
An Introduction to Lattices,
Lattice Reduction, and

Lattice-Based Cryptography
Joseph H. Silverman

Brown University

PCMI Lecture Series

July 6–10, 2020



Lecture 1. Lattices and
Hard Lattice Problems

0



Lattices and Hard Lattice Problems 1

Lattices — Definition and Notation

Definition. A lattice L of rank (or dimension) n is a
discrete subgroup of Rn containing an R-basis for Rn.

Equivalently, a lattice is the Z-linear span of a set of n
vectors linearly independent over R:

L = {a1v1 + a2v2 + · · · + anvn : a1, a2, . . . , an ∈ Z}.

The set B = {v1, . . . ,vn} is a basis for L. Lattices
have many bases. Some bases are “better” than others.

The fundamental domain for the quotient Rn/L as-
sociated to the basis B is the set

F(B) = {t1v1 + t2v2 + · · · + tnvn : 0 ≤ ti < 1}.

The (absolute) determinant (or “volume”) of L is

Det(L) = Volume(F(B)) =
∣∣det

(
v1|v2| · · · |vn

)∣∣ .
It is independent of the choice of basis.
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A Two Dimensional Example

F

L

A 2-dimensional lattice L with fundamental domain F
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The Two Fundamental Hard Lattice Problems

Let L be a lattice of dimension n. The two most impor-
tant computational problems are:

Shortest Vector Problem (SVP)
Find a shortest nonzero vector in L.

Closest Vector Problem (CVP)
Given a target vector t ∈ Rn, find a
vector in L that is closest to t.

More generally, one may ask for a vector that is not too
much longer than the shortest, or a vector that is not
too much further away than the closest. These are the

Approximate Shortest Vector Problem
and

Approximate Closest Vector Problem,

denoted apprSVP and apprCVP.
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Using a Basis to Try to Solve the Closest Vector Problem

t

Draw a fundamental domain
around the target point t

L

Use a basis for the lattice to find a translated
fundamental domain containing the target point.
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Babai’s Closest Vertex Solution to the apprCVP

t

v

The vertex v that is closest
to t is a candidate for
(approximate) closest vector

L

The vertex v of the fundamental domain that is closest
to t will be a close lattice point if the basis is “good”,
meaning if the basis consists of vectors that are reason-
ably orthogonal to one another.
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Good and Bad Bases

v1

v2

w1

w2

A “good” basis {v1,v2} and a “bad” basis {w1,w2}
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Target Point

Here is the fundamental domain spanned by
a “bad” basis and a CVP target point
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Target Point
Closest Vertex

It is easy to find the vertex of the fundamental
domain that is closest to the target point
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Target Point
Closest Vertex

Closest Lattice Point

However, the lattice point that actually solves CVP is
much closer to the target than the closest vertex
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Theory and Practice

Lattices, SVP and CVP, have been intensively studied
for more than 100 years, both as intrinsic mathemati-
cal problems and for applications in pure and applied
mathematics, physics and cryptography.

The theoretical study of lattices is often called the

Geometry of Numbers,

a name bestowed on it by Minkowski in his 1910 book
Geometrie der Zahlen. That is our topic for today.

The practical process of finding short(est) or close(st)
vectors in lattices is called Lattice Reduction. That
will be tomorrow’s topic .

Lattice reduction methods have been extensively devel-
oped for applications to number theory, computer alge-
bra, discrete mathematics, applied mathematics, combi-
natorics, cryptography,. . .
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How Orthogonal is a Basis of a Lattice?

Hademard’s Inequality. Let v1, . . . ,vn be any ba-
sis for L. Then

Det(L) ≤ ‖v1‖ · ‖v2‖ · · · ‖vn‖.

Hadamard’s inequality is true because the volume of a
parallelopiped is never greater than the product of the
lengths of its sides.

Hadamard’s inequality is an equality if and only if the
basis vectors are orthogonal (perpendicular) to one an-
other. The extent to which it is an inequality measures
the extent to which the basis is non-orthogonal.

A famous theorem of Minkowski says that every lat-
tice has a basis that is reasonably orthogonal, where the
amount of non-orthogonality is bounded solely in terms
of the dimension.
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A Fundamental Lattice Theorem from the 19th Century

Theorem. (Minkowski): There is a constant γn so
that for all lattices L of dimension n:
(a) There is a nonzero vector v ∈ L satisfying

‖v‖ ≤ γnDet(L)1/n.

(b) There is a basis v1, . . . ,vn for L satisfying

‖v1‖ · ‖v2‖ · · · ‖vn‖ ≤ γ
n/2
n Det(L).

The constant γn is called Hermite’s constant. It is
known that for large n,√

n

2πe
. γn .

√
n

πe
,

but the exact value of γn is known only for n ≤ 8 and
n = 24.
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Finding Points in Lattices — A Theoretical Result

I will start by sketching a proof of the following impor-
tant resul. Minkowski’s theorem will be an immediate
consequence.

(See the lecture notes for an alternative proof using Voronoi cells.)

Lattice Point Lemma. (Minkowski): Let L be a
lattice of dimension n. Then every compact convex
symmetric region R of volume at least 2nDet(L) con-
tains a nonzero lattice point.

