
1/ 23

Overview of
quantum learning theory

Srinivasan Arunachalam (IBM Quantum)



2/ 23

Machine learning

Goals of classical ML

Grand goal: enable AI systems to improve themselves

Interacting with environment, providing useful data to “train” the machine

Underpinning these improvements is better algorithms, more data,
computational power

In the last decade:

1 Image processing: Deep neural networks used for image recognition

2 Natural language processing: used for speech recognition

3 Reinforcement learning

DeepMind has algorithms for
chess, Go, and protein folding!
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Quantum machine learning

What can quantum computing do for machine learning?

Close to quantum advantage candidate for a practical problem?

Polynomial speed-ups for many tasks as training Boltzmann machines,
clustering, perceptron learning, support vector machines, . . .

Exponential speed-ups for some tasks such as PCA, recommendation systems,
linear system solvers, . . .

The era of de-quantization

Tang’18 gave a classical polynomial-time algorithm for recommendation systems

A flurry of de-quantized algorithms for principal component analysis [T’18],
low-rank linear system solvers [GLT’18, CLW’18], SDP solvers [CLLW’18]

A need to prove formal separations in quantum machine learning
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Quantum learning theory

In classical ML, the field of computational learning theory deals with understanding
ML from a theoretical perspective.

In these lectures:

1 Learning Boolean functions encoded as quantum examples

Hardness of PAC learning

Some positive and negative under the uniform distribution

2 Learning quantum states

General tomography and learning specific class of states

Learning in weaker settings: PAC learning and shadows

3 Statistical learning and open questions
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A Theory of the Learnable

Valiant gave a complexity-theoretic definition of what it means to learn

Goal: learn a class of functions C = {c1, c2 . . . , } where ci : X → {0, 1}

Example: ci s are halfspaces, i.e., each ci is associated with a separating hyperplane

What does it mean to learn? Let c⋆ ∈ C (unknown). Given points in X , what is c⋆?
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Classical learner using classical examples

Basic definitions

Concept class C: collection of Boolean functions on n bits (Known)

Target concept c: some function c ∈ C. (Unknown)

Distribution D : {0, 1}n → [0, 1]

Labeled example for c ∈ C: (x , c(x)) where x ∼ D
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Classical learner using classical examples

Basic definitions

Concept class C: collection of Boolean functions on n bits (Known)

Target concept c: some function c ∈ C. (Unknown)

Distribution D : {0, 1}n → [0, 1]

Labeled example for c ∈ C: (x , c(x)) where x ∼ D

Learner is trying to learn c
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Learning model: classical PAC learning

Basic definitions

Concept class C: collection of Boolean functions on n bits (Known)

Target concept c: some function c ∈ C (Unknown)

Distribution D : {0, 1}n → [0, 1] (Unknown)

Goal of A. For every c ∈ C and D, with probability ≥ 1− δ output a hypothesis h s.t.

Pr
x∼D

[h(x) ̸= c(x)] ≤ ε

Sample complexity of C: Number of examples used on the hardest c ∈ C and D

Time complexity of C: Number of time steps used on the hardest c ∈ C and D
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Quantum PAC learning

Learner is quantum and the data is quantum

Bshouty-Jackson’95 introduced a quantum example as a superposition∑
x∈{0,1}n

√
D(x) |x , c(x)⟩

Measuring this state gives a (x , c(x)) with probability D(x),
so quantum examples are at least as powerful as classical
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Quantum PAC learning

Learner is quantum and the data is quantum

Bshouty-Jackson’95 introduced a quantum example as a superposition∑
x∈{0,1}n

√
D(x) |x , c(x)⟩

Measuring this state gives a (x , c(x)) with probability D(x),
so quantum examples are at least as powerful as classical

Goal of QA. For every c ∈ C and D, with prob. ≥ 1− δ output a hypothesis h s.t.

