_x[c^*(x) = h(x)] \ge 2/3$

Complexity measure: $Q(\mathcal{C}) = \max_{c \in \mathcal{C}} Q(c)$ be query complexity of learning \mathcal{C} .

Question: Could $Q(\mathcal{C})$ be exponentially smaller than $D(\mathcal{C})$?

No. One can show that $Q(\mathcal{C}) \leq D(\mathcal{C}) \leq nQ(\mathcal{C})^3$ for every \mathcal{C} .

In the membership query model, quantum queries can give at most a polynomial speedup for learning over classical queries.

Shallow circuits

Gates: AND(x) = 1 iff $x = 1^n$, OR(x) = 0 iff $x = 0^n$, MAJ(x) = 1 iff $\sum_i x_i > n/2$ We say $c : \{0, 1\}^n \to \{0, 1\}$ is computed by a shallow circuit if: c can be computed by a constant-depth polynomial-sized circuit with:

OR NO bounded fan-in AND, OR, NOT AND $\dot{x_2}$ gates (NC⁰) NOT NC⁰ Circuit unbounded fan-in AND, OR, NOT gates (AC^0) AC⁰ Circuit unbounded fan-in AND, OR, NOT, MAJ gates (TC^0) TC⁰ Circuit

Why consider NC⁰ and AC⁰ circuits?

Shallow circuits have proven useful in exhibiting quantum advantage:

- BGK'18: A relational problem which can be solved using shallow quantum circuits but requires logarithmic-depth NC⁰ circuit
- BKST'19: Improved the BGK'18 separation from NC⁰ to AC⁰
- CSV'18: Used BGK'18 for exponential certified randomness expansion
- G'18: Improved BGK'18 to give a separation in the average-case setting
- GNR'19: Used the construction of BGK'18 to show separations in the LOCAL model

Do shallow circuits give a quantum advantage for a learning task?

Why consider TC⁰ circuits?

A theoretical way to model neural networks: A simple feed-forward neural network

where σ_w is the sigmoid function associated with weights $w = (w_0, w_1, \dots, w_n)$. The weights could be exponential in n

A sequence of results in the 90s showed that constant-depth polynomial-sized feed-forward neural networks can be implemented by TC^0 circuits

Do quantum resources help learning a class of neural networks faster?

Learning NC⁰ efficiently: a simple observation

The circuit class NC⁰

Recall: Class of functions $c : \{0,1\}^n \to \{0,1\}$ such that c can be computed by an O(1)-depth circuit with AND, OR, NOT gates on at most 2 bits

Observation: If c is computed by a depth-d NC⁰ circuit (denoted NC⁰_d), then c(x) depends on at most 2^d input bits of x

Learning juntas quantumly

Consider $C = \{c \text{ is a } l \text{-junta}\}, \text{ i.e., } c(x) \text{ depends only on } l \text{ bits of } x$

Classical: Efficient learning is notoriously hard for $\ell = O(\log n)$ and uniform D

Quantum: C can be *exactly* learned using $\widetilde{O}(2^{\ell})$ quantum examples and in time $\widetilde{O}(n2^{\ell} + 2^{2\ell})$ (Atıcı-Servedio'09)

Observation. NC_d^0 consists of 2^d -juntas. Can be learned in time $O(n2^{2^d} + 2^{2^{d+1}})$. If d = O(1), then NC⁰ can be learned in quantum polynomial-time using only uniform quantum examples. Also bounded fan-in circuits can be learned quantum-efficiently

Motivation question for this talk: Learn constant-depth circuits?

Learning AC⁰ under the uniform distribution

- **Upper bounds**: Linial, Mansour, Nisan'89 showed how to learn AC⁰ circuits in quasi-polynomial time i.e., $n^{O(\log n)}$ time
- Crucial idea: Learn the Fourier spectrum of AC⁰ circuits
- Lower bound: Kharitonov'93 (conditionally) showed that the quasi-polynomial time bound of LMN'89 is optimal
- AC⁰ hardness assumed that factoring is hard for sub-exponential time algorithms

Learning TC⁰

- Not much is known about learning even depth-2 TC⁰ circuits under the uniform distribution
- Kharitonov'93 ruled out polynomial-time learners for TC⁰ assuming factoring is polynomial-time hard
- Klivans-Sherstov'09 showed PAC learning depth-2 TC⁰ circuits is hard based on hardness of breaking LWE-cryptosystem

"Can AC^0 and TC^0 be quantum PAC learned?"

