
An Introduction to Lattices,
Lattice Reduction, and

Lattice-Based Cryptography
Joseph H. Silverman

Brown University

PCMI Lecture Series

July 6–10, 2020

Lecture 4. Lattice-Based
Public Key Cryptosystems

Lattice-Based Public Key Cryptosystems 1

I am going to start with the final slide from a colloquium
that I gave at Oklahoma State a few months ago:

Quantum Computers are
Coming for You!!

Start Preparing Now!!

Taking this dire warning to heart, the remaining two lec-
tures will be devoted to describing some representative
cryptographic constructions based on hard lattice prob-
lems. These systems are secure against known quantum
algorithms.

Lattice-Based Public Key Cryptosystems 2

The Ajtai-Dwork Lattice Cryptosystem

• Ajtai and Dwork (1995) described a lattice-based pub-
lic key cryptosystem whose security relies on the diffi-
culty of solving CVP in a certain set of lattices LAD.

• Breaking their system for a a random lattice of di-
mension m in LAD is as difficult as solving SVP for
all lattices of dimension n, where n depends on m.

• This average case-worst case equivalence is
a theoretical cryptographic milestone, but unfortu-
nately the Ajtai-Dwork cryptosystem is impractical.

• Inspired by the work of Ajtai and Dwork, more practi-
cal lattice-based cryptosystems were proposed in 1996
independently by Goldreich–Goldwasser–Halevi and
by Hoffstein–Pipher–Silverman.

• The original goal was speed, since lattice systems are
≈ 10 times faster than RSA and ECC. Now quantum
security is a crucial attribute.

Lattice-Based Public Key Cryptosystems 3

The GGH Public Key Cryptosystem

Here is the GGH lattice-based cryptosystem due to Gold-
reich–Goldwasser–Halevi.

Private Key = a good basis Bgood for a lattice L
= {v1, . . . ,vn}.

Public Key = a bad basis Bbad for the lattice L.

= {w1, . . . ,wn}.
Plaintext = a binary vector (ε1, . . . , εn), i.e., εi ∈ {0, 1}.

Ciphertext = ε1w1 + · · · + εnwn + r,

where r is a small random vector.

• Bob uses the bad public basis Bbad and a random
small vector r to create the Ciphertext.

• Alice uses Babai with Bgood to solve CVP. She finds
a vector v ∈ L close to the ciphertext. She writes v
in terms of Bbad to recover

v = ε1w1 + · · · + εnwn.

Lattice-Based Public Key Cryptosystems 4

The GGH Cryptosystem In Pictures

We illustrate the GGH cryptosystem:

Good basis

Alice’s private key

Bad basis

Alice’s public key

Lattice-Based Public Key Cryptosystems 5

The GGH Cryptosystem In Pictures

We illustrate the GGH cryptosystem:

Good basis

Alice’s private key

Bad basis

Alice’s public key

Bob’s plaintext is a lattice vector

created using the bad basis

Lattice-Based Public Key Cryptosystems 6

The GGH Cryptosystem In Pictures

We illustrate the GGH cryptosystem:

Good basis

Alice’s private key

Bad basis

Alice’s public key

Bob’s plaintext is a lattice vector

created using the bad basis

Bob’s ciphertext is a random

nearby non-lattice vector

Lattice-Based Public Key Cryptosystems 7

The GGH Cryptosystem In Pictures

We illustrate the GGH cryptosystem:

Good basis

Alice’s private key

Bad basis

Alice’s public key

Bob’s plaintext is a lattice vector

created using the bad basis

Bob’s ciphertext is a random

nearby non-lattice vector

Alice uses her good basis to find Bob’s plaintext .

Lattice-Based Public Key Cryptosystems 8

The GGH Cryptosystem In Pictures

We illustrate the GGH cryptosystem:

Good basis

Alice’s private key

Bad basis

Alice’s public key

Bob’s plaintext is a lattice vector

created using the bad basis

Bob’s ciphertext is a random

nearby non-lattice vector

Alice uses her good basis to find Bob’s plaintext .

Eve can’t find Bob’s plaintext using the bad basis .

Lattice-Based Public Key Cryptosystems 9

GGH versus LLL: A Battle for Supremacy!