The region R is assumed to have the following three
properties:

Compact: closed and bounded
Convex: v,w ∈ R =⇒ line segment vw ⊂ R

Symmetric: v ∈ R =⇒ −v ∈ R
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Proof of the Lattice Point Lemma

LetR ⊂ Rn be a compact convex symmetric region with

Vol(R) > 2nDet(L).

Goal: Prove that R contains a nonzero lattice point.

Let v1, . . . ,vn be a basis for L and let

F =
{
t1v1 + · · · + tnvn : 0 ≤ ti < 1

}
be the associated fundamental domain for L.

For each v ∈ L, we look at the translation of F ,

F + v = {w + v : w ∈ F}.

As v varies over L, the translates F +v cover all of Rn,⋃
v∈L

(F + v) = Rn.
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Translations of F By Vectors in L

F
F + v1

F + v2

F + v1 + v2

F + v1 − v2

Translating the fundamental domain F using the vectors
in the lattice L covers all of Rn.
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Proof of the Lattice Point Lemma (continued)

In particular, each r ∈ R can be written uniquely in the
form r = vr + wr with vr ∈ L and wr ∈ F .

In other words, take r and translate it by an element
of L so that it lies in F .

We dilate (shrink) R by a factor of 2,

1
2R =

{1
2r : r ∈ R

}
,

and consider the map

1
2R −→ F ,

1
2r 7−→ w1

2r
.

Shrinking by a factor of 2 changes volume by a factor
of 2n, so

Vol
(1

2R
)

= 1
2n Vol(R) > Vol(F).

So there must be two different points 1
2r1 and 1

2r2 in 1
2R

with the same image in F .
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Proof of the Lattice Point Lemma (continued)

We have found two points in 1
2R satisfying

1
2r1 = v1 + w and 1

2r2 = v2 + w

with v1,v2 ∈ L and w ∈ F .

Subtracting them yields a nonzero vector

1
2r1 − 1

2r2 = v1 − v2 ∈ L.

We now observe that 1
2r1 +

R is symmetric
so −r2 is in R︷ ︸︸ ︷(
−1

2r2
)︸ ︷︷ ︸

this is the midpoint of the line
segment from r1 to −r2,
so it is in R by convexity

Hence
0 6= v1 − v2 ∈ R ∩ L.
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Proof of the Lattice Point Lemma (finalé)

This completes the proof of the Lattice Point Lemma
assuming Vol(R) > 2nDet(L).

To deal with regions satisfying

Vol(R) = 2nDet(L)

we apply our result to find nonzero points

0 6= vk ∈
(

1 + 1
k

)
R∩ L for each k = 1, 2, 3, . . ..

The lattice points v1,v2, . . . are all in 2R, so there are
only finitely many possibilities for them. Hence there is
a nonzero lattice point v ∈ L in the intersection

∞⋂
k=1

(
1 + 1

k

)
R = R.

Note that they are equal becauseR is compact. QED
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Corollary. (Minkowski’s Theorem Part (a)) A lat-
tice L of dimension n always has a nonzero point v ∈ L
of length at most

‖v‖ .
√

2n

πe
Det(L)1/n

Proof. Let BnR ⊂ Rn be a ball of radius R,(
{x ∈ Rn : ‖x‖ ≤ R}

)
.

If n is reasonably large, then BnR has volume

Vol(BnR) ≈
(

2πe

n

)n/2

Rn.

Hence if we take R ≈
√

2n/πeDet(L)1/n, then we get

Vol(BnR) & 2nDet(L).

the Lattice Point Lemma tells us that BnR contains a
nonzero lattice point. QED
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The Gaussian Heuristic

If L ⊂ Rn is a “random” lattice and t ∈ Rn is a “ran-
dom” target point, how far would we expect t to be
from L? The following heuristic answer tends to work
reasonably well in practice.

Gaussian Heuristic. For a random lattice L ⊂ Rn
and random point t ∈ Rn, we expect

min
v∈L
‖v − t‖ ≈

√
n

2πe
Det(L)1/n.
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The Gaussian Heuristic

Gaussian Heuristic. For a random lattice L ⊂ Rn
and random point t ∈ Rn, we expect

min
v∈L
‖v − t‖ ≈

√
n

2πe
Det(L)1/n.

Justification: The volume of the ball BnR(t) of ra-
dius R centered at t has volume

Vol
(
BnR(t)

)
= Vol

(
B1(0)

)
Rn ≈

(
2πe

n

)n/2

Rn.

A fundamental domain F for L has volume Det(L), and
the tranlated fundamental domains F + v cover Rn. So
we expect BnR(t) to contain a point of L if its volume
(significantly) exceeds Det(L). Setting

Vol
(
BnR(t)

)
= Det(L)

and solving for R gives the Gaussian heuristic.
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The Successive Minima of a Lattice

The first minimum of L, denoted λ1(L), is the length
of shortest non-zero vector in L,

λ1(L) = inf
v∈Lr0

‖v‖.

More generally, the k’th successive minimum of L, de-
noted λk(L), is the smallest number such that L con-
tains k vectors that are linearly independent, i.e.,

λk(L) = inf
{
λ > 0 : dim Span

{
v ∈ L : ‖v‖ ≤ λ

}
≥ k

}
.

With this notation, a general version of Minkowski’s The-
orem says that

λ1λ2 · · ·λk ≤ γk/2 Det(L)k/n.
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