Strong negative answer: under the uniform distribution setting given queries

(1.) If we can learn AC^0 , TC^0 , then we can break Learning with Errors cryptosytem (which is the basis of post-quantum cryptographic systems):

(2.) If we can learn TC_2^0 , then we would obtain a breakthrough in complexity theory.

Tools of interest

Pseudo-random functions (PRF)

A family $\mathcal{F} = \{F_s : \{0,1\}^n \rightarrow \{0,1\}^\ell : s \in \{0,1\}^k\}$ where s is a key

We use the notation \mathcal{A}^F meaning \mathcal{A} can make queries to F at unit cost.

Important property: A PRF is said to be secure if:

There exists no polynomial-time algorithm \mathcal{A} such that

$$\Big| \Pr_{s \in \{0,1\}^k} [\mathcal{A}^{F_s}(\cdot) = 1] - \Pr_U [\mathcal{A}^U(\cdot) = 1] \Big| \ge \frac{1}{\operatorname{poly}(n)}$$

where U is a uniformly random oracle $U: \{0,1\}^n \to \{0,1\}^{\ell(n)}$

 $\mathcal A$ cannot distinguish between truly random oracle U and "fake" random oracle $F_s \in \mathcal F$

We say the PRF ${\mathcal F}$ is quantum-secure if ${\mathcal A}$ was a quantum polynomial-time algorithm

Learning with Errors (LWE)

One of the leading candidates for post-quantum cryptographic schemes: Learning with Errors [Regev'05]

Important property: Best known quantum algorithm run in exponential time. A sub-exponential time quantum algorithm would already be a breakthrough

Our hardness is based on hardness for poly-time/ subexp-time algorithms for LWE

Pseudo-random functions and learning

Let $\mathcal{F} = \{F_s : \{0,1\}^n \to \{0,1\}^\ell\}_s$ be a quantum-secure PRF, i.e., no efficient quantum distinguisher \mathcal{A} such that

$$\Pr_{s \in \{0,1\}^k} [\mathcal{A}^{F_s}(\cdot) = 1] - \Pr_U [\mathcal{A}^U(\cdot) = 1] \Big| \ge \frac{1}{\operatorname{\mathsf{poly}}(n)}$$

In particular, no efficient quantum algorithm can distinguish if it was given oracle access to $F \in \mathcal{F}$ or uniformly random U

Let $\mathcal{C}_{\mathcal{F}} = \{F'_s : \{0,1\}^n \to \{0,1\} : F'_s(x) = \mathsf{FBIT}(F_s(x))\}_{F_s \in \mathcal{F}}$ be a concept class.

Assume \mathcal{B} is an efficient quantum learner for $\mathcal{C}_{\mathcal{F}}$. Consider an algorithm \mathcal{A} :

 \mathcal{A} is given oracle O s.t.: $O \in \mathcal{C}_{\mathcal{F}}$ or O is uniformly random oracle $U : \{0,1\}^n \to \{0,1\}$

- A prepares copies of ¹/_{√2ⁿ} ∑_x |x⟩ |O(x)⟩ efficiently and passes it to B. Similarly queries made by B can be simulated by A
- \mathcal{B} outputs a hypothesis $h: \{0,1\}^n \to \{0,1\}$. \mathcal{A} says $O \in C_{\mathcal{F}}$ iff h(x) = O(x) for uniformly random $x \in \{0,1\}^n$

Technical lemma: If the learning algorithm \mathcal{B} has bias β , then the bias of \mathcal{A} is $\geq \beta/2$ **Contradiction.** Let $\beta = \frac{1}{\text{poly}(n)} \implies \mathcal{A}$ serves as a quantum distinguisher since \mathcal{B} was efficient. Contradicts that G was quantum-secure, hence \mathcal{B} couldn't have been efficient

