Overview of quantum learning theory

Srinivasan Arunachalam (IBM Quantum)

Machine learning

Goals of classical ML

- Grand goal: enable AI systems to improve themselves
- Interacting with environment, providing useful data to "train" the machine
- Underpinning these improvements is better algorithms, more data, computational power

In the last decade:

- 1 Image processing: Deep neural networks used for image recognition
- 2 Natural language processing: used for speech recognition
- 3 Reinforcement learning

DeepMind has algorithms for chess, Go, and protein folding!

Quantum machine learning

What can quantum computing do for machine learning?

- Close to quantum advantage candidate for a practical problem?
- Polynomial speed-ups for many tasks as training Boltzmann machines, clustering, perceptron learning, support vector machines, . . .
- Exponential speed-ups for some tasks such as PCA, recommendation systems, linear system solvers, . . .

The era of de-quantization

- Tang'18 gave a classical polynomial-time algorithm for recommendation systems
- A flurry of de-quantized algorithms for principal component analysis [T'18], low-rank linear system solvers [GLT'18, CLW'18], SDP solvers [CLLW'18]

A need to prove formal separations in quantum machine learning

Quantum learning theory

In classical ML, the field of computational learning theory deals with understanding ML from a theoretical perspective.

In these lectures:

- 1 Learning Boolean functions encoded as quantum examples
 - Hardness of PAC learning
 - Some positive and negative under the uniform distribution
- 2 Learning quantum states
 - General tomography and learning specific class of states
 - Learning in weaker settings: PAC learning and shadows
- Statistical learning and open questions

A Theory of the Learnable

Valiant gave a complexity-theoretic definition of what it means to learn

Goal: learn a class of functions $C = \{c_1, c_2 \dots, \}$ where $c_i : X \to \{0, 1\}$

Example: $c_i s$ are halfspaces, i.e., each c_i is associated with a separating hyperplane

What does it mean to learn? Let $c^* \in \mathcal{C}$ (unknown). Given points in X, what is c^* ?

A Theory of the Learnable

Valiant gave a complexity-theoretic definition of what it means to learn

Goal: learn a class of functions $\mathcal{C} = \{c_1, c_2 \dots, \}$ where $c_i : X \to \{0, 1\}$

Example: $c_i s$ are halfspaces, i.e., each c_i is associated with a separating hyperplane

What does it mean to learn? Let $c^* \in \mathcal{C}$ (unknown). Given points in X, what is c^* ?

Classical learner using classical examples

Basic definitions

- Concept class C: collection of Boolean functions on n bits (Known)
- Target concept c: some function $c \in C$. (Unknown)
- $\bullet \ \, \mathsf{Distribution} \,\, D: \{0,1\}^n \to [0,1]$
- Labeled example for $c \in \mathcal{C}$: (x, c(x)) where $x \sim D$

Classical learner using classical examples

Basic definitions

- Concept class C: collection of Boolean functions on n bits (Known)
- Target concept c: some function $c \in C$. (Unknown)
- Distribution $D: \{0,1\}^n \rightarrow [0,1]$
- Labeled example for $c \in C$: (x, c(x)) where $x \sim D$

$$\begin{array}{c} \mathcal{C} = \{c_1, c_2, \dots \} \\ \downarrow \\ c \\ \text{target} \\ \text{concept} \end{array} \quad \begin{array}{c} x_1 \sim D \\ x_2 \sim D \end{array} \quad \stackrel{\longrightarrow}{\longrightarrow} \quad \begin{array}{c} (x_1, c(x_1)) \\ (x_2, c(x_2)) \\ \vdots \\ x_T \sim D \end{array} \quad \stackrel{\longrightarrow}{\longrightarrow} \quad (x_T, c(x_T)) \end{array}$$

Learner is trying to learn c

Learning model: classical PAC learning

Basic definitions

- Concept class C: collection of Boolean functions on n bits (Known)
- Target concept c: some function $c \in C$ (Unknown)
- Distribution $D: \{0,1\}^n \to [0,1]$ (Unknown)

$$\begin{array}{c} \mathcal{C} = \{c_1, c_2, \dots \} \\ \downarrow \\ c \\ \text{target} \\ \text{concept} \end{array} \quad \begin{array}{c} x_1 \sim D \\ x_2 \sim D \end{array} \quad \stackrel{\textstyle \longrightarrow}{\longrightarrow} \quad \begin{array}{c} (x_1, c(x_1)) \\ (x_2, c(x_2)) \\ \vdots \\ x_T \sim D \end{array} \quad \stackrel{\textstyle \longleftarrow}{\longrightarrow} \quad \begin{array}{c} (x_T, c(x_T)) \\ (x_T, c(x_T)) \end{array}$$

Goal of A. For every $c \in C$ and D, with probability $\geq 1 - \delta$ output a hypothesis h s.t.

