
An Introduction to Lattices,
Lattice Reduction, and

Lattice-Based Cryptography
Joseph H. Silverman

Brown University

PCMI Lecture Series

July 6–10, 2020

Lecture 3. Public Key
Cryptography 101:
A Brief Introduction

Public Key Cryptography 101 1

Cryptography in the (pre-1970s) Dark Ages

Fundamental Problem: Bob wants to send Alice a
secret message that their adversary Eve cannot read.

• Step 1: Bob and Alice share a Secret Key that Eve
does not know.
• Step 2: Bob uses the Secret Key to encrypt a Mes-

sage.
• Step 3: Bob sends the Encrypted Message to Alice.
• Step 4: Alice uses the Secret Key to decrypt the

Encrypted Message.
• Step 5: Eve intercepts the Encrypted Message, but

since she does not know the Secret Key, she cannot
recover the Message.

Problem: Bob and Alice cannot send messages until
they exchange a Secret Key. What if they’ve never met?

Example: Alice is Amazon, and the message is Bob’s
credit card number.

Public Key Cryptography 101 2

Public Key Cryptography to the Rescue

• In the mid-1970s Diffie and Hellman proposed creat-
ing cryptosystems that use two keys, a Private Key
that Alice keeps secret, and a Public Key that she
publishes.

• Bob only needs to know the Public Key in order to
encrypt a Message (aka a PlainText) and create the
Encrypted Message (aka the CipherText).

• Alice, who knows the Private Key, is easily able to
decrypt the CipherText and recover the PlainText.

• Eve, since she does not know the Private Key, is un-
able to decrypt.

This all sounds great, but Diffie and Hellman were not
able to propose an explicit example of such a

Public Key Cryptosystem

Public Key Cryptography 101 3

A Mathematical Formulation of Public Key Cryptosystems

Encryption and decryption are really functions:

{Public Keys}× {Plain Texts} Encrypt−−−−→{Cipher Texts},

{Private Keys}×{Cipher Texts} Decrypt−−−−−→ {Plain Texts}.
If (PubKey,PrivKey) is a valid public/private key pair,
then for all messages Msg we want

Decrypt
(
PrivKey,Encrypt(PubKey,Msg)

)
= Msg.

Eve knows the Public Key, but she can neither decrypt
messages nor deduce the Private Key.

A Trap Door Function is an invertible functions f
such that:
(1) f (x) is easy to compute.
(2) f−1(y) is hard to compute.
(3) Knowledge of some extra piece of information (the

“trapdoor”) makes f−1(y) easy to compute.

Public Key Cryptography 101 4

Building Trapdoor Functions

Trapdoor functions and Public Key Cryptosystems are
built from hard mathematical problems. I’m going to
describe four examples.

The Integer Factorization Problem (IFP)
(The “Roots Modulo pq Problem”)
Given two large prime numbers p and q and an expo-
nent e, the exponentiation function

Z/pqZ −→ Z/pqZ, x 7−→ xe mod pq,

is easy to compute, but hard(?) to invert unless you
know p and q.

The IFP is used to build the

RSA Public Key Cryptosystem.

Public Key = (pq, e), Private Key = (p, q).

Public Key Cryptography 101 5

Building Trapdoor Functions (continued)

The Discrete Logarithm Problem (DLP)
Let p be a large prime number, and let g ∈ F∗p. The
powering function

Z/(p− 1)Z −→ F∗p, k 7−→ gk mod p,

is easy to compute, but hard to invert.

The DLP is used build the

Elgamal Public Key Cryptosystem.

Public Key = (p, g, gk) Private Key = k.

Public Key Cryptography 101 6

Building Trapdoor Functions (continued)

The Elliptic Curve Discrete Logarithm Prob-
lem (ECDLP).
Similar to the DLP, but the multiplicative group F∗p is re-
placed by the group of points E(Fp) on an elliptic curve.

Why use elliptic curves? Becasue the ECDLP is (ostensi-
bly) harder than the IFP or DLP, so keys and ciphertexts
are smaller.

It’s all about the never-ending battle between contradic-
tory goals:

• Be maximally efficient!
• Be maximally secure!

Public Key Cryptography 101 7

Building Trapdoor Functions (continued)

The Closest Vector Problem (CVP)
Let L be a lattice and let Bbad = {w1, . . . ,wn} be a
bad basis for L. Then the function

{0, 1}n −→ Rn,

(ε1, . . . , εn) 7−→ ε1w1 + · · · + εnwn +

(
small ran-
dom vector

)
is easy to compute, but hard to invert.

We will discuss cryptosystems built from the CVP in
Lecture 4.

Public Key Cryptography 101 8

From Trapdoor Functions to Public Key Cryptosystems

From IFP to RSA
The RSA Cryptosystem invented by Rivest, Shamir,
and Adelman works as follows:
• Private Key: (p,q). Public Key: (pq,e).
• Plaintext: A number M mod pq.
• Ciphertext: The number C ≡Me (mod pq).
• Decryption: Compute

Cd mod pq where de ≡ 1 (mod pq − p− q + 1).

