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Lecture 4. Lattice-Based
Public Key Cryptosystems



[ am going to start with the final slide from a colloquium
that I gave at Oklahoma State a few months ago:

Quantum Computers are
Coming for You!!
Start Preparing Now!!

Taking this dire warning to heart, the remaining two lec-
tures will be devoted to describing some representative
cryptographic constructions based on hard lattice prob-
lems. These systems are secure against known quantum
algorithms.



The Ajtai-Dwork Lattice Cryptosystem

e Ajtai and Dwork (1995) described a lattice-based pub-
lic key cryptosystem whose security relies on the diffi-
culty of solving CVP in a certain set of lattices Lap.

e Breaking their system for a a random lattice of di-
mension m in Lap is as difficult as solving SVP for
all lattices of dimension n, where n depends on m.

e This average case-worst case equivalence is
a theoretical cryptographic milestone, but unfortu-
nately the Ajtai-Dwork cryptosystem is impractical.

e Inspired by the work of Ajtai and Dwork, more practi-
cal lattice-based cryptosystems were proposed in 1996
independently by Goldreich—Goldwasser—Halevi and
by Hoffstein—Pipher—Silverman.

e The original goal was speed, since lattice systems are
~ 10 times faster than RSA and ECC. Now quantum
security is a crucial attribute.



The GGH Public Key Cryptosystem

Here is the GGH lattice-based cryptosystem due to Gold-
reich—Goldwasser—Halevi.

Private Key = a good basis B%°°Y for a lattice £

={vy,..., v}
Public Key = a bad basis B for the lattice L.
— {w17 . o ,wn}.

Plaintext = a binary vector (ej,...,€y), ie., ¢ € {0,1}.
Ciphertext = eqw{ + - - - + eqwy,, + 1,
where 7 is a small random vector.

e Bob uses the bad public basis 8" and a random
small vector r to create the Ciphertext.

e Alice uses Babai with B%°°Y to solve CVP. She finds
a vector v € L close to the ciphertext. She writes v
in terms of B to recover

V=€W|+ 1+ eEpWnp.
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We illustrate the GGH cryptosystem:

Good basis
Alice’s private key
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The GGH Cryptosystem In Pictures
We illustrate the GGH cryptosystem:

Bob’s plaintext is a lattice vector
created using the bad basis

Good basis
Alice’s private

Alice uses her good basis to find Bob’s plaintext .
Eve can’t find Bob’s plaintext using the [Pad basis .



GGH versus LLL: A Battle for Supremacy!

e The security of GGH rests on the dificulty of solving
CVP using a highly nonorthogonal basis. The LLL
lattice reduction algorithm finds a moderately or-
thogonal basis in polynomial time.

e The security of GGH thus comes down to the question
of just how good LLL is at solving CVP.

o [f n = dim(L) < 100, then LLL easily finds a basis
that’s good enough to break GGH. And even up to
n ~ 200, variants of LLL will break GGH.

A GGH public key is a basis for £ C R".

That’s n vectors, each with n coordinates, so

Size of GGH Public Key = O(n?) bits.

e GGH is probably(?) secure for n = 500 to 1000, but
2 megabit keys are impracticall



NTRUEncrypt: The NTRU Public Key Cryptosystem

e Independently of, and more-or-less simultaneously with

GGH, Jeft Hoffstein, Jill Pipher, and I developed a
public key cryptosystem that we called NTRU.

e The NTRU Public Key Cryptosystem solves the GGH

issue of huge key size by using a special type of lat-
tice having bases that can be described using roughly

%n logo(n) bits. This may be compared with GGH,

whose keys require roughly n? bits.

e Actually, that's a bit of a lie. The NTRU lattice has
dimension 2V, and it has a subspace of dimension N

that can be described using a single vector.

e Before describing the NTRU cryptosystem and its as-
sociated lattice, we need develop a bit more math.



Convolution Products
The convolution product of two vectors
a = (ap,a,...,any—_1) and b= (by,by,...,bn_1)
is the vector
c=axb with c.= Z azb]
i+j=k (mod N)
Vector addition and convolution product make the set of
vectors into a ring, so for example

(@axb)xc=ax*(bxc) Associative Law,
ax (b+ c) =ax*b+ a*c Distributive Law,
axb=bxa Commutative Law,



A Polynomial Description of the Convolution Ring

Alternatively, we identity vectors and polynomials by
a+—aX)=aq+aX+ - +ay_ 1 X'
and we multiply polynomials in the quotient ring

R =27Z[X]/ (XN —1)

using the multiplication rule X N — 1. Then

c =a*b isthe same as
c(X) = a(X)b(X) (mod XV —1).

Reducing the coefficients modulo ¢ (or p), we can work
in the ring

N
Rq = (Z/qZ)[X]/(X™ = 1).
[t is then (generally) possible to find inverses, i.e.,

a(X)a(X) ' =1 (mod ¢) for some a(X)"' e R.



