
An Introduction to Lattices,
Lattice Reduction, and

Lattice-Based Cryptography
Joseph H. Silverman

Brown University

PCMI Lecture Series

July 6–10, 2020



Lecture 5. Lattice-Based
Digital Signatures

and Rejection Sampling



Lattice-Based Digital Signatures 1

Digital Signatures

We recall that a Digital Signature Scheme con-
sists of a signing function and a verification function:

Private Key

Document
SignatureSign

Public Key

Signature

Document

Yes or NoVerify

For a valid (PubKey,PrivKey) public/private key pair, a
document Doc, and a purported signature Sig:

Verify(PubKey,Sig,Doc) = Yes

⇐⇒ Sig = Sign(PrivKey,Doc).
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CVP Digital Signatures — GGH

We already briefly discussed digital signature schemes
based on the IFP, DLP, and ECDLP. Today we’ll discuss
lattice-based digital signature schemes whose security re-
lies on SVP and/or CVP.

The prototypical example is the GGH digital signa-
ture scheme, whose basic set-up is the same as that
of the GGH lattice-based cryptosystem:

Private Key = a good basis Bgood for a lattice L
= {v1, . . . ,vn}.

Public Key = a bad basis Bbad for the lattice L.

= {w1, . . . ,wn}.
Document = a vector d that is not in L.

• N.B. In practice, the “document” d that Alice signs
is the output of a hash function applied to her actual
(long) document, plus some random bits.
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CVP Digital Signatures — GGH

• Alice uses Babai with Bgood to find a lattice vector
close to d. Thus she writes

d = δ1v1 + · · · + δnvn with δ1, . . . , δn ∈ R.

She rounds the coefficients to get a lattice vector

s = bδ1ev1 + · · · + bδnevn ∈ L
that is close to d.
• Alice writes s using the bad basis Bbad,

s = s1w1 + · · · + snwn. (∗)
Her signature on d is the n-tuple (s1, . . . , sn).

• Bob uses the n-tuple and bad public basis Bbad to
reconstruct s using the formula (∗). Then s is auto-
matically in L, and Bob verifies that the signature is
valid by checking that:

s is sufficiently close to d.
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Security of GGH and other CVP-based Digital Signatures

Some security issues for CVP-based digital signatures:
• Cominatorial Security : The spaces of keys and sig-

nature must to be large enough so that an attacker
cannot check all their elements. Indeed, collision search
algorithms often run in timeO(

√
K) on sets of sizeK.

• Lattice Security : Just as with CVP-based public key
cryptosystems, one needs to check that latttice reduc-
tion algorithms such as LLL and its variants cannot
solve apprCVP well enough to forge signatures.

• Practicality : The GGH digital signature scheme has
impractically large public keys. One might try to in-
stead use an NTRU-type construction, although it is
not entirely clear how to do that, since an NTRU lat-
tice only provides a good basis for a half-dimensional
sublattice. (It can be done.)



Lattice-Based Digital Signatures 5

Transcript Attacks on Signature Schemes

Yet Another Thing to Worry About!

• Each signature potentially reveals some information
about the private key.
• So a long transcript of signatures might compromise

security.

This is not an idle threat. A number of people, including
Gentry–Szydlo (2002) and Nguyen–Regev (2009), devel-
oped practical transcript attacks on GGH and other early
CVP-based signature schemes.

How might this work for GGH? A signature s on a doc-
ument d reveals a vector in the centered fundamental
domain spanned by the good basis:

s− d ∈ Fgood :=

{
t1v1 + · · · + tnvn : −1

2
≤ ti ≤

1

2

}
.
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Illustrating a Transcript Attack

A few signatures aren’t
much help in reconstructing
Fgood.

With a moderate number
of signatures, the fundamen-
tal domain Fgood starts to
emerge.

With lots of signatures,
one may be able to recon-
struct the fundamental do-
main Fgood.
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Different Private Good Bases Have Different Transcripts

Alice, Bob and Carl have their own private good bases.
Each basis has a different fundamental domain, and a
transcript uniformly fills out that domain.