We’ve Cheated! Factoring pq will indeed break RSA,
but all we really need to do is solve the

Taking Roots Modulo pq Problem.

Is that easier?

Public Key Cryptography 101 9

From Trapdoor Functions to Public Key Cryptosystems

From DLP to Elgamal
The Elgamal DLP-Based Cryptosystem intro-
duces randomness, a topic to which we shall return.

• Private Key: k Public Key: (p,g, gk ∈ F∗p).
• Plaintext: A number M mod p.
• Ciphertext: Choose a a random R mod p− 1. The

ciphtertext is the pair of values

C1 ≡ gR (mod p) and C2 ≡M · (gk)R (mod p).

• Decryption: Compute Ck1
−1 · C2 mod p.

Elliptic Curve Elgamal works similarly, using the
group law on E.

Although again we’ve cheated. Solving DLP will break
Elgamal, but all that’s really needed is to solve the

Diffie–Hellman Problem: Given g, ga, gb, compute gab.

Public Key Cryptography 101 10

From Trapdoor Functions to Public Key Cryptosystems

From CVP to GGH and NTRU
It’s relatively straightforward to create a public key cryp-
tosystem from the CVP, but lattice reduction algorithms
such as LLL-BKZ make it insecure unless the key sizes
are very large.

The use of lattices having additional structure leads to
more practical cryptosystems.

Lectures 4 and 5 will be devoted to a detailed discussion
of

Lattice-Based Cryptography.

And as a trailer of coming attractions, next week Kristen
Lauter will tell you all about

Isogeny-Based Elliptic Curve Cryptography.

Public Key Cryptography 101 11

Signatures in the Dark Ages

Bob’s signature on a document affirms that he created
the document or is willing to abide by its terms.

Bobolink Bank of Boston

Pay to Alice Adams $100.00

BOB ROBERT S
The bank can verify Bob’s signature by comparing it to
a copy that they have on record.

But suppose that Bob wants to sign a computer file and
send it to Alice. How can she verify his digital signature
on the file? Digital Signatures provide the answer.
They are at least as important for internet security as
are public key cryptosystems.

Example: Bob is Microsoft sending an update for Al-
ice’s computer. Should she install it? Only if she can
verify that it came from Bob.

Public Key Cryptography 101 12

Digital Signatures

Similar to public key cryptosystems, a

Digital Signature Scheme

also uses two functions:

{Private Keys}×{Digital Docs} Sign−−→ {Signatures},
{Public Keys}×{Signatures}×{Digital Docs}

Verify−−−→ {Yes, No}.
If (PubKey,PrivKey) is a valid public/private key pair,
then for all documents Doc and potential signatures Sig
we want

Verify(PubKey,Sig,Doc) = Yes

⇐⇒ Sig = Sign(PrivKey,Doc).

Public Key Cryptography 101 13

Examples of Digital Signature Schemes

RSA Signatures
• Public Key: (pq,e).

Private Key: d satisfying de ≡ 1 (mod pq−p−q+1).
• Document: A number D mod pq.
• Signing: The number S ≡ Dd (mod pq).
• Verifying: Signature is valid if Se ≡ D (mod pq).

Elgamal Signatures
• Private Key: k Public Key: (p,g, gk ∈ F∗p).
• Document: A number D mod p.
• Signing: Choose a a random R mod p− 1. The sig-

nature is the pair of values

S1 ≡ gR (mod p), S2 ≡ (D−k·S1)·R−1 (mod p− 1).

• Verifying: Valid if (gk)S1 · S1
S2 ≡ gD (mod p− 1).

Lattice-Based Signatures
Opening Friday at a Lecture Hall near you.

Public Key Cryptography 101 14

Cryptographically Secure Hash Functions

If Bob’s document Doc is large, he could break it into
pieces Doc1,Doc2, . . . and sign each piece. But that’s
inefficient. In practice, Bob signs a hash of his document.

Intuition: A Hash Function takes an arbitrary length
input and creates a fixed length, deterministic, but un-
predictable and random looking, output:{

arbitrary length
bit strings

}
Hash−−−−→

{
bit strings
of length b

}
Some desirable (essential) properties for Hash.
• For D ∈ {0, 1}∗, computing Hash(D) is very fast.
• Given H ∈ {0, 1}b, it is very hard to find any

D ∈ {0, 1}∗ satisfying Hash(D) = H .
• It is very hard to find distinct

D1, D2 ∈ {0, 1}∗ satisfying Hash(D1) = Hash(D2).
This is called Collision Resistance.
• Altering one bit of D changes Hash(D) unpredictably.

Public Key Cryptography 101 15

Random Numbers in Cryptography

For RSA, Bob and Alice need to choose random prime
numbers. Elgamal uses random numbers to encrypt and
sign. And even a deterministic cryptosystem such as
RSA tends to have security problems unless some ran-
domness is introduced.

