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Machine learning

Goals of classical ML

@ Grand goal: enable Al systems to improve themselves
@ Interacting with environment, providing useful data to “train” the machine

@ Underpinning these improvements is better algorithms, more data,
computational power

In the last decade:
@ Image processing: Deep neural networks used for image recognition

@ Natural language processing: used for speech recognition

© Reinforcement learning

DeepMind has algorithms for
chess, Go, and protein folding!
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Quantum machine learning

What can quantum computing do for machine learning?

@ Close to quantum advantage candidate for a practical problem?

@ Polynomial speed-ups for many tasks as training Boltzmann machines,
clustering, perceptron learning, support vector machines, ...

@ Exponential speed-ups for some tasks such as PCA, recommendation systems,
linear system solvers, ...

The era of de-quantization

@ Tang'l8 gave a classical polynomial-time algorithm for recommendation systems

@ A flurry of de-quantized algorithms for principal component analysis [T'18],
low-rank linear system solvers [GLT'18, CLW'18], SDP solvers [CLLW’18]

A need to prove formal separations in quantum machine learning



Quantum learning theory

In classical ML, the field of computational learning theory deals with understanding
ML from a theoretical perspective.

In these lectures:
@ Learning Boolean functions encoded as quantum examples
o Hardness of PAC learning
o Some positive and negative under the uniform distribution
@ Learning quantum states
o General tomography and learning specific class of states
o Learning in weaker settings: PAC learning and shadows

© Statistical learning and open questions



A Theory of the Learnable

Valiant gave a complexity-theoretic definition of what it means to learn

Goal: learn a class of functions C = {ci, ..., } where ¢; : X — {0,1}
Example: c¢;s are halfspaces, i.e., each ¢; is associated with a separating hyperplane

What does it mean to learn? Let ¢* € C (unknown). Given points in X, what is c*?
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Classical learner using classical examples

Basic definitions

@ Concept class C: collection of Boolean functions on n bits (Known)
@ Target concept c: some function ¢ € C. (Unknown)

@ Distribution D : {0,1}" — [0, 1]

@ Labeled example for ¢ € C: (x, c(x)) where x ~ D




Classical learner using classical examples

Basic definitions

@ Concept class C: collection of Boolean functions on n bits (Known)

Target concept c: some function ¢ € C. (Unknown)

Distribution D : {0,1}" — [0, 1]

Labeled example for ¢ € C: (x, c(x)) where x ~ D

CZ{Cl,CQ,... }
‘L Output: Hypothesis h
c Hope: h is close to ¢
target x1 ~ D — (1, c(21)) -
concept xo ~ D — (o, c(x2)) A <
xp ~ D — (7, c(xzg))

Learner is trying to learn c




Learning model: classical PAC learning

Basic definitions

@ Concept class C: collection of Boolean functions on n bits (Known)
@ Target concept c: some function ¢ € C (Unknown)
@ Distribution D : {0,1}" — [0, 1] (Unknown)

C={ci,co,... }

\l/ Output: Hypothesis h
C Hope: h is close to ¢
target zy ~ D ? (IlaC(I’l)) -,
concept ==

xo ~ D — (22, c(x2))

xp ~ D — (z7, c(zT))

Goal of A. For every ¢ € C and D, with probability > 1 — § output a hypothesis h s.t.
Pr [h(x) #c(x)] <e
x~D

Sample complexity of C: Number of examples used on the hardest ¢ € C and D

Time complexity of C: Number of time steps used on the hardest ¢ € C and D




Quantum PAC learning

Learner is quantum and the data is quantum

Bshouty-Jackson'95 introduced a quantum example as a superposition

> VD) Ixe(x)

xe{0,1}n

Measuring this state gives a (x, c(x)) with probability D(x),
so quantum examples are at least as powerful as classical

C={cy,c2,... }
1

(&
target
concept

QA



Quantum PAC learning

Learner is quantum and the data is quantum
Bshouty-Jackson’'95 introduced a quantum example as a superposition
Y VD) Ix,e(x))
x€{0,1}n

Measuring this state gives a (x, c(x)) with probability D(x),
so quantum examples are at least as powerful as classical

C:{(;l,CQ,... }
1

Output: Hypothesis h

c Hope: h is close to ¢
target 22V D(X) |x, (%)) —>
concept

S A/DE Ix ey — QA
2ZV/D(x) Ix. e(x)) —
Goal of QA. For every ¢ € C and D, with prob. > 1 — § output a hypothesis h s.t.