How N TRUEncrypt Works

Key Creation: Fix V,p,q, with /N prime and with
gcd(p,q) = 1. Choose random polynomials f,g € R
with small coeflicients. Compute inverses

F,= £ (mod¢)  and F,= £~ (mod p)
and set h=g-F;(mod q).

Public Key = h and Private Key = f (and F'))

Encryption: The plaintext m is a polynomial with
mod p coeflicients. Choose a random small polynomial 7.
The ciphertext is e=p-r-h+m (mod g).

Decryption: Compute
a=e- f (mod q),

choosing the coefficients of a to satisty A < a; < A+q.
Then F'), - a mod p 1s equal to the plaintext m.
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Why NTRUEncrypt Works
The first decryption step gives the polynomial

Computation (mod ¢) Reason
a

=p-r-h+m)-fle=p-r-h+m
=p-r-g+m-f lh-f=g-F,-f=g
The coefficients of r, g, m, f are small, so the coefhi-
cients of p-r-g+m-f

will lie in an interval of length less than ¢. Choosing the
appropriate interval, the polynomial

a equals p-r-g+m-f exactly,
and not merely modulo ¢. Now multiply by F'),.

Fp'a;:Fp'(p"r'g_'_m'f)
Fp,-m- f (mod p)
m (mod p)  since F'- f =1 (mod p).



NTRU and SVP/CVP

The Convolution Modular Lattice Lj associated
to the vector h and modulus ¢ is the 2N dimensional
lattice with basis given by the rows of the matrix:

/1 0 0 hg hy .- hN—l\

0 1 0lhn—1 by - I o
) 0 0 1 By Ry e Ry
Lj, = RowSpan 00 0 ¢ 0 - 0
0 0 o0 0 ¢ --- 0

\0 0 000 0 q |

Another way to describe Ly, is the set of vectors

Ly ={(a,b) € Z*Y :axh =b (mod ¢)}.



Finding an NTRU Private Key as an SVP Problem
An NTRU public/private key pair is given by
f*h =g (mod ¢q) with “small” f and g.

This formula implies that the lattice Lj, contains the
short (likely shortest non-zero) vector

f.9) =1fos f1,- -, IN=1,90,91, - s gN—1)-

To see that [f, g| isin Ly, let

— fxh
u:g J EZN.
q

Then

(1 0 ho hv_l\

e 1 he oo h

..... fN_l,’LLo,...,uN_l] 8 . ql OO :[f()’___’fN_ljgo,...,gN—l]-

000y



Finding an NTRU Plaintext as a CVP Problem
Recall that an NTRU ciphertext e has the form

e =prxh+m (mod q) with “small” r and m.

We can rewrite this relation in vector form as
0, e] = [0, pr x h + m mod ¢]
= [r, 7 x (ph) mod ¢| + [-7r, m].
The vector |, rx(ph) mod ¢] is in the convolution mod-

ular lattice L,,p, obtained by using ph in place of h. Fur-
ther, the vector |[—r,m/| is quite short.

Conclusion. Recovering the plaintext m from the
ciphertext e is equivalent to finding the vector in L,
that is closest to the vector [0, e].

It is then a question of estimating how hard it is to solve

this CVP problem.



NTRU Notes

e The NTRU lattice has a sort of rotational symmetry,
in the sense that

X'f . X'gle L, foral0<i<N —1.

Thus Lj, is a 2N-dimensional lattice that contains
an /NV-dimensional subspace spanned by /N indepen-
dent short vectors.

e NTRU decryption may be formulated as solving CVP
in this hidden /NV-dimensional subspace, more-or-less
via Babai’s method with the short partial basis.

e One should take IV to be prime. Otherwise the NTRU
key /message recovery problems may become lattice
problems in lower dimension. This works if /V is di-
visble by a small’ish prime ¢. (If £ is big, the target
vector gets larger and is lost in a sea of exponentially
many similar length vectors.) But for example, it is a
very bad idea to take /N to be even!



NTRU Variants
Many variants of NTRU have been proposed. E.g.

Replace XN — 1 with XV + 1, where N = )
(This makes XV + 1 is irreducible in Z[X].)

Replace X N _ 1 with an arbitrary (monic, irreducible,
small coefficient) polynomial (X)) € Z|X].

One can then look at sublattices of the ideal lattice

(Z[X)/p(X)ZIX])

The key to this construction lies in the fact that if a(X)
and b(X) have small coefficients, then

a(X)-b(X) mod ¢(X) had small'ish coefficients.

The average coefficient size of the product depends on
the size of the roots of ¢(X). So taking ¢(X) to be a
cyclotomic polynomial is good. OTOH, non-cyclotomic
polynomials kill symmetries in the cyclotomic lattice.
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