Hardness of TC^0 , AC^0

Starting point: PRF \mathcal{F} constructed by [BPR'12] which is secure assuming the LWE problem is hard

Show that for every s, the function F_s can be computed by TC⁰ circuit

In particular, every concept $c \in C_F$ can be computed by a TC⁰ circuit

Main theorem 1. If there exists an efficient quantum learner for $\mathcal{C}_{\mathcal{F}} \subseteq TC^0$, then there exists a polynomial-time quantum algorithm for the LWE problem

Similar idea doesn't work for AC^0 : PRFs constructed from LWE cannot naturally be computed in TC^0 . Overcome by reducing key-size and relaxing the security of LWE

Main theorem 2. If there exists a quasi-polynomial quantum learner for $C'_{\mathcal{F}} \subseteq AC^0$, then there exists a sub-exponential time quantum algorithm for the LWE problem

Hardness of learning depth-2 TC0 circuits

Drawback. 1. Using the PRF approach we had above, we are not able to say anything about lower bounds for circuit families with *very small* depth.

2. None of these PRFs are known to be implementable in depth ≤ 6

Main result. If a class C of polynomial-size concepts can be learned under the uniform distribution with membership queries and with error $\varepsilon \leq 1/2 - \gamma$ and in quantum time $o(\gamma^2 \cdot 2^n)$, then BQE $\notin C$ (i.e., bounded quantum exponential time $\notin C$).

Two trivial algorithms

- **Query everything**: Query/time complexity is 2^n , error $\varepsilon = 0$
- **2** Fourier sample: Time complexity is poly(n), error is $1/2 \Omega(2^{-n/2})$

Concrete application

Consider $C = TC_2^0$ (the class of depth-2 threshold circuits). If there exists a non-trivial learning algorithm for TC_2^0 , then new circuit lower bounds. In particular BQE $\notin TC_2^0$.

Conceptually

(i) Explains why devising new quantum learning algorithms is hard

(ii) Gives a new motivation for providing new quantum speedups

Learning parities agnostically?

Let $\mathcal{C} = \{c_S : \{0,1\}^n \rightarrow \{0,1\} : c_S(x) = \langle S, x \rangle \}_S.$

1. In uniform PAC learning we are given

$$\ket{\psi_{\mathcal{S}}} = rac{1}{\sqrt{2^n}} \sum_x \ket{x, c_{\mathcal{S}}(x)},$$

learn S. Using O(1) copy of $|\psi_S\rangle$.

2. In random-classification noise PAC learning we are given

$$|\psi_{\mathsf{S}}\rangle = rac{1}{\sqrt{2^n}}\sum_x \sqrt{1-\eta} \ket{x, c_{\mathsf{S}}(x)} + \sqrt{\eta} \ket{x, 1 \oplus c_{\mathsf{S}}(x)},$$

learn S. Using poly $(1/(1-2\eta)^2)$ copies $|\psi_S\rangle$.

3. The "hardest" agnostic model. A quantum learning algorithm obtains

$$|\psi_g
angle = rac{1}{\sqrt{2^n}}\sum_x |x
angle \otimes \Big(\sqrt{rac{1+g(x)}{2}}\,|1
angle + \sqrt{rac{1-g(x)}{2}}\,|0
angle \Big)$$

for an arbitrary $g: \{0,1\}^n \rightarrow [-1,1]$. Find S such that

$$|\widehat{g}(S)| \in [\max_{T} |\widehat{g}(T)| - \varepsilon, \max_{T} |\widehat{g}(T)| + \varepsilon].$$

Can we learn parities in the agnostic model?

Learning parities agnostically?

Let $C = \{c_S : \{0,1\}^n \to \{0,1\} : c_S(x) = \langle S, x \rangle \}_S$. In the agnostic model. a quantum learning algorithm obtains

$$|\psi_{g}
angle = rac{1}{\sqrt{2^{n}}}\sum_{x}|x
angle \otimes \Big(\sqrt{rac{1+g(x)}{2}}\,|1
angle + \sqrt{rac{1-g(x)}{2}}\,|0
angle \Big)$$

for an arbitrary $g: \{0,1\}^n \to [-1,1]$. Find S such that

$$|\widehat{g}(S)| \in [\max_{T} |\widehat{g}(T)| - \varepsilon, \max_{T} |\widehat{g}(T)| + \varepsilon].$$

A classical algorithm

• Measure $|\psi_g\rangle$ to obtain (x, b) where b = 1 with probability (1 + g(x))/2 and b = 0 with probability (1 - g(x))/2.

