PCMI 2023 XML: MEETING 2

ALBERT ARTILES

Problems

1. The goal of this problem is to understand tensor products. Let \mathbb{F} be a field (Think of \mathbb{F} as representing \mathbb{Q} , \mathbb{R} , or \mathbb{C}).

- (1) Let V and W be vector spaces of \mathbb{F} . (What does this mean?), describe the *Cartesian product* of V and W, denoted by $V \times W$.
- (2) Look up the definition of a bilinear map. Show that the dot product on $\mathbb{R} \times \mathbb{R}$ to \mathbb{R} is bilinear. Show that the determinant map from $\mathbb{R}^2 \times \mathbb{R}^2$ to \mathbb{R} given by $([s,t], [u,v]) \mapsto sv tu$ is bilinear. What other bilinear maps can you come up with?
- (3) Let L be the vector space whose basis set $V \times W$. This space is very big. How big?
- (4) We create partition of L above. These are the rules: for all $v_1, v_2 \in V$, $w_1, w_2 \in W$ and $c \in \mathbb{F}$, we have the following relations:
 - $(v_1 + v_2, w_1) \sim (v_1, w_1) + (v_2, w_1)$
 - $(v_1, w_1 + w_2) \sim (v_1, w_1) + (v_1, w_2)$
 - $(cv_1, w_1) \sim c(v_1, w_1)$
 - $(v_1, cw_1) \sim c(v_1, w_1).$

 L/\sim is called the tensor product of V and W and is denoted $V \otimes W$. Show that $V \otimes W$ is a vector space over \mathbb{F} . The equivalence class of the vector (v_1, w_1) is denoted $v_1 \otimes w_1$.

- (5) If V has dimension m and W has dimension n, what is the dimension of $V \otimes W$?
- (6) Let Y be a vector space over \mathbb{F} . Define the map $\phi : V \times W \to V \otimes W$ by $(v, w) \mapsto v \otimes w$. Show that if $f : V \times W \to Y$ is a bilinear map, then there exists a (unique) linear map $\tilde{f} : V \otimes W \to Y$ such that $f = \tilde{f} \circ \phi$.
- (7) Let Z be a vector space over \mathbb{F} and $\psi : V \times W \to Z$ be a bilinear map. Suppose further that for each bilinear map $g : V \times W \to Y$, there exists a unique linear map $\tilde{g} : Z \to Y$ such that $g = \tilde{g} \circ \psi$. Show $V \otimes W$ and Z are isomorphic as vector spaces. (This shows that tensor products are intimately related. You have just proved what is called the universal property of tensor products)

Date: July 2023.

2. You might have encountered the group of 2×2 matrices with determinant 1 and real entries as a group that acts on \mathbb{R}^2 . This group is usually called the special linear group and is denoted by $SL(2,\mathbb{R})$.

Let's think about the the action of this group on a different space. Let \mathbb{H} denote the collection of complex numbers with *positive* imaginary part, that is $\mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$

- (1) Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be in $SL(2, \mathbb{R})$. Show that the following operation is a group action: $Az = \frac{az+b}{cz+d}$ on \mathbb{H} . Let K be the kernel of the action. $SL(2, \mathbb{R})/K$ is called the projective special linear group and is denoted as $PSL(2, \mathbb{R})$. Compute K.
- (2) A hyperbolic line in \mathbb{H} is either a ray orthogonal to $\mathbb{R} \subset \mathbb{C}$ or a circle orthogonal to $\mathbb{R} \subset \mathbb{C}$. Draw a few! Show that if $A \in SL(2,\mathbb{R})$ and l is a hyperbolic line, then Al is also a hyperbolic line.
- (3) $SL(2,\mathbb{Z})$ is the subset of $SL(2,\mathbb{R})$ consisting of all matrices with integer entries. Show $SL(2,\mathbb{Z})$ a subgroup of $SL(2,\mathbb{R})$ and that it is *not* normal.
- (4) $PSL(2,\mathbb{Z})$ is generated by the cosets $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} K$ and $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} K$. Let *s* be the part of the unit circle in \mathbb{H} , compute the orbit of s under $PSL(2,\mathbb{Z})$. (Draw some pictures)

- **3.** What does the collection of 2×2 unitary matrices look like?
- (1) What are necessary and sufficient conditions for a matrix to be unitary?
- (2) Show that the determinant of unitary matrix is either 1 or -1. The group SU(2) is the subgroup of U(2) with determinant 1. Is this group normal in U(2)? What is its index?
- (3) The unit sphere in \mathbb{C}^2 is the collection of all complex tuples (z, w) such that $z\overline{z} + w\overline{w} = 1$. What can you tell me about this shape?
- (4) If $A \in SU(2)$, then A looks like BLANK, what happens when you interpret the first collumn of A as a vector in \mathbb{C}^2 . Is this procedure invertible?
- (5) What do SU(2) and U(2) look like?