$$\Pr_{x \sim D}[h(x) \neq c(x)] \leq \varepsilon$$

Sample complexity of C: Number of examples used on the hardest $c \in C$ and DTime complexity of C: Number of time steps used on the hardest $c \in C$ and D

Quantum PAC learning

Learner is quantum and the data is quantum

Bshouty-Jackson'95 introduced a quantum example as a superposition

$$\sum_{x \in \{0,1\}^n} \sqrt{D(x)} |x, c(x)\rangle$$

Measuring this state gives a (x, c(x)) with probability D(x), so quantum examples are at least as powerful as classical

$$C = \{c_1, c_2, \dots \}$$

$$\downarrow$$

$$c$$
target concept

Quantum PAC learning

Learner is quantum and the data is quantum

Bshouty-Jackson'95 introduced a quantum example as a superposition

$$\sum_{x \in \{0,1\}^n} \sqrt{D(x)} |x, c(x)\rangle$$

Measuring this state gives a (x, c(x)) with probability D(x), so quantum examples are at least as powerful as classical

$$\mathcal{C} = \{c_1, c_2, \dots\}$$
 \downarrow
 c
target concept
 $C = \{c_1, c_2, \dots\}$
 $c \in \mathcal{C}$
 $c \in \mathcal{C}$

Goal of QA. For every $c \in C$ and D, with prob. $\geq 1 - \delta$ output a hypothesis h s.t.

$$\Pr_{x \sim D}[h(x) \neq c(x)] \leq \varepsilon$$

Motivating question: Do quantum examples give an advantage for PAC learning?

Vapnik and Chervonenkis (VC) dimension

VC dimension of $\mathcal{C} \subseteq \{c: \{0,1\}^n \rightarrow \{0,1\}\}$

Let M be the $|\mathcal{C}| \times 2^n$ Boolean matrix whose c-th row is the truth table of concept $c: \{0,1\}^n \to \{0,1\}$

VC-dim(\mathcal{C}): largest d s.t. the $|\mathcal{C}| \times d$ rectangle in M contains $\{0,1\}^d$ These d column indices are shattered by \mathcal{C}

Vapnik and Chervonenkis (VC) dimension

VC dimension of $\mathcal{C} \subseteq \{c: \{0,1\}^n \rightarrow \{0,1\}\}$

 M is the $|\mathcal{C}| \times 2^n$ Boolean matrix whose $\mathit{c}\text{-th}$ row is the truth table of c

 $\text{VC-dim}(\mathcal{C}) \text{: largest } d \text{ s.t. the } |\mathcal{C}| \times d \text{ rectangle in } M \text{ contains } \{0,1\}^d \text{ These } d \text{ column indices are shattered by } \mathcal{C}$

Table: VC-dim(C) = 2

Concepts	Truth table				
<i>c</i> ₁	0	1	0	1	
<i>c</i> ₂	0	1	1	0	
<i>c</i> ₃	1	0	0	1	
C4	1	0	1	0	
<i>C</i> 5	1	1	0	1	
<i>c</i> ₆	0	1	1	1	
C7	0	0	1	1	
<i>c</i> ₈	0	1	0	0	
C 9	1	1	1	1	

Vapnik and Chervonenkis (VC) dimension

VC dimension of $C \subseteq \{c : \{0,1\}^n \rightarrow \{0,1\}\}$

M is the $|\mathcal{C}| \times 2^n$ Boolean matrix whose c-th row is the truth table of c

VC-dim(\mathcal{C}): largest d s.t. the $|\mathcal{C}| \times d$ rectangle in M contains $\{0,1\}^d$ These d column indices are shattered by \mathcal{C}

Table: VC-dim(C) = 2

Concepts	Truth table				
<i>c</i> ₁	0	1	0	1	
<i>c</i> ₂	0	1	1	0	
<i>c</i> ₃	1	0	0	1	
C4	1	0	1	0	
C ₅	1	1	0	1	
<i>c</i> ₆	0	1	1	1	
C7	0	0	1	1	
c ₈	0	1	0	0	
C 9	1	1	1	1	

Table: VC-dim(C) = 3

Concepts	Truth table				
c_1	0	1	1	0	
<i>c</i> ₂	1	0	0	1	
<i>c</i> ₃	0	0	0	0	
C4	1	1	0	1	
<i>C</i> 5	1	0	1	0	
<i>c</i> ₆	0	1	1	1	
C7	0	0	1	1	
<i>C</i> 8	0	1	0	1	
C 9	0	1	0	0	

VC dimension characterizes PAC sample complexity

VC dimension of $\mathcal C$

M is the $|\mathcal{C}| \times 2^n$ Boolean matrix whose c-th row is the truth table of c

VC-dim(\mathcal{C}): largest d s.t. the $|\mathcal{C}| \times d$ rectangle in M contains $\{0,1\}^d$ These d column indices are shattered by \mathcal{C}