A Fundamental Domain Fgood
Alice

for Alice’s Private Basis

A Fundamental Domain Fgood
Bob

for Bob’s Private Basis

A Fundamental Domain Fgood
Carl

for Carl’s Private Basis
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Rejection Sampling to the Rescue

Rejection sampling is a technique from statistics in
which one starts with a random process whose output
has a known distribution, and by judiciously throwing
away (rejecting) some of the output values, one creates a
new random process whose output is some other desired
distribution.

Lyubashevsky constructed a lattice-based identification
scheme and digital signature using a technique that he
called aborting, which is a version of rejection sampling.

The basic idea is that Alice generates a signature on her
document and checks if it will leak information about her
individual private key. If it leaks, then she rejects that
signature and generates another one. She continues to do
this until finding a safe signature, which she publishes.

First Issue : How does Alice generate multiple signatures
on the same document?
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Rejection Sampling for GGH

Remember that Alice isn’t really signing her document,
she’s signing a hash of her document. In fact, for various
reasons, it is advisable that she signs something like

Hash

(
Alice’s actual document concate-
nated with, say, 80 random bits

)
.

So if a signature is rejected, she just selects a new 80 bits
and try again. Her signature includes the 80 random bits
that she used in her unrejected signature.

How might that work for GGH? Alice’s signatures give a
set of points that are uniformly distributed in her funda-

mental domain Fgood
Alice. Similarly, Bob’s signatures give

points uniformly distributed in Fgood
Bob , and the same for

Carl. But suppose that they fix a region that’s common

to Fgood
Alice, Fgood

Bob , and Fgood
Carl , and they reject signatures

outside that common region.
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Selecting a Region Common to All Fundamental Domains

The Green Box is common to everyone’s centered funda-
mental domain. So equidistributed points in the Green
Box yield no information about the private basis.

Alice’s Private Fgood
Alice with

common box

Bob’s Private Fgood
Bob with

common box

Carl’s Private Fgood
Carl with

common box
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GGH with Rejection Sampling
1. The public parameters include a cut-off value B

with the property that everyone’s centered funda-
mental domain Fgood contains the centered box{

(x1, . . . , xn) ∈ Rn : −1
2B ≤ xi ≤ 1

2B
}
.

2. Alice computes a vector d to sign:

d = Hash(Alice’s Doc ‖Random Bits).

3. Alice uses her good basis Bgood to find a lattice vec-
tor s that is close to d.

4. If any coordinate of s − d satisfies |x| > B, then
Alice rejects s. She returns to Step 2 and selects
new random bits.

5. Otherwise Alice accepts and publishes the signa-
ture s. (Notice that it is only now that s becomes
public.) She will also need to publish the random
bits that she used in Step 2.
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Transcript Security — At A Cost

• Assuming that the hash function and pseudo-random
number generator work as advertised, Alice’s and Bob’s
and Carl’s transcripts will have exactly the same dis-
tribution. They thus leak no private key information.

• We’ve neglected the added cost of rejection sampling.

How many s get rejected before
one of them is accepted?

For a naive implementation of GGH, the volume of
the common box will be very small compared to
the volume of the fundamental domain. So using
rejection sampling is at best inefficient, and at worst,
completely impractical.

• Lyubashevsky and others use various methods to make
it easier to find non-rejected signatures, while main-
taining the property that the distribution of signa-
tures is independent of the private key.
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A Prototypical Practical Rejection Sampling Scheme

There are also lattice-based signature schemes for which
the simple box rejection method is practical. In the re-
maining time, I want to describe one such scheme and
sketch the proof of transcript security.

In order to concentrate on the transcript aspect, I will
not describe the actual signature scheme. You can read
the full details in the lecture notes.

The scheme again uses the ring

R = Z[X ]/(XN − 1).

For f (X) =
∑
aiX

i, we set the notation

‖f‖∞ := max
0≤i<N

|ai|,

R[b] :=
{
f ∈ R : ‖f‖∞ ≤ b

}
.