Pr
x∼D

[h(x) ̸= c(x)] ≤ ε

Motivating question: Do quantum examples give an advantage for PAC learning?
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Vapnik and Chervonenkis (VC) dimension

VC dimension of C ⊆ {c : {0, 1}n → {0, 1}}

Let M be the |C| × 2n Boolean matrix whose c-th row is the truth table of concept
c : {0, 1}n → {0, 1}
VC-dim(C): largest d s.t. the |C| × d rectangle in M contains {0, 1}d These d column
indices are shattered by C



13/ 23

Vapnik and Chervonenkis (VC) dimension

VC dimension of C ⊆ {c : {0, 1}n → {0, 1}}

M is the |C| × 2n Boolean matrix whose c-th row is the truth table of c

VC-dim(C): largest d s.t. the |C| × d rectangle in M contains {0, 1}d These d column
indices are shattered by C

Table: VC-dim(C) = 2

Concepts Truth table
c1 0 1 0 1
c2 0 1 1 0
c3 1 0 0 1
c4 1 0 1 0
c5 1 1 0 1
c6 0 1 1 1
c7 0 0 1 1
c8 0 1 0 0
c9 1 1 1 1
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Vapnik and Chervonenkis (VC) dimension

VC dimension of C ⊆ {c : {0, 1}n → {0, 1}}

M is the |C| × 2n Boolean matrix whose c-th row is the truth table of c

VC-dim(C): largest d s.t. the |C| × d rectangle in M contains {0, 1}d These d column
indices are shattered by C

Table: VC-dim(C) = 2

Concepts Truth table
c1 0 1 0 1
c2 0 1 1 0
c3 1 0 0 1
c4 1 0 1 0
c5 1 1 0 1
c6 0 1 1 1
c7 0 0 1 1
c8 0 1 0 0
c9 1 1 1 1

Table: VC-dim(C) = 3

Concepts Truth table
c1 0 1 1 0
c2 1 0 0 1
c3 0 0 0 0
c4 1 1 0 1
c5 1 0 1 0
c6 0 1 1 1
c7 0 0 1 1
c8 0 1 0 1
c9 0 1 0 0
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VC dimension characterizes PAC sample complexity

VC dimension of C

M is the |C| × 2n Boolean matrix whose c-th row is the truth table of c

VC-dim(C): largest d s.t. the |C| × d rectangle in M contains {0, 1}d These d column
indices are shattered by C

Fundamental theorem of PAC learning

Suppose VC-dim(C) = d

Blumer-Ehrenfeucht-Haussler-Warmuth’86:

every (ε, δ)-PAC learner for C needs Ω
(

d
ε
+ log(1/δ)

ε

)
examples

Hanneke’16: exists an (ε, δ)-PAC learner for C using O
(

d
ε
+ log(1/δ)

ε

)
examples
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Quantum sample complexity

Quantum upper bound

Classical upper bound O
(

d
ε
+ log(1/δ)

ε

)
carries over to quantum

Best known quantum lower bounds

Atici & Servedio’04: lower bound Ω
(√

d
ε

+ d + log(1/δ)
ε

)
Zhang’10 improved first term to d1−η

ε
for all η > 0
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Quantum sample complexity = Classical sample complexity

Quantum upper bound

Classical upper bound O
(

d
ε
+ log(1/δ)

ε

)
carries over to quantum

Best known quantum lower bounds

Atici & Servedio’04: lower bound Ω
(√

d
ε

+ d + log(1/δ)
ε

)
Zhang’10 improved first term to d1−η

ε
for all η > 0

Our result: Tight lower bound

[AW’18]: Ω
(

d
ε
+ log(1/δ)

ε

)
quantum examples are necessary

Two proof approaches

Information theory: conceptually simple, nearly-tight bounds

Optimal measurement: tight bounds, some messy calculations
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Proof approach: Pretty Good Measurement

State identification: Ensemble E = {(pz , |ψz ⟩)}z∈[m]

Given state |ψz ⟩ ∈ E with prob pz . Goal: identify z

Optimal measurement could be quite complicated,
but we can always use the Pretty Good Measurement. This has POVM operators

Mz = pzρ−1/2|ψz ⟩⟨ψz |ρ−1/2, where ρ =
∑

z pz |ψz ⟩⟨ψz |

Success probability of PGM: PPGM =
∑

i pzTr(Mz |ψz ⟩⟨ψz |)

Crucial property: if Popt is the success probability of the optimal measurement,
then Popt ≥ Ppgm ≥ P2

opt (Barnum-Knill’02)

How does learning relate to identification?