Fundamental theorem of PAC learning

Suppose VC-dim(C) = d

- Blumer-Ehrenfeucht-Haussler-Warmuth'86: every (ε, δ) -PAC learner for $\mathcal C$ needs $\Omega\left(\frac{d}{\varepsilon} + \frac{\log(1/\delta)}{\varepsilon}\right)$ examples
- Hanneke'16: exists an (ε, δ) -PAC learner for $\mathcal C$ using $O\left(\frac{d}{\varepsilon} + \frac{\log(1/\delta)}{\varepsilon}\right)$ examples

Quantum sample complexity

Quantum upper bound

Classical upper bound $O\left(rac{d}{arepsilon} + rac{\log(1/\delta)}{arepsilon}
ight)$ carries over to quantum

Best known quantum lower bounds

Atici & Servedio'04: lower bound $\Omega\left(\frac{\sqrt{d}}{\varepsilon}+d+\frac{\log(1/\delta)}{\varepsilon}\right)$

Zhang'10 improved first term to $\frac{d^{1-\eta}}{\varepsilon}$ for all $\eta>0$

Quantum sample complexity = Classical sample complexity

Quantum upper bound

Classical upper bound $O\left(\frac{d}{\varepsilon} + \frac{\log(1/\delta)}{\varepsilon}\right)$ carries over to quantum

Best known quantum lower bounds

Atici & Servedio'04: lower bound $\Omega\left(\frac{\sqrt{d}}{\varepsilon}+d+\frac{\log(1/\delta)}{\varepsilon}\right)$

Zhang'10 improved first term to $\frac{d^{1-\eta}}{\varepsilon}$ for all $\eta>0$

Our result: Tight lower bound

[AW'18]: $\Omega\left(\frac{d}{\varepsilon} + \frac{\log(1/\delta)}{\varepsilon}\right)$ quantum examples are necessary

Two proof approaches

- Information theory: conceptually simple, nearly-tight bounds
- Optimal measurement: tight bounds, some messy calculations

Proof approach: Pretty Good Measurement

State identification: Ensemble $\mathcal{E} = \{(p_z, |\psi_z\rangle)\}_{z \in [m]}$

- ullet Given state $|\psi_z
 angle\in\mathcal{E}$ with prob p_z . Goal: identify z
- Optimal measurement could be quite complicated, but we can always use the Pretty Good Measurement. This has POVM operators $M_z = p_z \rho^{-1/2} |\psi_z\rangle \langle \psi_z| \rho^{-1/2}, \text{ where } \rho = \sum_z p_z |\psi_z\rangle \langle \psi_z|$
- Success probability of PGM: $P_{PGM} = \sum_{i} p_z \text{Tr}(M_z | \psi_z \rangle \langle \psi_z |)$
- Crucial property: if P_{opt} is the success probability of the optimal measurement, then $P_{opt} \ge P_{ggm}^2 \ge P_{opt}^2$ (Barnum-Knill'02)

How does learning relate to identification?

- Quantum PAC: Given $|\psi_c\rangle = \left|E_{c,D}\right>^{\otimes T}$, learn c approximately
- Goal: show $T \ge d/\varepsilon$, where d = VC-dim(C)
- Suppose $\{s_0,\ldots,s_d\}$ is shattered by \mathcal{C} . Fix a nasty distribution D: $D(s_0)=1-16\varepsilon,\ D(s_i)=16\varepsilon/d\ \text{on}\ \{s_1,\ldots,s_d\}$
- Let $E: \{0,1\}^k \to \{0,1\}^d$ be a good error-correcting code s.t. $k \ge d/4$ and $d_H(E(y), E(z)) \ge d/8$
- Pick concepts $\{c^z\}_{z \in \{0,1\}^k} \subseteq \mathcal{C}$: $c^z(s_0) = 0$, $c^z(s_i) = E(z)_i \ \forall \ i$

Pick concepts $\{c^z\}\subseteq \mathcal{C}:\ c^z(s_0)=0,\ c^z(s_i)=E(z)_i\ \forall\ i$

Suppose
$$VC(\mathcal{C})=d+1$$
 and $\{s_0,\ldots,s_d\}$ is shattered by \mathcal{C} , i.e., $|\mathcal{C}|\times(d+1)$ rectangle of $\{s_0,\ldots,s_d\}$ contains $\{0,1\}^{d+1}$