• The security of GGH rests on the difficulty of solving
CVP using a highly nonorthogonal basis. The LLL
lattice reduction algorithm finds a moderately or-
thogonal basis in polynomial time.

• The security of GGH thus comes down to the question
of just how good LLL is at solving CVP.

• If n = dim(L) < 100, then LLL easily finds a basis
that’s good enough to break GGH. And even up to
n ≈ 200, variants of LLL will break GGH.

A GGH public key is a basis for L ⊂ Rn.
That’s n vectors, each with n coordinates, so

Size of GGH Public Key = O(n2) bits.

• GGH is probably(?) secure for n = 500 to 1000, but
2 megabit keys are impractical!

NTRUEncrypt: The NTRU Public Key Cryptosystem 10

NTRUEncrypt: The NTRU Public Key Cryptosystem

• Independently of, and more-or-less simultaneously with
GGH, Jeff Hoffstein, Jill Pipher, and I developed a
public key cryptosystem that we called NTRU.

• The NTRU Public Key Cryptosystem solves the GGH
issue of huge key size by using a special type of lat-
tice having bases that can be described using roughly
1
2n log2(n) bits. This may be compared with GGH,

whose keys require roughly n2 bits.

• Actually, that’s a bit of a lie. The NTRU lattice has
dimension 2N , and it has a subspace of dimension N
that can be described using a single vector.

• Before describing the NTRU cryptosystem and its as-
sociated lattice, we need develop a bit more math.

NTRUEncrypt: The NTRU Public Key Cryptosystem 11

Convolution Products

The convolution product of two vectors

a = (a0, a1, . . . , aN−1) and b = (b0, b1, . . . , bN−1)

is the vector

c = a ? b with ck =
∑

i+j≡k (mod N)

aibj.

Vector addition and convolution product make the set of
vectors into a ring, so for example

(a ? b) ? c = a ? (b ? c) Associative Law,

a ? (b + c) = a ? b + a ? c Distributive Law,

a ? b = b ? a Commutative Law,
... ...

NTRUEncrypt: The NTRU Public Key Cryptosystem 12

A Polynomial Description of the Convolution Ring

Alternatively, we identify vectors and polynomials by

a←→ a(X) = a0 + a1X + · · · + aN−1X
N−1,

and we multiply polynomials in the quotient ring

R = Z[X]/(XN − 1)

using the multiplication rule XN = 1. Then

c = a ? b is the same as

c(X) ≡ a(X)b(X) (mod XN − 1).

Reducing the coefficients modulo q (or p), we can work
in the ring

Rq = (Z/qZ)[X]/(XN − 1).

It is then (generally) possible to find inverses, i.e.,

a(X)a(X)−1 ≡ 1 (mod q) for some a(X)−1 ∈ R.

NTRUEncrypt: The NTRU Public Key Cryptosystem 13

How NTRUEncrypt Works

Key Creation: Fix N, p, q, with N prime and with
gcd(p, q) = 1. Choose random polynomials f , g ∈ R
with small coefficients. Compute inverses

F q ≡ f−1 (mod q) and F p ≡ f−1 (mod p)

and set h = g · F q (mod q).

Public Key = h and Private Key = f (and F p)

Encryption: The plaintext m is a polynomial with
mod p coefficients. Choose a random small polynomial r.
The ciphertext is e ≡ p · r · h + m (mod q).

Decryption: Compute

a ≡ e · f (mod q),

choosing the coefficients of a to satisfy A ≤ ai < A+ q.
Then F p · a mod p is equal to the plaintext m.

NTRUEncrypt: The NTRU Public Key Cryptosystem 14

Why NTRUEncrypt Works

The first decryption step gives the polynomial

Computation (mod q) Reason
a ≡ e · f
≡ (p · r · h + m) · f e ≡ p · r · h + m
≡ p · r · g + m · f h · f ≡ g · F q · f = g

The coefficients of r, g,m,f are small, so the coeffi-
cients of p · r · g + m · f
will lie in an interval of length less than q. Choosing the
appropriate interval, the polynomial

a equals p · r · g + m · f exactly,

and not merely modulo q. Now multiply by F p.

F p · a = F p · (p · r · g + m · f)

≡ F p ·m · f (mod p)

≡m (mod p) since F p · f ≡ 1 (mod p).