Prlh() # c(] < ¢

Motivating question: Do quantum examples give an advantage for PAC learning?




Vapnik and Chervonenkis (VC) dimension

VC dimension of C C {c: {0,1}" — {0,1}}

Let M be the |C| X 2" Boolean matrix whose c-th row is the truth table of concept
c:{0,1}" — {0,1}

VC-dim(C): largest d s.t. the |C| x d rectangle in M contains {0,1}? These d column
indices are shattered by C




Vapnik and Chervonenkis (VC) dimension

VC dimension of C C {c: {0,1}" — {0,1}}

M is the |C| x 2" Boolean matrix whose c-th row is the truth table of ¢

VC-dim(C): largest d s.t. the |C| x d rectangle in M contains {0,1}? These d column
indices are shattered by C

Table: VC-dim(C) =2

Concepts Truth table
c1 0O]1]0]1
o)} of1|1]0
c3 170|0]1
Cy 1 0 1 0
Cs 171|101
Cs o111
c7 Oj0|1]1
cg 0[1|0]|0
(e} 11111




Vapnik and Chervonenkis (VC) dimension

VC dimension of C C {c: {0,1}" — {0,1}}

M is the |C| x 2" Boolean matrix whose c-th row is the truth table of ¢

VC-dim(C): largest d s.t. the |C| x d rectangle in M contains {0,1}? These d column
indices are shattered by C

Table: VC-dim(C) =2

Concepts

Truth table
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VC dimension characterizes PAC sample complexity

VC dimension of C

M is the |C| x 2" Boolean matrix whose c-th row is the truth table of ¢

VC-dim(C): largest d s.t. the |C| X d rectangle in M contains {0,1}? These d column
indices are shattered by C

4

Fundamental theorem of PAC learning
Suppose VC-dim(C) = d

@ Blumer-Ehrenfeucht-Haussler-Warmuth'86:
every (g, 6)-PAC learner for C needs Q (g + M) examples

£
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@ Hanneke'l6: exists an (g, §)-PAC learner for C using O (g + M) examples
y




Quantum sample complexity

Quantum upper bound

Classical upper bound O (g + M) carries over to quantum

Best known quantum lower bounds

Atici & Servedio'04: lower bound 2 (@ +d+ M)

£

gi-n

£

Zhang'10 improved first term to

foralln >0




Quantum sample complexity = Classical sample complexity

Classical upper bound O (g + M) carries over to quantum

v

Best known quantum lower bounds

Atici & Servedio'04: lower bound @ (7 + d + '28(1/2))

£

Zhang'10 improved first term to Q forallp >0

Our result: Tight lower bound

[AW'18]: Q (g + M) quantum examples are necessary

€
Two proof approaches

@ Information theory: conceptually simple, nearly-tight bounds

@ Optimal measurement: tight bounds, some messy calculations




Proof approach: Pretty Good Measurement

State identification: Ensemble & = {(pz, [¢¥2))}.¢[m]

@ Given state |¢);) € £ with prob p,. Goal: identify z

@ Optimal measurement could be quite complicated,
but we can always use the Pretty Good Measurement. This has POVM operators

M; = Pzﬂil/2|¢2><¢2|ﬂfl/2v where p = 37 po|z) (2|
@ Success probability of PGM: Ppgy = 3, pz Tr(Mz|vz) (1z|)
@ Crucial property: if Popt is the success probability of the optimal measurement,

then Popt > Ppgm > P2, (Barnum-Knill'02) )

How does learning relate to identification?