Concepts	Truth table							
$c \in \mathcal{C}$	s 0	s ₁		s_{d-1}	s _d			
<i>c</i> ₁	0	0		0	0			\
<i>c</i> ₂	0	0		1	0			
<i>C</i> 3	0	0		1	1			
								}
:	:	:	•	:	:		• • •	
$c_{2^{d}-1}$	0	1		1	0			
c _{2d}	0	1		1	1)
$c_{2^{d}-1} \\ c_{2^{d}} \\ c_{2^{d}+1}$	1	0	• • • •	0	1	• • •	• • • •	
:		:	٠.	:	:			
	-		•	•				
$c_{2^{d+1}}$	1	1		1	1			
:	-			:	:			
<u> </u>	:	:		<u> </u>	<u>:</u>	• • • •	• • • •	

$$c(s_0) = 0$$
 Among

 $\{c_1,\ldots,c_{2^d}\}$, pick 2^k concepts that correspond to codewords of $E:\{0,1\}^k o\{0,1\}^d$ on $\{s_1,\ldots,s_d\}$

Proof approach: Pretty Good Measurement

State identification: Ensemble $\mathcal{E} = \{(p_z, |\psi_z\rangle)\}_{z \in [m]}$

- Given state $|\psi_z\rangle \in \mathcal{E}$ with prob p_z Goal: identify z
- Optimal measurement could be quite complicated, but we can always use the Pretty Good Measurement
- Crucial property: $P_{opt} \ge P_{pgm} \ge P_{opt}^2$ (Barnum-Knill'02)

How does learning relate to identification?

- Given $|\psi_{c^z}\rangle = |E_{c^z,D}\rangle^{\otimes T}$, learn c^z approximately. Show $T \geq d/\varepsilon$
- Suppose $\{s_0, \ldots, s_d\}$ is shattered by \mathcal{C} . Fix a nasty distribution D: $D(s_0) = 1 16\varepsilon$, $D(s_i) = 16\varepsilon/d$ on $\{s_1, \ldots, s_d\}$
- Let $E: \{0,1\}^k \to \{0,1\}^d$ be a good error-correcting code s.t. $k \ge d/4$ and $d_H(E(y), E(z)) \ge d/8$
- Pick concepts $\{c^z\}_{z \in \{0,1\}^k} \subseteq \mathcal{C}$: $c^z(s_0) = 0$, $c^z(s_i) = E(z)_i \ \forall \ i$
- Learning c^z approximately (wrt D) is equivalent to identifying z!

Sample complexity lower bound via PGM

Recap

- Learning c^z approximately (wrt D) is equivalent to identifying z!
- If sample complexity is T, then there is a good learner that *identifies* z from $|\psi_{c^z}\rangle = |E_{c^z,D}\rangle^{\otimes T}$ with probability $\geq 1 \delta$

Analysis of PGM

- For the ensemble $\{|\psi_{c^z}\rangle:z\in\{0,1\}^k\}$ with uniform probabilities $p_z=1/2^k$, we have $P_{pgm}\geq P_{opt}^2\geq (1-\delta)^2$
- $P_{pgm} \leq \cdots$ 4-page calculation $\cdots \leq \exp(T^2 \varepsilon^2 / d + \sqrt{T d \varepsilon} d T \varepsilon)$
- This implies $T = \Omega(d/\varepsilon)$

Random classification noise

Classical model

- There is a fixed noise parameter $\eta \in [0,1]$
- A learning algorithm for $c \in \mathcal{C}$ obtains an (x,b) where b=c(x) with probability $1-\eta$ and b=1+c(x) with probability η
- Given such noisy examples, learn c

Quantum model

- ullet There is a fixed noise parameter $\eta \in [0,1]$
- A quantum learner obtains

$$\sum_{\mathsf{x}} \sqrt{D(\mathsf{x})} \ket{\mathsf{x}} \left(\sqrt{1-\eta} \ket{c(\mathsf{x})} + \sqrt{\eta} \ket{1+c(\mathsf{x})} \right).$$

Given copies of this state, learn c

Strengths and weaknesses of noisy examples

- [AW'18] quantum noisy examples do not provide an advantage
- When *D* is the uniform distribution, even learning parities is open classically but quantum learning parities is possible in quantum polynomial time.

Agnostic learning

Lets get real!

- ullet So far, examples were generated according to a target concept $c \in \mathcal{C}$
- In realistic situations we could have "noisy" examples for the target concept, or maybe no fixed target concept even exists

How do we model this? Agnostic learning

- Unknown distribution D on (x, ℓ) generates examples
- Suppose "best" concept in $\mathcal C$ has error $\mathsf{OPT} = \min_{c \in \mathcal C} \Pr_{(x,\ell) \sim D} [c(x) \neq \ell]$
- Goal of the agnostic learner: output $h \in \mathcal{C}$ with error $\leq \mathsf{OPT} + \varepsilon$

What about sample complexity?

- Classical sample complexity: $\Theta\left(\frac{d}{\varepsilon^2} + \frac{\log(1/\delta)}{\varepsilon^2}\right)$ [VC74,Tal94]
- No quantum bounds known before (unlike PAC model)
- We show the quantum examples do not reduce sample complexity