NTRUEncrypt: The NTRU Public Key Cryptosystem 15

NTRU and SVP/CVP

The Convolution Modular Lattice Lh associated
to the vector h and modulus q is the 2N dimensional
lattice with basis given by the rows of the matrix:

Lh = RowSpan



1 0 · · · 0 h0 h1 · · · hN−1
0 1 · · · 0 hN−1 h0 · · · hN−2
...
0 0 · · · 1 h1 h2 · · · h0
0 0 · · · 0 q 0 · · · 0
0 0 · · · 0 0 q · · · 0
...
0 0 · · · 0 0 0 · · · q


Another way to describe Lh is the set of vectors

Lh =
{

(a, b) ∈ Z2N : a ? h ≡ b (mod q)
}
.

NTRUEncrypt: The NTRU Public Key Cryptosystem 16

Finding an NTRU Private Key as an SVP Problem

An NTRU public/private key pair is given by

f ? h ≡ g (mod q) with “small” f and g.

This formula implies that the lattice Lh contains the
short (likely shortest non-zero) vector

[f , g] = [f0, f1, . . . , fN−1, g0, g1, . . . , gN−1].

To see that [f , g] is in Lh, let

u =
g − f ? h

q
∈ ZN .

Then

[f0, . . . , fN−1, u0, . . . , uN−1]



1 · · · 0 h0 · · · hN−1
...

0 · · · 1 h1 · · · h0
0 · · · 0 q · · · 0
...

0 · · · 0 0 · · · q


= [f0, . . . , fN−1, g0, . . . , gN−1].

NTRUEncrypt: The NTRU Public Key Cryptosystem 17

Finding an NTRU Plaintext as a CVP Problem

Recall that an NTRU ciphertext e has the form

e = pr ? h + m (mod q) with “small” r and m.

We can rewrite this relation in vector form as

[0, e] = [0, pr ? h + m mod q]

≡ [r, r ? (ph) mod q] + [−r,m].

The vector [r, r?(ph) mod q] is in the convolution mod-
ular lattice Lph obtained by using ph in place of h. Fur-
ther, the vector [−r,m] is quite short.

Conclusion. Recovering the plaintext m from the
ciphertext e is equivalent to finding the vector in Lph
that is closest to the vector [0, e].

It is then a question of estimating how hard it is to solve
this CVP problem.

NTRUEncrypt: The NTRU Public Key Cryptosystem 18

NTRU Notes

• The NTRU lattice has a sort of rotational symmetry,
in the sense that

[Xif , Xig] ∈ Lh for all 0 ≤ i ≤ N − 1.

Thus Lh is a 2N -dimensional lattice that contains
an N -dimensional subspace spanned by N indepen-
dent short vectors.
• NTRU decryption may be formulated as solving CVP

in this hidden N -dimensional subspace, more-or-less
via Babai’s method with the short partial basis.
• One should takeN to be prime. Otherwise the NTRU

key/message recovery problems may become lattice
problems in lower dimension. This works if N is di-
visble by a small’ish prime `. (If ` is big, the target
vector gets larger and is lost in a sea of exponentially
many similar length vectors.) But for example, it is a
very bad idea to take N to be even!

NTRUEncrypt: The NTRU Public Key Cryptosystem 19

NTRU Variants

Many variants of NTRU have been proposed. E.g.

Replace XN − 1 with XN + 1, where N = 2k.

(This makes XN + 1 is irreducible in Z[X].)

Replace XN − 1 with an arbitrary (monic, irreducible,
small coefficient) polynomial ϕ(X) ∈ Z[X].

One can then look at sublattices of the ideal lattice(
Z[X]/ϕ(X)Z[X]

)2
.

The key to this construction lies in the fact that if a(X)
and b(X) have small coefficients, then

a(X) · b(X) mod ϕ(X) had small’ish coefficients.

The average coefficient size of the product depends on
the size of the roots of ϕ(X). So taking ϕ(X) to be a
cyclotomic polynomial is good. OTOH, non-cyclotomic
polynomials kill symmetries in the cyclotomic lattice.

An Introduction to Lattices,
Lattice Reduction, and

Lattice-Based Cryptography
Joseph H. Silverman

Brown University

PCMI Lecture Series

July 6–10, 2020

