PCMI 2023 XML: MEETING 2

ALBERT ARTILES

Problems

1. The goal of this problem is to understand tensor products. Let \mathbb{F} be a field (Think of \mathbb{F} as representing \mathbb{Q}, \mathbb{R}, or \mathbb{C}).
(1) Let V and W be vector spaces of \mathbb{F}. (What does this mean?), describe the Cartesian product of V and W, denoted by $V \times W$.
(2) Look up the definition of a bilinear map. Show that the dot product on $\mathbb{R} \times \mathbb{R}$ to \mathbb{R} is bilinear. Show that the determinant map from $\mathbb{R}^{2} \times \mathbb{R}^{2}$ to \mathbb{R} given by $([s, t],[u, v]) \mapsto s v-t u$ is bilinear. What other bilinear maps can you come up with?
(3) Let L be the vector space whose basis set $V \times W$. This space is very big. How big?
(4) We create partition of L above. These are the rules: for all $v_{1}, v_{2} \in V$, $w_{1}, w_{2} \in W$ and $c \in \mathbb{F}$, we have the following relations:

- $\left(v_{1}+v_{2}, w_{1}\right) \sim\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{1}\right)$
- $\left(v_{1}, w_{1}+w_{2}\right) \sim\left(v_{1}, w_{1}\right)+\left(v_{1}, w_{2}\right)$
- $\left(c v_{1}, w_{1}\right) \sim c\left(v_{1}, w_{1}\right)$
- $\left(v_{1}, c w_{1}\right) \sim c\left(v_{1}, w_{1}\right)$.
L / \sim is called the tensor product of V and W and is denoted $V \otimes W$. Show that $V \otimes W$ is a vector space over \mathbb{F}. The equivalence class of the vector $\left(v_{1}, w_{1}\right)$ is denoted $v_{1} \otimes w_{1}$.
(5) If V has dimension m and W has dimension n, what is the dimension of $V \otimes W ?$
(6) Let Y be a vector space over \mathbb{F}. Define the map $\phi: V \times W \rightarrow V \otimes W$ by $(v, w) \mapsto v \otimes w$. Show that if $f: V \times W \rightarrow Y$ is a bilinear map, then there exists a (unique) linear map $\tilde{f}: V \otimes W \rightarrow Y$ such that $f=\tilde{f} \circ \phi$.
(7) Let Z be a vector space over \mathbb{F} and $\psi: V \times W \rightarrow Z$ be a bilinear map. Suppose further that for each bilinear map $g: V \times W \rightarrow Y$, there exists a unique linear map $\tilde{g}: Z \rightarrow Y$ such that $g=\tilde{g} \circ \psi$. Show $V \otimes W$ and Z are isomorphic as vector spaces. (This shows that tensor products are intimately related. You have just proved what is called the universal property of tensor products)

[^0]2. You might have encountered the group of 2×2 matrices with determinant 1 and real entries as a group that acts on \mathbb{R}^{2}. This group is usually called the special linear group and is denoted by $S L(2, \mathbb{R})$.

Let's think about the the action of this group on a different space. Let \mathbb{H} denote the collection of complex numbers with positive imaginary part, that is $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$
(1) Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be in $S L(2, \mathbb{R})$. Show that the following operation is a group action: $A z=\frac{a z+b}{c z+d}$ on \mathbb{H}. Let K be the kernel of the action. $S L(2, \mathbb{R}) / K$ is called the projective special linear group and is denoted as $\operatorname{PSL}(2, \mathbb{R})$. Compute K.
(2) A hyperbolic line in \mathbb{H} is either a ray orthogonal to $\mathbb{R} \subset \mathbb{C}$ or a circle orthogonal to $\mathbb{R} \subset \mathbb{C}$. Draw a few! Show that if $A \in S L(2, \mathbb{R})$ and l is a hyperbolic line, then $A l$ is also a hyperbolic line.
(3) $S L(2, \mathbb{Z})$ is the subset of $S L(2, \mathbb{R})$ consisting of all matrices with integer entries. Show $S L(2, \mathbb{Z})$ a subgroup of $S L(2, \mathbb{R})$ and that it is not normal.
(4) $\operatorname{PSL}(2, \mathbb{Z})$ is generated by the cosets $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] K$ and $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] K$. Let s be the part of the unit circle in \mathbb{H}, compute the orbit of s under $\operatorname{PSL}(2, \mathbb{Z})$. (Draw some pictures)
3. What does the collection of 2×2 unitary matrices look like?
(1) What are necessary and sufficient conditions for a matrix to be unitary?
(2) Show that the determinant of unitary matrix is either 1 or -1 . The group $S U(2)$ is the subgroup of $U(2)$ with determinant 1 . Is this group normal in $U(2)$? What is its index?
(3) The unit sphere in \mathbb{C}^{2} is the collection of all complex tuples (z, w) such that $z \bar{z}+w \bar{w}=1$. What can you tell me about this shape?
(4) If $A \in S U(2)$, then A looks like BLANK, what happens when you interpret the first collumn of A as a vector in \mathbb{C}^{2}. Is this procedure invertible?
(5) What do $S U(2)$ and $U(2)$ look like?

[^0]: Date: July 2023.