3 LPN is solvable using O(n) samples and time $2^{n/\log n}$.

Can we learn parities agnostically quantum time efficiently?

Why care? Give a quantum polynomial time for AC_3^0 under the uniform distribution (the classical analogue is an open question)

Let $C = \{c_S : \{0,1\}^n \to \{0,1\} : c_S(x) = \langle S, x \rangle \}_S$. In the agnostic model for an *arbitrary* $g : \{0,1\}^n \to [-1,1]$, a quantum learning algorithm obtains

$$|\psi_g
angle = rac{1}{\sqrt{2^n}}\sum_x |x
angle \otimes \Big(\sqrt{rac{1+g(x)}{2}}\,|1
angle + \sqrt{rac{1-g(x)}{2}}\,|0
angle \Big)$$

Find S in $|\widehat{g}(S)| \in [\max_T |\widehat{g}(T)| - \varepsilon, \max_T |\widehat{g}(T)| + \varepsilon].$

Harder task: given $|\psi_g\rangle^{\otimes t}$ sample from a distribution $D_g: \{0,1\}^n \to [0,1]$ satisfying

$$\sum_{S} \left| D_g(S) - \frac{\widehat{g}(S)^2}{\sum_{S} \widehat{g}(S)^2} \right| \leq \varepsilon.$$

Unclear if possible even sample efficiently! One approach for showing hardness.

Consider the hard instance

$$\begin{split} \mathcal{E}_1 &= \{g: \{0,1\}^n \to \{1,2/\sqrt{N}-1\}: |g^{-1}(1)| = N/2 - \sqrt{N}\},\\ \mathcal{E}_2 &= \{g: \{0,1\}^n \to \{1,2/\sqrt{N}-1\}: |g^{-1}(1)| = N/2 + \sqrt{N}\}. \end{split}$$

Learning parities agnostically?

Given copies of $|\psi_g\rangle = \frac{1}{\sqrt{2^n}} \sum_x |x\rangle \otimes \left(\sqrt{\frac{1+g(x)}{2}} |1\rangle + \sqrt{\frac{1-g(x)}{2}} |0\rangle\right)$ can we sample from a distribution $D_g : \{0,1\}^n \to [0,1]$ satisfying

$$\sum_{S} \left| D_g(S) - \frac{\widehat{g}(S)^2}{\sum_{S} \widehat{g}(S)^2} \right| \leq \varepsilon.$$

Hard instance. Consider a set of $g: \{0,1\}^n \to \{1, \frac{2}{\sqrt{N}} - 1\}$. \mathcal{E}_1 is set of gs s.t. $|g^{-1}(1)| = N/2 - \sqrt{N}$ \mathcal{E}_2 is set of gs s.t. $|g^{-1}(1)| = N/2 + \sqrt{N}$.

Using a technique of Aaronson-Ambainis reduces to the following task. Let

$$\begin{aligned} \mathcal{C} &= \Big\{ |\psi_z\rangle = \frac{1}{\sqrt{2^n}} \sum_{x} |x\rangle \otimes \left(\sqrt{z_x} |0\rangle + \sqrt{1 - z_x} |1\rangle\right) :\\ &z \in \{1, 1/\sqrt{N}\}^N, |z| = \sum_{i} z_i \in \{N/2, N/2 + \sqrt{N}\} \Big\}. \end{aligned}$$

Let \mathcal{A} be an algorithm that is given T copies of $|\psi_z\rangle \in \mathcal{C}$ and satisfies the following:

• if
$$|z^{-1}(1)| = N/2 - \sqrt{N}$$
, accepts with probability $< 0.2/N$ and

• if
$$|z^{-1}(1)| = N/2 + \sqrt{N}$$
, accepts with probability $\in [3.8/N, 4.2/N]$.

Then $T = \Omega(N^c)$ for some c < 1.