PCMI: RAMSEY THEORY ON GRAPHS - DAY 1

July 2025

Julian Sahasrabudhe

- (1) Show that $R(k) \ge (1 + o(1))e^{-1}k2^{k/2}$, by modifying a random colouring of the complete graph.
- (2) Let $R_{\ell}(k)$ be the ℓ -colour Ramsey number: the minimum n such that every ℓ -colouring of K_n contains a monochromatic K_k . Show that
 - (a) $R_{\ell}(k) \leqslant \ell^{\ell k}$
 - (b) By considering a random colouring, show that $R_{\ell}(k) \geqslant \ell^{k/2}$.
 - (c) Show that $R_{s+t}(k) \ge (R_s(k) 1)(R_t(k) 1) + 1$ and use this show that for all $\ell, k \ge 2$ we have $R_{\ell}(k) > 3^{\ell k/6}$

whenever $\ell \equiv 0 \mod 3$. What can we say about $\ell \not\equiv 0 \mod 3$?

- (3) Show that $R_r(3) \leq (r+1)!$.
- (4) Let $\chi: \mathbb{N} \to [k]$. Show there is $x, y, z \in \mathbb{N}$ such that $\chi(x) = \chi(y) = \chi(z)$ and x + y = z.
- (5) Let $n \ge k2^{k+2}$. Show that every 2-colouring of the edges of the complete bipartite graph $K_{n,n}$ contains a monochromatic $K_{k,k}$. For which n does there exist a colouring of K_n with no monochromatic $K_{k,k}$?
- (6) Define $R^{(r)}(k)$ to be the smallest n so that every colouring of the $[n]^{(r)}$ contains $X \subset [n]$ with |X| = k so that $X^{(r)}$ is monochromatic. Note that $R^{(2)}(k) = R(k)$. Show that $R^{(3)}(k)$ exists. Can you extend to larger $R^{(r)}(k)$?
- (7) Define the Ramsey number of H by

 $r(H) = \min \{n : \text{ every red/blue colouring } K_n \text{ contains a mono copy of } H\}.$

Let H be a graph and let $k = \chi(H)$ be its chromatic number. Show that $r(H) \ge 2^{k/2}$.