Quantum PAC: Given |ψc ⟩ =
∣∣Ec,D

〉⊗T
, learn c approximately

Goal: show T ≥ d/ε, where d = VC-dim(C)
Suppose {s0, . . . , sd} is shattered by C. Fix a nasty distribution D:

D(s0) = 1− 16ε, D(si ) = 16ε/d on {s1, . . . , sd}
Let E : {0, 1}k → {0, 1}d be a good error-correcting code
s.t. k ≥ d/4 and dH(E(y),E(z)) ≥ d/8

Pick concepts {cz}z∈{0,1}k ⊆ C: cz (s0) = 0, cz (si ) = E(z)i ∀ i
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Pick concepts {cz} ⊆ C: cz(s0) = 0, cz(si) = E (z)i ∀ i

Suppose VC(C) = d + 1 and {s0, . . . , sd} is shattered by C, i.e.,
|C| × (d + 1) rectangle of {s0, . . . , sd} contains {0, 1}d+1

Concepts Truth table
c ∈ C s0 s1 · · · sd−1 sd · · · · · ·
c1 0 0 · · · 0 0 · · · · · ·
c2 0 0 · · · 1 0 · · · · · ·
c3 0 0 · · · 1 1 · · · · · ·
...

...
...

. . .
...

... · · · · · ·
c2d−1 0 1 · · · 1 0 · · · · · ·
c2d 0 1 · · · 1 1 · · · · · ·

c2d+1 1 0 · · · 0 1 · · · · · ·
...

...
...

. . .
...

... · · · · · ·
c2d+1 1 1 · · · 1 1 · · · · · ·
...

...
...

. . .
...

... · · · · · ·


c(s0) = 0

Among

{c1, . . . , c2d }, pick 2k concepts that correspond to codewords of E : {0, 1}k → {0, 1}d
on {s1, . . . , sd}
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Proof approach: Pretty Good Measurement

State identification: Ensemble E = {(pz , |ψz ⟩)}z∈[m]

Given state |ψz ⟩ ∈ E with prob pz Goal: identify z

Optimal measurement could be quite complicated,
but we can always use the Pretty Good Measurement

Crucial property: Popt ≥ Ppgm ≥ P2
opt (Barnum-Knill’02)

How does learning relate to identification?

Given |ψcz ⟩ =
∣∣Ecz ,D

〉⊗T
, learn cz approximately. Show T ≥ d/ε

Suppose {s0, . . . , sd} is shattered by C. Fix a nasty distribution D:

D(s0) = 1− 16ε, D(si ) = 16ε/d on {s1, . . . , sd}
Let E : {0, 1}k → {0, 1}d be a good error-correcting code
s.t. k ≥ d/4 and dH(E(y),E(z)) ≥ d/8

Pick concepts {cz}z∈{0,1}k ⊆ C: cz (s0) = 0, cz (si ) = E(z)i ∀ i

Learning cz approximately (wrt D) is equivalent to identifying z!
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Sample complexity lower bound via PGM

Recap

Learning cz approximately (wrt D) is equivalent to identifying z!

If sample complexity is T , then there is a good learner that identifies z from

|ψcz ⟩ =
∣∣Ecz ,D

〉⊗T
with probability ≥ 1− δ

Analysis of PGM

For the ensemble {|ψcz ⟩ : z ∈ {0, 1}k} with uniform probabilities pz = 1/2k , we
have Ppgm ≥ P2

opt ≥ (1− δ)2

Ppgm ≤ · · · 4-page calculation · · · ≤ exp(T 2ε2/d +
√
Tdε− d − Tε)

This implies T = Ω(d/ε)
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Random classification noise

Classical model

There is a fixed noise parameter η ∈ [0, 1]

A learning algorithm for c ∈ C obtains an (x , b) where b = c(x) with probability
1− η and b = 1 + c(x) with probability η

Given such noisy examples, learn c

Quantum model

There is a fixed noise parameter η ∈ [0, 1]

A quantum learner obtains∑
x

√
D(x) |x⟩

(√
1− η |c(x)⟩+√

η |1 + c(x)⟩
)
.

Given copies of this state, learn c

Strengths and weaknesses of noisy examples

[AW’18] quantum noisy examples do not provide an advantage

When D is the uniform distribution, even learning parities is open classically but
quantum learning parities is possible in quantum polynomial time.
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Agnostic learning

Lets get real!

So far, examples were generated according to a target concept c ∈ C
In realistic situations we could have “noisy” examples for the target concept, or
maybe no fixed target concept even exists

How do we model this? Agnostic learning

Unknown distribution D on (x , ℓ) generates examples

Suppose “best” concept in C has error OPT = min
c∈C

Pr
(x,ℓ)∼D

[c(x) ̸= ℓ]

Goal of the agnostic learner: output h ∈ C with error ≤ OPT + ε

What about sample complexity?

Classical sample complexity: Θ
(

d
ε2

+ log(1/δ)

ε2

)
[VC74,Tal94]

No quantum bounds known before (unlike PAC model)

We show the quantum examples do not reduce sample complexity


