
1 Lecture 2 exercise

Problem 1. Verify that parities have Fourier sparsity 1 and k-juntas have Fourier sparsity 2k.
Recall that the class of k-juntas is defined as

C = {c : {0, 1}n → {0, 1}|c(x) = c(xS), S ⊆ [n] : |S| = k},

i.e., there is an unknown set of k indices (call that S) such that c(x) only depends on the values of
x when restricted to S.

Hint: Write down the Fourier decomposition of parities and juntas and check when are they non-zero.

Problem 2. Let f : {0, 1}n → {0, 1}. Decribe a procedure that uses one copy of 1√
2n

∑
x∈{0,1}n |x, f(x)⟩,

and with probability 1/2, outputs an S drawn from the distribution {f̂(S)2}S , otherwise rejects

Hint: Apply Hadamard on all n+ 1 qubits, measure the last qubit and depending on the outcome bit, measure the

remaining n qubits.

Problem 3. Show that O(1) quantum example suffices to learn parities. Show that O(n) classical
examples suffice for learning parities.

Hint: Fourier sampling and Gaussian elimination.

Problem 4. In this exercise you will be showing that Learning parities with noise (LPN) on n bits
is easy with quantum samples. Classically the best known algorithm given classical samples takes
time 2O(n/ logn) but we will see how it can be solved in quantum polynomial time.

In the LPN problem, a learner is given uniformly random x ∈ {0, 1}n and ⟨a, x⟩+ bx where bx are
iid random variables that equal 1 with probability (1−η) and 0 otherwise. Show that, polynomially
many copies of

|ψa⟩ =
1√
2n

∑
x

|x, ⟨a, x⟩+ bx⟩

and polynomial time suffices to learn a

Hint:

1. Apply Hadamards on all n+1-qubits and show that measuring the last qubit of |ψa⟩ equals 0 with prob. 1/2.

2. With probability exponentially close to 1, show that measuring the first n bits equals a using Chernoff bound
(recall that the Chernoff bound states the following: let X be a bounded random variable in [−1, 1] with
µ = E[X], suppose we are given t independent samples x1, . . . , xt, then we have that

Pr[|1
t

t∑
i=1

xi − µ| ≥ k] ≤ exp(−k2t)

.

3. For every c ̸= a, with exponentially tiny probability, measuring the first n bits equals c

Problem 5. Here you will see how to approximate Fourier coefficients using just classical examples.

Recall that for a function f : {0, 1}n → {0, 1}, the Fourier coefficients are defined as

f̂(S) = Ex[f(x)χS(x)],

where χS(x) = (−1)S·x. Show that there exists an algorithm that satisfies the following: the
algorithm obtains O(1/ε2 · log(1/δ)) labelled examples (x, f(x)) where x is uniformly random and
with probability ≥ 1− δ, outputs α such that |α− f̂(S)| ≤ ε.
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Hint: Use Chernoff bound.

Problem 6. Consider the classical agnostic learning setup as follows: let D : {0, 1}n+1 → [0, 1] be
an unknown distribution such that the marginal on the first n bits is uniform and the probability
the last bit is 1 is (1 + g(x))/2, and it equals 0 with probability (1− g(x))/2. The goal is to find S
such that

errD(χS) ≤ OPT+ ε, (1)

where errD(χS) = Pr(x,b)∼D[χS(x) ̸= b], OPT = minT {errD(χT )} and χS(x) = (−1)S·x.

In quantum agnostic learning we are given

|ψg⟩ =
1√
2n

∑
x

|x⟩ ⊗
(√1 + g(x)

2
|1⟩+

√
1− g(x)

2
|0⟩

)
for an arbitrary g : {0, 1}n → [−1, 1]. Show that a quantum agnostic learner satisfying Eq. (1)
satisfies

ĝ(S) ∈ [max
T

ĝ(T )− ε,max
T

ĝ(T ) + ε].
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