@ Quantum PAC: Given |¢c) = |EC,D>®T, learn ¢ approximately

@ Goal: show T > d/e, where d = VC-dim(C)

@ Suppose {sp,...,sq} is shattered by C. Fix a nasty distribution D:
D(sp) =1 — 16¢, D(s;) = 16e/d on {s1,...,s4}

@ Let E: {0,1}* — {0,1}9 be a good error-correcting code
s.t. k > d/4 and dy(E(y), E(z)) > d/8
@ Pick concepts {c*}, g 13k € C: c*(s0) =0, ¢*(si) = E(2)i V i




concepts {c?} C C: c*(sp) =0, c*(s;)) = E(2); V i

Suppose VC(C) =d + 1 and {sp,...,sq} is shattered by C, i.e.,
IC| x (d + 1) rectangle of {sp,...,sq} contains {0,1}7+1

Concepts Truth table

ceC s S1 Sd—1  Sd
c 0 0 0 0
o 0 0 1 0
c3 0 0 1 1

. c(s0) =0

Cod 1 0 1 e 1 0 Among
Cp 0 1 - 1 1

i |1 0 - 0 1

Coii1 1 1 . 1 1

{c1,...,cd}, pick 2k concepts that correspond to codewords of E : {0,1}% — {0,1}¢
on {s1,...,54}



Proof approach: Pretty Good Measurement

State identification: Ensemble & = {(pz, [¢2))}.¢[m]

@ Given state |¢z) € £ with prob p, Goal: identify z

@ Optimal measurement could be quite complicated,
but we can always use the Pretty Good Measurement

@ Crucial property: Popt > Ppgm > P2, (Barnum-Knill'02)
/

How does learning relate to identification?

Given |t¢cz) = |ECZ7D>®T, learn ¢ approximately. Show T > d/e

Suppose {so,...,sq} is shattered by C. Fix a nasty distribution D:
D(sp) =1 — 16¢, D(s;) = 16e/d on {s1,...,s4}

Let E : {0,1}* — {0,1}9 be a good error-correcting code
s.t. k > d/4 and dy(E(y), E(z)) > d/8

Pick concepts {c*},c o 13k € C: c*(s0) =0, (i) = E(2)i V i

@ Learning c? approximately (wrt D) is equivalent to identifying z!

.




Sample complexity lower bound via PGM

@ Learning c® approximately (wrt D) is equivalent to identifying z!

@ If sample complexity is T, then there is a good learner that identifies z from
[pez) = |Ecz,p)®7 with probability > 1 — &

Analysis of PGM

@ For the ensemble {|1cz) : z € {0,1}%} with uniform probabilities p, = 1/2%, we
have Ppgm > P2, > (1 —6)?

@ Pugm < ---4-page calculation - - - < exp(T2?€%/d + v/ Tde — d — Te)
@ This implies T = Q(d/¢)




Random classification noise

Classical model

@ There is a fixed noise parameter i € [0, 1]

@ A learning algorithm for ¢ € C obtains an (x, b) where b = c¢(x) with probability
1—mnand b =1+ c(x) with probability 7

@ Given such noisy examples, learn ¢

Quantum model

@ There is a fixed noise parameter i € [0, 1]

@ A quantum learner obtains
> VD) 1x) (VI=nle(x)) + vall+ ().

Given copies of this state, learn ¢

Strengths and weaknesses of noisy examples

@ [AW'18] quantum noisy examples do not provide an advantage

@ When D is the uniform distribution, even learning parities is open classically but
quantum learning parities is possible in quantum polynomial time.




Agnostic learning

Lets get real!

@ So far, examples were generated according to a target concept ¢ € C

@ In realistic situations we could have “noisy” examples for the target concept, or
maybe no fixed target concept even exists

How do we model this? Agnostic learning

@ Unknown distribution D on (x,£) generates examples

@ Suppose “best” concept in C has error OPT = min  Pr [c(x) # /]
c€C (x,0)~D

@ Goal of the agnostic learner: output h € C with error < OPT + ¢

What about sample complexity?

@ Classical sample complexity: © (;% + M) [VC74,Tal94]

&

@ No quantum bounds known before (unlike PAC model)

@ We show the quantum examples do not reduce sample complexity