Example:

R[1] = {polynomials with coefficients in {−1, 0, 1}} .
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A Prototypical Rejection Sampling Algorithm

1. Parameters: N and k

2. Secret: Alice chooses a secret f ∈ R[1].

3. Randomness: Alice chooses a random y ∈ R[k].

4. Hash: Alice creates c ∈ R[1] using a hash function.
(The value of c is tied to her document, her public
key, and her random polynomial in a way that’s
described in the lecture notes.)

5. Sign: Alice computes s = f · c + y.

6. Rejection Sampling: If ‖s‖∞ ≥ k − N , Alice
goes back to Step 3 and chooses a new value for y.

7. Publication: Alice publishes her signature (s, c).
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Transcript Insecurity Without Rejection Sampling

Suppose that Alice publishes a transcript of signatures

(s1, c1), (s2, c2), (s3, c3), . . . ,

but she ignores the rejection sampling step. Then Eve
can compute the following sum:

1

T

T∑
i=1

si(X) · ci(XN−1)

=
1

T

T∑
i=1

(
f (X) · ci(X) + yi(X)

)
· ci(XN−1)

= f (X) ·
(

1

T

T∑
i=1

ci(X) · ci(XN−1)

)
+

1

T

T∑
i=1

yi(X) · ci(XN−1)

≈ 4N

3
f (X)

when T is large, since the ci and yi
are random and independent.
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Transcript Security With Rejection Sampling

Suppose that Alice uses rejection sampling when creating

(s1, c1), (s2, c2), (s3, c3), . . . ,

Claim: The transcript reveals no information about
Alice’s private key.

What does it mean to say that the transcript reveals no
information? We formulate this as a conditional proba-
bility statement:

Claim: For all f0 ∈ R[1] and all s0 ∈ R[k −N ],

Prob
(

a signature (s, c) created
using f satisfies s = s0

∣∣∣ f = f0

)
does not depend on f0.
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Proof of Transcript Security

Prob
c∈R[1]
y∈R[k]

(
s = s0

∣∣ f = f0

)

=
#
{

(c,y) ∈ R[1]×R[k]
∣∣∣ s0 = c · f0 + y

}
#R[1] ·#R[k]

=
#
{
c ∈ R[1]

∣∣∣ s0 − c · f0 ∈ R[k]
}

#R[1] ·#R[k]
(∗).

Our choice of parameters gives∥∥s0 − c · f0

∥∥
∞ ≤

∥∥s0

∥∥
∞ +

∥∥c · f0

∥∥
∞

≤
∥∥s0

∥∥
∞ + N

∥∥c∥∥∞ · ∥∥f0

∥∥
∞

≤ (k −N) + N = k.

Thus the condition s0− c · f0 ∈ R[k] in (∗) is vacuous!
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Proof of Transcript Security (continued)

Hence

Prob
c∈R[1]
y∈R[k]

(
s = s0

∣∣ f = f0

)

=
#
{
c ∈ R[1]

∣∣∣ s0 − c · f0 ∈ R[k]
}

#R[1] ·#R[k]
(∗)

=
#
{
c ∈ R[1]

}
#R[1] ·#R[k]

=
1

#R[k]
.

This completes the proof that the probability that a
given s0 ∈ R[k − N ] appears in a signature is inde-
pendent of the private key f0 used to create it.
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Probability for Accept/Reject

It remains to show that it is feasible to create non-rejected
signatures. Each coefficient of f · c is a “random” sum
of −1, 0, 1, so looks like a random walk whose absolute
value is highly unlikely to be larger than, say, 5

√
N . This

allows us to estimate:

Prob
c∈R[1]
y∈R[k]

(
‖c ? f + y‖∞ ≤ k −N

)
' Prob

y∈R[k]

(
‖y‖∞ ≤ k −N − 5

√
N
)

=
#R[k −N − 5

√
N ]

#R[k]

=

(
1− N + 5

√
N

2k + 1

)N
≈ exp

(
−N2

2k + 1

)
if k > N2� 1.
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And the Road Goes Ever On. . .

We’ve come to the end of this introduction to lattices
and lattice-based cryptography.

I want to thank all of you for coming,
and to thank the graduate
summer school organizers,

Jennifer Balakrishnan, Bjorn Poonen,
and Akshay Venkatesh,
for inviting me to speak.
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