Semi-Realistic Example: If Bob wants to send the
message M to Alice, rather than encrypting M directly,
he chooses a random string R and instead sends Alice

M ′ := R ‖ (R xor M).

That way even if Eve guesses part of the message, she
cannot use that knowledge to help with decryption, since
the bits of M have been scrambled by R. And Alice can
recover the actual plaintext by first recovering M ′, then
computing

(R xor M) xor R = M.

Public Key Cryptography 101 16

Random Numbers and Pseudo-Random Number Generators

In principle, there are sources that are(?) truely random:
• Quantum phenomena, such as radioactive decay.
• Micro-changes in temperature.

Such sources can be used, but they are relatively ineffi-
cient. What Bob and Alice need is an iterative function

Rand : {0, 1}N −→ {0, 1}N .
Starting from a seed value σ0, the sequence of values

σ1 = Rand(σ0), σ2 = Rand(σ1), σ3 = Rand(σ2), . . .

should be “indistinguishable” from a sequence of values
chosen randomly and uniformly from {0, 1}N .

After generating the seed σ0 from a true random source,
they can iterate Rand to get a long “random” list .

But don’t be fooled by the definitons. Creating cryp-
tographically secure hash functions and pseudo-random
number generators is hard!

Public Key Cryptography 101 17

How Hard are Hard Problems?

So just how hard are famous “hard problems” such as
the IFP, DLP, ECDLP, and CVP?

Honest Answer: No one knows!!! In the sense that we
don’t have a proof that any of these problems are hard.

Practical Answer: How hard are they to solve using
existing algorithms on existing computers?

Problem
Steps Required to
Solve the Problem

Key/Ciphertext Size
to be Secure

IFP ≈ exp(3
√

log pq) steps 2000 to 4000 bits
DLP ≈ exp(3

√
log p) steps 2000 to 4000 bits

ECDLP ≈ √p steps 300 to 400 bits

CVP ≈ CdimL steps 2000 to 4000 bits

That’s all great. Even 4000 bits isn’t much. But you
probably noticed the caveat:

existing algorithms on existing computers.

Public Key Cryptography 101 18

Quantum Computers Make Their Entrance

A Quantum Computer is a machine in which com-
putation on bits (0’s and 1’s) is replaced by computation
on qubits.

In the popular literature, a qubit takes on every real
value between 0 and 1.

Slightly more precisely, a qubit is described by a complex
number representing a superposition of 0 and 1 states
with certain probabilities. A quantum computer with n
qubits can “perform” a simultaneous computation on 2n

states, achieving an exponential speedup.

So far, the largest quantum computers built have only a
handful of qubits. But governments and businesses are
investing huge sums of money in the endeavor.

Analogy(?): First airplane flight 1903 — flew 852 feet.
WW I 1914–18 — airplanes ubiquitous.
WW-II 1939–45 — jets flying 500+ MPH.

Public Key Cryptography 101 19

Quantum Computers and Cryptography

Here’s the bombshell paper that started all the fuss:

Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms
on a Quantum Computer, Peter W. Shor.
Proc. 35th Annual Symposium on Founda-
tions of Computer Science, Santa Fe, NM,
Nov. 20–22, 1994

Shor’s quantum algorithms solve the IFP and DLP (and
ECDLP) in more-or-less quadratic time.

This has sparked much current research on public key
systems that cannot (as far as we know) be broken by
a quantum computer, including lattice-based systems,
isogeny-based systems, and systems based on coding the-
ory:

Post-Quantum Cryptography

Public Key Cryptography 101 20

What, Me Worry?

If large-scale working quantum computers are decades
off, why worry about them now?

• Infrastructure change is slow, time-consuming, expen-
sive.
• Even if PQC is not used now, we should build it into

systems so that we can start using it with a flip of an
(electronic) switch.
• How long do you want to protect your secrets? Your

legal documents? If for 10 years, then you should
probably encrypt/sign using PQC. If 50 years, then
you definitely should.

The US National Institute of Standards and Technol-
ogy (NIST) estimates that by 2030 it will cost roughly
$1 Billion to build a quantum computer that can break
2048-bit RSA. NIST is running a competition to select
and standardize post-quantum cryptosystems.

Public Key Cryptography 101 21

Code Makers Versus Code Breakers

History is littered with the invention of “unbreakable”
cryptosystems that got broken.
So before you start touting your own brilliant new cryp-
tosystem, here are a few lessons that I’ve painfully learned
over the years:
• Cryptanalysts, the people who break cryptosystems,

are very very clever people.
• Cryptanalysts don’t play by your rules, they set their

own rules. They’ll break your algorithm, they’ll break
your software implementation, they’ll break the hard-
ware that you’re using!
• Cryptanalysts attack the weakest part of your system

or its implementation, frequently via a method that
you never even considered.
• If you modify a cryptosystem to make it more effi-

cient, 99 times out of 100 you’ll end up compromising
its security.

An Introduction to Lattices,
Lattice Reduction, and

Lattice-Based Cryptography
Joseph H. Silverman

Brown University

PCMI Lecture Series

July 6–10, 2020

