1 Lecture 2 exercise

Problem 1. Verify that parities have Fourier sparsity 1 and k-juntas have Fourier sparsity 2^{k}. Recall that the class of k-juntas is defined as

$$
\mathcal{C}=\left\{c:\{0,1\}^{n} \rightarrow\{0,1\}\left|c(x)=c\left(x_{S}\right), S \subseteq[n]:|S|=k\right\},\right.
$$

i.e., there is an unknown set of k indices (call that S) such that $c(x)$ only depends on the values of x when restricted to S.

Hint: Write down the Fourier decomposition of parities and juntas and check when are they non-zero.
Problem 2. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$. Decribe a procedure that uses one copy of $\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x, f(x)\rangle$, and with probability $1 / 2$, outputs an S drawn from the distribution $\left\{\widehat{f}(S)^{2}\right\}_{S}$, otherwise rejects

Hint: Apply Hadamard on all $n+1$ qubits, measure the last qubit and depending on the outcome bit, measure the remaining n qubits.

Problem 3. Show that $O(1)$ quantum example suffices to learn parities. Show that $O(n)$ classical examples suffice for learning parities.

Hint: Fourier sampling and Gaussian elimination.
Problem 4. In this exercise you will be showing that Learning parities with noise (LPN) on n bits is easy with quantum samples. Classically the best known algorithm given classical samples takes time $2^{O(n / \log n)}$ but we will see how it can be solved in quantum polynomial time.

In the LPN problem, a learner is given uniformly random $x \in\{0,1\}^{n}$ and $\langle a, x\rangle+b_{x}$ where b_{x} are iid random variables that equal 1 with probability $(1-\eta)$ and 0 otherwise. Show that, polynomially many copies of

$$
\left|\psi_{a}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x}\left|x,\langle a, x\rangle+b_{x}\right\rangle
$$

and polynomial time suffices to learn a
Hint:

1. Apply Hadamards on all $n+1$-qubits and show that measuring the last qubit of $\left|\psi_{a}\right\rangle$ equals 0 with prob. $1 / 2$.
2. With probability exponentially close to 1 , show that measuring the first n bits equals a using Chernoff bound (recall that the Chernoff bound states the following: let \mathbf{X} be a bounded random variable in $[-1,1]$ with $\mu=\mathbb{E}[\mathbf{X}]$, suppose we are given t independent samples x_{1}, \ldots, x_{t}, then we have that

$$
\operatorname{Pr}\left[\left|\frac{1}{t} \sum_{i=1}^{t} x_{i}-\mu\right| \geq k\right] \leq \exp \left(-k^{2} t\right)
$$

3. For every $c \neq a$, with exponentially tiny probability, measuring the first n bits equals c

Problem 5. Here you will see how to approximate Fourier coefficients using just classical examples.
Recall that for a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, the Fourier coefficients are defined as

$$
\widehat{f}(S)=\mathbb{E}_{x}\left[f(x) \chi_{S}(x)\right]
$$

where $\chi_{S}(x)=(-1)^{S \cdot x}$. Show that there exists an algorithm that satisfies the following: the algorithm obtains $O\left(1 / \varepsilon^{2} \cdot \log (1 / \delta)\right)$ labelled examples $(x, f(x))$ where x is uniformly random and with probability $\geq 1-\delta$, outputs α such that $|\alpha-\widehat{f}(S)| \leq \varepsilon$.

Hint: Use Chernoff bound.
Problem 6. Consider the classical agnostic learning setup as follows: let $D:\{0,1\}^{n+1} \rightarrow[0,1]$ be an unknown distribution such that the marginal on the first n bits is uniform and the probability the last bit is 1 is $(1+g(x)) / 2$, and it equals 0 with probability $(1-g(x)) / 2$. The goal is to find S such that

$$
\begin{equation*}
\operatorname{err}_{D}\left(\chi_{S}\right) \leq \mathrm{OPT}+\varepsilon \tag{1}
\end{equation*}
$$

where $\operatorname{err}_{D}\left(\chi_{S}\right)=\operatorname{Pr}_{(x, b) \sim D}\left[\chi_{S}(x) \neq b\right]$, OPT $=\min _{T}\left\{\operatorname{err}_{D}\left(\chi_{T}\right)\right\}$ and $\chi_{S}(x)=(-1)^{S \cdot x}$.
In quantum agnostic learning we are given

$$
\left|\psi_{g}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x}|x\rangle \otimes\left(\sqrt{\frac{1+g(x)}{2}}|1\rangle+\sqrt{\frac{1-g(x)}{2}}|0\rangle\right)
$$

for an arbitrary $g:\{0,1\}^{n} \rightarrow[-1,1]$. Show that a quantum agnostic learner satisfying Eq. (1) satisfies

$$
\widehat{g}(S) \in\left[\max _{T} \widehat{g}(T)-\varepsilon, \max _{T} \widehat{g}(T)+\varepsilon\right]
$$

