1 Lecture 2 exercise

Problem 1. Verify that parities have Fourier sparsity 1 and k-juntas have Fourier sparsity 2F.
Recall that the class of k-juntas is defined as

C={c:{0,1}" = {0,1}|c(z) = c(zs), S C [n] : |S| = k},

i.e., there is an unknown set of k indices (call that S) such that ¢(z) only depends on the values of
x when restricted to S.

Hint: Write down the Fourier decomposition of parities and juntas and check when are they non-zero.

Problem 2. Let f : {0,1}" — {0,1}. Decribe a procedure that uses one copy of \/% ZIG{M}n |z, f(x)),
and with probability 1/2, outputs an .S drawn from the distribution {f(S )2}, otherwise rejects

Hint: Apply Hadamard on all n + 1 qubits, measure the last qubit and depending on the outcome bit, measure the

remaining n qubits.

Problem 3. Show that O(1) quantum example suffices to learn parities. Show that O(n) classical
examples suffice for learning parities.

Hint: Fourier sampling and Gaussian elimination.

Problem 4. In this exercise you will be showing that Learning parities with noise (LPN) on n bits
is easy with quantum samples. Classically the best known algorithm given classical samples takes
time 20("/1087) hut we will see how it can be solved in quantum polynomial time.

In the LPN problem, a learner is given uniformly random z € {0,1}" and (a, z) 4+ b, where b, are
iid random variables that equal 1 with probability (1 —n) and 0 otherwise. Show that, polynomially

many copies of
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and polynomial time suffices to learn a

Hint:

1. Apply Hadamards on all n + 1-qubits and show that measuring the last qubit of |1,) equals 0 with prob. 1/2.

2. With probability exponentially close to 1, show that measuring the first n bits equals a using Chernoff bound
(recall that the Chernoff bound states the following: let X be a bounded random variable in [—1,1] with
u = E[X], suppose we are given ¢ independent samples z1, ..., z:, then we have that

t
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3. For every c # a, with exponentially tiny probability, measuring the first n bits equals ¢

Problem 5. Here you will see how to approximate Fourier coefficients using just classical examples.

Recall that for a function f: {0,1}" — {0,1}, the Fourier coefficients are defined as

F(S) = Eu[f (2)xs(2)],

where yg(z) = (—1) Show that there exists an algorithm that satisfies the following: the
algorithm obtains O(1/e% - log(1/4)) labelled examples (z, f(z)) where z is uniformly random and
with probability > 1 — §, outputs « such that | — f(S5)] < e.

S-x



Hint: Use Chernoff bound.

Problem 6. Consider the classical agnostic learning setup as follows: let D : {0,1}"*! — [0,1] be
an unknown distribution such that the marginal on the first n bits is uniform and the probability
the last bit is 1 is (1 + g(z))/2, and it equals 0 with probability (1 — g(z))/2. The goal is to find S
such that

errp(xs) < OPT +¢, (1)

where errp(xs) = Pl"($,b)ND[XS($) # b], OPT = minp{errp(xr)} and xg(x) = (—1)5"”.

In quantum agnostic learning we are given

) = 7 Sl @ (=50 + 2 )

for an arbitrary g : {0,1}" — [—1,1]. Show that a quantum agnostic learner satisfying Eq. (1)
satisfies
3(5) € [maxg(T) - e maxg(T) + o]
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